organic compounds
3,3,6,6-Tetramethyl-9-(1-methyl-1H-indol-2-yl)-1,2,3,4,5,6,7,8,9,10-decahydroacridine-1,8-dione
aDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, and cHacettepe University, Faculty of Pharmacy, Dept. of Pharmaceutical Chemistry, 06100 Sihhiye-Ankara, Turkey
*Correspondence e-mail: rbutcher99@yahoo.com
In the acridine system of the title molecule, C26H30N2O2, both cyclohex-2-enone rings adopt sofa conformations. The indole ring system is essentially planar, with a maximum deviation of 0.017 (2) Å for a bridgehead C atom. An intramolecular C—H⋯O hydrogen bond occurs. The molecules assemble into C(6) chains in the crystal by way of N—H⋯O hydrogen bonds.
Related literature
For potassium channel modulator activity for bicyclo (quinoline) and tricyclo (acridine) analogs, see: Horiuchi et al. (2001); Crestanello et al. (2000); Frank et al. (1993); Berkan et al. (2002); Şimşek et al. (2004); Fincan et al. (2012); Gündüz et al. (2009); Li et al. (2011). For a description of the Cambridge Structural Database, see: Allen (2002). For a similar structure, see: El-Khouly et al. (2012). For geometric analysis, see: Cremer & Pople (1975). For hydrogen-bond motifs, see: Etter et al. (1990).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis PRO (Agilent, 2011); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536812045722/jj2157sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812045722/jj2157Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536812045722/jj2157Isup3.cml
A mixture of 1-methylindole-2-carbaldehyde (1.0 mmol), 5,5-dimethyl-1,3-cyclohexanedione (2.0 mmol), ammonium acetate (5.0 mmol) was dissolved in 5 ml of methanol and refluxed until the reaction was completed (monitored by TLC). The precipitate which formed was filtered off and crystallized from ethanol. Crystals were grown by slow evaporation of a methanol solution.
All H atoms were positioned geometrically and refined using a riding model with C—H = 0.95–1.00 Å; N—H = 0.88 Å and Uiso(H) = 1.2 Ueq(C, N) or 1.5 Ueq(Cmethyl). A rotating-group model was applied for the methyl groups.
Data collection: CrysAlis PRO (Agilent, 2011); cell
CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C26H30N2O2 | F(000) = 864 |
Mr = 402.54 | Dx = 1.213 Mg m−3 |
Orthorhombic, Pna21 | Cu Kα radiation, λ = 1.54178 Å |
Hall symbol: P 2c -2n | Cell parameters from 8837 reflections |
a = 14.09072 (13) Å | θ = 2.9–75.6° |
b = 15.04800 (15) Å | µ = 0.60 mm−1 |
c = 10.39178 (12) Å | T = 123 K |
V = 2203.44 (4) Å3 | Block, colorless |
Z = 4 | 0.50 × 0.45 × 0.40 mm |
Agilent Xcalibur (Ruby, Gemini) diffractometer | 3713 independent reflections |
Radiation source: Enhance (Cu) X-ray Source | 3682 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.021 |
Detector resolution: 10.5081 pixels mm-1 | θmax = 75.7°, θmin = 4.3° |
ω scans | h = −17→17 |
Absorption correction: multi-scan [CrysAlis RED (Agilent, 2011), based on expressions derived from Clark & Reid (1995)] | k = −16→18 |
Tmin = 0.753, Tmax = 0.795 | l = −13→8 |
10170 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.036 | H-atom parameters constrained |
wR(F2) = 0.096 | w = 1/[σ2(Fo2) + (0.0699P)2 + 0.2623P] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max = 0.001 |
3713 reflections | Δρmax = 0.21 e Å−3 |
276 parameters | Δρmin = −0.24 e Å−3 |
1 restraint | Absolute structure: Flack (1983), 1302 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.17 (19) |
C26H30N2O2 | V = 2203.44 (4) Å3 |
Mr = 402.54 | Z = 4 |
Orthorhombic, Pna21 | Cu Kα radiation |
a = 14.09072 (13) Å | µ = 0.60 mm−1 |
b = 15.04800 (15) Å | T = 123 K |
c = 10.39178 (12) Å | 0.50 × 0.45 × 0.40 mm |
Agilent Xcalibur (Ruby, Gemini) diffractometer | 3713 independent reflections |
Absorption correction: multi-scan [CrysAlis RED (Agilent, 2011), based on expressions derived from Clark & Reid (1995)] | 3682 reflections with I > 2σ(I) |
Tmin = 0.753, Tmax = 0.795 | Rint = 0.021 |
10170 measured reflections |
R[F2 > 2σ(F2)] = 0.036 | H-atom parameters constrained |
wR(F2) = 0.096 | Δρmax = 0.21 e Å−3 |
S = 1.02 | Δρmin = −0.24 e Å−3 |
3713 reflections | Absolute structure: Flack (1983), 1302 Friedel pairs |
276 parameters | Absolute structure parameter: 0.17 (19) |
1 restraint |
Experimental. Absorption correction: CrysAlis RED, (Agilent, 2011) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. (Clark & Reid, 1995). |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.75903 (7) | 0.25747 (7) | −0.00557 (13) | 0.0295 (3) | |
O2 | 0.88973 (8) | 0.50670 (7) | 0.28897 (12) | 0.0327 (3) | |
N1 | 1.08387 (8) | 0.31288 (8) | 0.04851 (15) | 0.0286 (3) | |
H1A | 1.1423 | 0.2968 | 0.0295 | 0.034* | |
N2 | 0.76168 (8) | 0.31668 (8) | 0.29367 (15) | 0.0277 (3) | |
C1 | 1.01031 (10) | 0.26736 (8) | −0.00433 (16) | 0.0237 (3) | |
C2 | 1.03649 (10) | 0.19916 (9) | −0.10381 (18) | 0.0282 (3) | |
H2A | 1.0974 | 0.1711 | −0.0791 | 0.034* | |
H2B | 1.0460 | 0.2292 | −0.1876 | 0.034* | |
C3 | 0.96102 (10) | 0.12665 (9) | −0.11949 (17) | 0.0265 (3) | |
C4 | 0.86446 (10) | 0.17241 (10) | −0.13694 (17) | 0.0284 (3) | |
H4A | 0.8635 | 0.2026 | −0.2216 | 0.034* | |
H4B | 0.8141 | 0.1265 | −0.1375 | 0.034* | |
C5 | 0.84223 (10) | 0.23979 (9) | −0.03302 (16) | 0.0236 (3) | |
C6 | 0.91909 (10) | 0.28578 (9) | 0.02966 (15) | 0.0222 (3) | |
C7 | 0.89455 (9) | 0.35180 (9) | 0.13511 (15) | 0.0227 (3) | |
H7A | 0.8458 | 0.3941 | 0.1013 | 0.027* | |
C8 | 0.98218 (10) | 0.40439 (9) | 0.17348 (16) | 0.0240 (3) | |
C9 | 0.96904 (11) | 0.48130 (9) | 0.25718 (16) | 0.0261 (3) | |
C10 | 1.05765 (12) | 0.52769 (11) | 0.30610 (18) | 0.0332 (3) | |
H10A | 1.0796 | 0.4973 | 0.3852 | 0.040* | |
H10B | 1.0413 | 0.5896 | 0.3294 | 0.040* | |
C11 | 1.13923 (10) | 0.52915 (9) | 0.20810 (17) | 0.0284 (3) | |
C12 | 1.15872 (10) | 0.43298 (10) | 0.16739 (19) | 0.0319 (4) | |
H12A | 1.2028 | 0.4331 | 0.0932 | 0.038* | |
H12B | 1.1903 | 0.4014 | 0.2392 | 0.038* | |
C13 | 1.06997 (10) | 0.38350 (9) | 0.13094 (17) | 0.0256 (3) | |
C14 | 0.85201 (10) | 0.30123 (9) | 0.24773 (16) | 0.0245 (3) | |
C15 | 0.89064 (10) | 0.23076 (9) | 0.31221 (17) | 0.0275 (3) | |
H15A | 0.9521 | 0.2065 | 0.2990 | 0.033* | |
C16 | 0.82205 (11) | 0.20026 (10) | 0.40284 (17) | 0.0294 (3) | |
C17 | 0.81850 (14) | 0.13028 (12) | 0.49248 (19) | 0.0380 (4) | |
H17A | 0.8712 | 0.0916 | 0.5031 | 0.046* | |
C18 | 0.73717 (15) | 0.11860 (13) | 0.5648 (2) | 0.0441 (4) | |
H18A | 0.7344 | 0.0715 | 0.6256 | 0.053* | |
C19 | 0.65921 (14) | 0.17453 (13) | 0.5502 (2) | 0.0436 (4) | |
H19A | 0.6044 | 0.1648 | 0.6014 | 0.052* | |
C20 | 0.65970 (13) | 0.24415 (12) | 0.4624 (2) | 0.0385 (4) | |
H20A | 0.6064 | 0.2822 | 0.4527 | 0.046* | |
C21 | 0.74192 (11) | 0.25582 (10) | 0.38884 (18) | 0.0290 (3) | |
C22 | 0.69626 (11) | 0.38452 (11) | 0.2494 (2) | 0.0374 (4) | |
H22A | 0.6359 | 0.3787 | 0.2955 | 0.056* | |
H22B | 0.6853 | 0.3773 | 0.1568 | 0.056* | |
H22C | 0.7234 | 0.4434 | 0.2659 | 0.056* | |
C23 | 1.22930 (12) | 0.56706 (11) | 0.2695 (2) | 0.0402 (4) | |
H23A | 1.2813 | 0.5651 | 0.2070 | 0.060* | |
H23B | 1.2462 | 0.5316 | 0.3451 | 0.060* | |
H23C | 1.2180 | 0.6287 | 0.2956 | 0.060* | |
C24 | 1.11188 (12) | 0.58625 (11) | 0.09208 (19) | 0.0368 (4) | |
H24A | 1.1637 | 0.5857 | 0.0292 | 0.055* | |
H24B | 1.1002 | 0.6474 | 0.1204 | 0.055* | |
H24D | 1.0542 | 0.5622 | 0.0524 | 0.055* | |
C25 | 0.98527 (11) | 0.07126 (11) | −0.2383 (2) | 0.0358 (4) | |
H25A | 0.9907 | 0.1103 | −0.3133 | 0.054* | |
H25D | 0.9350 | 0.0275 | −0.2533 | 0.054* | |
H25B | 1.0457 | 0.0404 | −0.2243 | 0.054* | |
C26 | 0.95850 (13) | 0.06656 (10) | −0.00001 (19) | 0.0364 (4) | |
H26D | 1.0207 | 0.0385 | 0.0117 | 0.055* | |
H26A | 0.9101 | 0.0205 | −0.0116 | 0.055* | |
H26B | 0.9432 | 0.1023 | 0.0760 | 0.055* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0178 (5) | 0.0333 (5) | 0.0374 (7) | −0.0021 (4) | 0.0009 (5) | 0.0032 (5) |
O2 | 0.0318 (6) | 0.0337 (5) | 0.0325 (7) | 0.0063 (4) | 0.0036 (5) | −0.0037 (5) |
N1 | 0.0146 (5) | 0.0261 (5) | 0.0450 (9) | 0.0008 (4) | 0.0005 (6) | −0.0079 (5) |
N2 | 0.0213 (5) | 0.0287 (6) | 0.0329 (8) | 0.0027 (5) | 0.0063 (5) | 0.0026 (5) |
C1 | 0.0196 (6) | 0.0204 (6) | 0.0312 (8) | 0.0003 (5) | 0.0001 (6) | −0.0004 (6) |
C2 | 0.0200 (6) | 0.0290 (6) | 0.0355 (9) | −0.0012 (5) | 0.0032 (6) | −0.0067 (6) |
C3 | 0.0241 (6) | 0.0248 (6) | 0.0305 (8) | −0.0027 (5) | −0.0007 (7) | −0.0024 (6) |
C4 | 0.0242 (6) | 0.0317 (7) | 0.0294 (9) | −0.0047 (5) | −0.0036 (6) | −0.0016 (6) |
C5 | 0.0196 (6) | 0.0253 (6) | 0.0260 (8) | −0.0007 (5) | 0.0003 (6) | 0.0065 (5) |
C6 | 0.0195 (6) | 0.0227 (6) | 0.0244 (8) | −0.0012 (5) | −0.0004 (5) | 0.0017 (5) |
C7 | 0.0171 (6) | 0.0213 (6) | 0.0297 (8) | 0.0020 (4) | 0.0012 (5) | 0.0008 (5) |
C8 | 0.0216 (6) | 0.0221 (6) | 0.0282 (8) | −0.0004 (5) | −0.0009 (6) | 0.0012 (5) |
C9 | 0.0285 (7) | 0.0264 (6) | 0.0235 (7) | 0.0023 (5) | 0.0008 (6) | 0.0009 (6) |
C10 | 0.0355 (8) | 0.0356 (8) | 0.0285 (9) | −0.0028 (6) | 0.0002 (7) | −0.0097 (6) |
C11 | 0.0256 (7) | 0.0267 (6) | 0.0328 (9) | −0.0039 (5) | −0.0021 (7) | −0.0059 (6) |
C12 | 0.0201 (6) | 0.0290 (7) | 0.0467 (10) | −0.0005 (5) | −0.0030 (7) | −0.0081 (7) |
C13 | 0.0208 (6) | 0.0228 (6) | 0.0333 (8) | −0.0004 (5) | −0.0017 (6) | −0.0023 (6) |
C14 | 0.0195 (6) | 0.0261 (6) | 0.0279 (8) | 0.0021 (5) | 0.0014 (6) | −0.0025 (6) |
C15 | 0.0251 (7) | 0.0285 (7) | 0.0288 (8) | 0.0036 (5) | −0.0019 (6) | 0.0012 (6) |
C16 | 0.0291 (7) | 0.0311 (7) | 0.0279 (8) | −0.0032 (5) | −0.0033 (7) | −0.0012 (6) |
C17 | 0.0448 (9) | 0.0372 (8) | 0.0321 (9) | −0.0042 (7) | −0.0083 (8) | 0.0059 (7) |
C18 | 0.0568 (11) | 0.0448 (9) | 0.0307 (10) | −0.0167 (8) | −0.0032 (9) | 0.0093 (7) |
C19 | 0.0450 (9) | 0.0533 (10) | 0.0324 (10) | −0.0181 (8) | 0.0081 (8) | 0.0021 (8) |
C20 | 0.0319 (8) | 0.0452 (8) | 0.0383 (11) | −0.0054 (6) | 0.0069 (8) | −0.0015 (8) |
C21 | 0.0284 (7) | 0.0299 (6) | 0.0287 (8) | −0.0052 (5) | 0.0003 (7) | −0.0010 (6) |
C22 | 0.0256 (7) | 0.0363 (7) | 0.0504 (11) | 0.0100 (6) | 0.0095 (8) | 0.0088 (7) |
C23 | 0.0341 (8) | 0.0393 (8) | 0.0471 (11) | −0.0082 (7) | −0.0072 (8) | −0.0134 (8) |
C24 | 0.0383 (8) | 0.0346 (7) | 0.0375 (10) | −0.0090 (6) | −0.0005 (8) | 0.0030 (7) |
C25 | 0.0306 (7) | 0.0374 (8) | 0.0395 (10) | −0.0054 (6) | 0.0015 (8) | −0.0120 (7) |
C26 | 0.0456 (9) | 0.0249 (7) | 0.0386 (10) | 0.0024 (6) | 0.0000 (8) | 0.0028 (6) |
O1—C5 | 1.2356 (18) | C11—C12 | 1.5325 (19) |
O2—C9 | 1.2265 (18) | C12—C13 | 1.5039 (18) |
N1—C1 | 1.3583 (19) | C12—H12A | 0.9900 |
N1—C13 | 1.3789 (19) | C12—H12B | 0.9900 |
N1—H1A | 0.8800 | C14—C15 | 1.368 (2) |
N2—C21 | 1.376 (2) | C15—C16 | 1.425 (2) |
N2—C14 | 1.3790 (18) | C15—H15A | 0.9500 |
N2—C22 | 1.4505 (19) | C16—C17 | 1.407 (2) |
C1—C6 | 1.3614 (19) | C16—C21 | 1.413 (2) |
C1—C2 | 1.503 (2) | C17—C18 | 1.382 (3) |
C2—C3 | 1.5323 (18) | C17—H17A | 0.9500 |
C2—H2A | 0.9900 | C18—C19 | 1.392 (3) |
C2—H2B | 0.9900 | C18—H18A | 0.9500 |
C3—C25 | 1.528 (2) | C19—C20 | 1.389 (3) |
C3—C4 | 1.5357 (19) | C19—H19A | 0.9500 |
C3—C26 | 1.536 (2) | C20—C21 | 1.399 (2) |
C4—C5 | 1.514 (2) | C20—H20A | 0.9500 |
C4—H4A | 0.9900 | C22—H22A | 0.9800 |
C4—H4B | 0.9900 | C22—H22B | 0.9800 |
C5—C6 | 1.441 (2) | C22—H22C | 0.9800 |
C6—C7 | 1.519 (2) | C23—H23A | 0.9800 |
C7—C14 | 1.519 (2) | C23—H23B | 0.9800 |
C7—C8 | 1.5199 (18) | C23—H23C | 0.9800 |
C7—H7A | 1.0000 | C24—H24A | 0.9800 |
C8—C13 | 1.351 (2) | C24—H24B | 0.9800 |
C8—C9 | 1.459 (2) | C24—H24D | 0.9800 |
C9—C10 | 1.518 (2) | C25—H25A | 0.9800 |
C10—C11 | 1.536 (2) | C25—H25D | 0.9800 |
C10—H10A | 0.9900 | C25—H25B | 0.9800 |
C10—H10B | 0.9900 | C26—H26D | 0.9800 |
C11—C24 | 1.530 (2) | C26—H26A | 0.9800 |
C11—C23 | 1.531 (2) | C26—H26B | 0.9800 |
C1—N1—C13 | 122.10 (12) | C13—C12—H12B | 109.0 |
C1—N1—H1A | 118.9 | C11—C12—H12B | 109.0 |
C13—N1—H1A | 118.9 | H12A—C12—H12B | 107.8 |
C21—N2—C14 | 108.87 (13) | C8—C13—N1 | 120.85 (13) |
C21—N2—C22 | 124.59 (13) | C8—C13—C12 | 124.32 (14) |
C14—N2—C22 | 126.53 (14) | N1—C13—C12 | 114.83 (12) |
N1—C1—C6 | 120.86 (13) | C15—C14—N2 | 109.18 (14) |
N1—C1—C2 | 115.80 (12) | C15—C14—C7 | 127.50 (13) |
C6—C1—C2 | 123.32 (13) | N2—C14—C7 | 123.13 (13) |
C1—C2—C3 | 112.90 (12) | C14—C15—C16 | 107.67 (13) |
C1—C2—H2A | 109.0 | C14—C15—H15A | 126.2 |
C3—C2—H2A | 109.0 | C16—C15—H15A | 126.2 |
C1—C2—H2B | 109.0 | C17—C16—C21 | 118.88 (16) |
C3—C2—H2B | 109.0 | C17—C16—C15 | 134.63 (16) |
H2A—C2—H2B | 107.8 | C21—C16—C15 | 106.46 (14) |
C25—C3—C2 | 108.61 (12) | C18—C17—C16 | 119.00 (17) |
C25—C3—C4 | 110.33 (14) | C18—C17—H17A | 120.5 |
C2—C3—C4 | 107.95 (11) | C16—C17—H17A | 120.5 |
C25—C3—C26 | 109.69 (13) | C17—C18—C19 | 121.22 (17) |
C2—C3—C26 | 110.44 (14) | C17—C18—H18A | 119.4 |
C4—C3—C26 | 109.81 (13) | C19—C18—H18A | 119.4 |
C5—C4—C3 | 113.54 (13) | C20—C19—C18 | 121.57 (17) |
C5—C4—H4A | 108.9 | C20—C19—H19A | 119.2 |
C3—C4—H4A | 108.9 | C18—C19—H19A | 119.2 |
C5—C4—H4B | 108.9 | C19—C20—C21 | 117.24 (17) |
C3—C4—H4B | 108.9 | C19—C20—H20A | 121.4 |
H4A—C4—H4B | 107.7 | C21—C20—H20A | 121.4 |
O1—C5—C6 | 120.36 (14) | N2—C21—C20 | 130.07 (15) |
O1—C5—C4 | 120.34 (13) | N2—C21—C16 | 107.83 (13) |
C6—C5—C4 | 119.25 (12) | C20—C21—C16 | 122.09 (16) |
C1—C6—C5 | 119.64 (14) | N2—C22—H22A | 109.5 |
C1—C6—C7 | 122.36 (13) | N2—C22—H22B | 109.5 |
C5—C6—C7 | 117.98 (12) | H22A—C22—H22B | 109.5 |
C6—C7—C14 | 108.54 (11) | N2—C22—H22C | 109.5 |
C6—C7—C8 | 110.18 (11) | H22A—C22—H22C | 109.5 |
C14—C7—C8 | 112.29 (13) | H22B—C22—H22C | 109.5 |
C6—C7—H7A | 108.6 | C11—C23—H23A | 109.5 |
C14—C7—H7A | 108.6 | C11—C23—H23B | 109.5 |
C8—C7—H7A | 108.6 | H23A—C23—H23B | 109.5 |
C13—C8—C9 | 119.72 (13) | C11—C23—H23C | 109.5 |
C13—C8—C7 | 122.47 (13) | H23A—C23—H23C | 109.5 |
C9—C8—C7 | 117.79 (12) | H23B—C23—H23C | 109.5 |
O2—C9—C8 | 121.55 (14) | C11—C24—H24A | 109.5 |
O2—C9—C10 | 121.06 (14) | C11—C24—H24B | 109.5 |
C8—C9—C10 | 117.38 (13) | H24A—C24—H24B | 109.5 |
C9—C10—C11 | 113.58 (14) | C11—C24—H24D | 109.5 |
C9—C10—H10A | 108.8 | H24A—C24—H24D | 109.5 |
C11—C10—H10A | 108.8 | H24B—C24—H24D | 109.5 |
C9—C10—H10B | 108.8 | C3—C25—H25A | 109.5 |
C11—C10—H10B | 108.8 | C3—C25—H25D | 109.5 |
H10A—C10—H10B | 107.7 | H25A—C25—H25D | 109.5 |
C24—C11—C23 | 109.14 (13) | C3—C25—H25B | 109.5 |
C24—C11—C12 | 110.98 (14) | H25A—C25—H25B | 109.5 |
C23—C11—C12 | 108.56 (12) | H25D—C25—H25B | 109.5 |
C24—C11—C10 | 110.00 (13) | C3—C26—H26D | 109.5 |
C23—C11—C10 | 110.47 (14) | C3—C26—H26A | 109.5 |
C12—C11—C10 | 107.68 (13) | H26D—C26—H26A | 109.5 |
C13—C12—C11 | 112.83 (12) | C3—C26—H26B | 109.5 |
C13—C12—H12A | 109.0 | H26D—C26—H26B | 109.5 |
C11—C12—H12A | 109.0 | H26A—C26—H26B | 109.5 |
C13—N1—C1—C6 | −4.8 (2) | C23—C11—C12—C13 | 168.26 (16) |
C13—N1—C1—C2 | 173.19 (14) | C10—C11—C12—C13 | 48.64 (19) |
N1—C1—C2—C3 | 156.80 (14) | C9—C8—C13—N1 | −177.92 (14) |
C6—C1—C2—C3 | −25.2 (2) | C7—C8—C13—N1 | 0.6 (2) |
C1—C2—C3—C25 | 169.70 (14) | C9—C8—C13—C12 | 2.1 (2) |
C1—C2—C3—C4 | 50.08 (18) | C7—C8—C13—C12 | −179.34 (15) |
C1—C2—C3—C26 | −69.98 (17) | C1—N1—C13—C8 | 7.2 (2) |
C25—C3—C4—C5 | −170.93 (13) | C1—N1—C13—C12 | −172.86 (15) |
C2—C3—C4—C5 | −52.40 (18) | C11—C12—C13—C8 | −24.4 (2) |
C26—C3—C4—C5 | 68.06 (15) | C11—C12—C13—N1 | 155.59 (15) |
C3—C4—C5—O1 | −153.53 (14) | C21—N2—C14—C15 | 0.16 (19) |
C3—C4—C5—C6 | 29.08 (19) | C22—N2—C14—C15 | −178.97 (16) |
N1—C1—C6—C5 | 176.66 (14) | C21—N2—C14—C7 | 175.40 (14) |
C2—C1—C6—C5 | −1.2 (2) | C22—N2—C14—C7 | −3.7 (3) |
N1—C1—C6—C7 | −5.2 (2) | C6—C7—C14—C15 | 54.4 (2) |
C2—C1—C6—C7 | 176.95 (14) | C8—C7—C14—C15 | −67.67 (19) |
O1—C5—C6—C1 | −178.11 (14) | C6—C7—C14—N2 | −119.94 (15) |
C4—C5—C6—C1 | −0.7 (2) | C8—C7—C14—N2 | 118.01 (15) |
O1—C5—C6—C7 | 3.6 (2) | N2—C14—C15—C16 | −0.04 (19) |
C4—C5—C6—C7 | −178.96 (13) | C7—C14—C15—C16 | −175.01 (14) |
C1—C6—C7—C14 | −112.01 (15) | C14—C15—C16—C17 | 177.88 (18) |
C5—C6—C7—C14 | 66.18 (16) | C14—C15—C16—C21 | −0.09 (18) |
C1—C6—C7—C8 | 11.32 (19) | C21—C16—C17—C18 | −0.6 (3) |
C5—C6—C7—C8 | −170.49 (12) | C15—C16—C17—C18 | −178.36 (19) |
C6—C7—C8—C13 | −9.1 (2) | C16—C17—C18—C19 | 0.1 (3) |
C14—C7—C8—C13 | 112.07 (16) | C17—C18—C19—C20 | 0.1 (3) |
C6—C7—C8—C9 | 169.54 (13) | C18—C19—C20—C21 | 0.1 (3) |
C14—C7—C8—C9 | −69.34 (16) | C14—N2—C21—C20 | −179.10 (17) |
C13—C8—C9—O2 | 173.83 (16) | C22—N2—C21—C20 | 0.1 (3) |
C7—C8—C9—O2 | −4.8 (2) | C14—N2—C21—C16 | −0.22 (18) |
C13—C8—C9—C10 | −7.5 (2) | C22—N2—C21—C16 | 178.94 (16) |
C7—C8—C9—C10 | 173.86 (14) | C19—C20—C21—N2 | 178.18 (18) |
O2—C9—C10—C11 | −145.85 (15) | C19—C20—C21—C16 | −0.6 (3) |
C8—C9—C10—C11 | 35.5 (2) | C17—C16—C21—N2 | −178.16 (15) |
C9—C10—C11—C24 | 66.05 (16) | C15—C16—C21—N2 | 0.19 (18) |
C9—C10—C11—C23 | −173.41 (13) | C17—C16—C21—C20 | 0.8 (3) |
C9—C10—C11—C12 | −55.01 (18) | C15—C16—C21—C20 | 179.18 (16) |
C24—C11—C12—C13 | −71.80 (18) |
D—H···A | D—H | H···A | D···A | D—H···A |
C22—H22C···O2 | 0.98 | 2.54 | 3.314 (2) | 136 |
N1—H1A···O1i | 0.88 | 1.87 | 2.7437 (15) | 170 |
Symmetry code: (i) x+1/2, −y+1/2, z. |
Experimental details
Crystal data | |
Chemical formula | C26H30N2O2 |
Mr | 402.54 |
Crystal system, space group | Orthorhombic, Pna21 |
Temperature (K) | 123 |
a, b, c (Å) | 14.09072 (13), 15.04800 (15), 10.39178 (12) |
V (Å3) | 2203.44 (4) |
Z | 4 |
Radiation type | Cu Kα |
µ (mm−1) | 0.60 |
Crystal size (mm) | 0.50 × 0.45 × 0.40 |
Data collection | |
Diffractometer | Agilent Xcalibur (Ruby, Gemini) diffractometer |
Absorption correction | Multi-scan [CrysAlis RED (Agilent, 2011), based on expressions derived from Clark & Reid (1995)] |
Tmin, Tmax | 0.753, 0.795 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 10170, 3713, 3682 |
Rint | 0.021 |
(sin θ/λ)max (Å−1) | 0.629 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.036, 0.096, 1.02 |
No. of reflections | 3713 |
No. of parameters | 276 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.21, −0.24 |
Absolute structure | Flack (1983), 1302 Friedel pairs |
Absolute structure parameter | 0.17 (19) |
Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
C22—H22C···O2 | 0.98 | 2.54 | 3.314 (2) | 135.6 |
N1—H1A···O1i | 0.88 | 1.87 | 2.7437 (15) | 170.1 |
Symmetry code: (i) x+1/2, −y+1/2, z. |
Acknowledgements
RJB acknowledges the NSF–MRI program (grant No. CHE-0619278) for funds to purchase the diffractometer.
References
Agilent (2011). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England. Google Scholar
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Berkan, O., Saraç, B., Şimşek, R., Yildirim, A., Sarioglu, Y. & Şafak, C. (2002). Eur. J. Med. Chem. 37, 519–523. Web of Science CrossRef PubMed CAS Google Scholar
Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897. CrossRef CAS Web of Science IUCr Journals Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Crestanello, J. A., Doliba, N. M., Babsky, A. M., Debliba, N. M., Niiobori, K., Osbakken, M. & Whitman, G. J. (2000). J. Surg. Res. 94, 116–123. Web of Science CrossRef PubMed CAS Google Scholar
El-Khouly, A., Öztürk Yildirim, S., Butcher, R. J., Şimsek, R. & Şafak, C. (2012). Acta Cryst. E68, o3337. CSD CrossRef IUCr Journals Google Scholar
Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. CrossRef CAS Web of Science IUCr Journals Google Scholar
Fincan, G. S. Ö., Gündüz, M., Vural, I. M., Şimşek, R., Sarioglu, Y. & Şafak, C. (2012). Med. Chem. Res. 21, 1817–1824. Web of Science CrossRef CAS Google Scholar
Frank, C. A., Forst, J. M., Grant, T., Harris, R. J., Kau, S. T., Li, J. H., Ohnmacht, C. J., Smith, R. W., Trainor, D. A. & Trivedi, S. (1993). Bioorg. Med. Chem. Lett. 3, 2725–2726. CrossRef CAS Web of Science Google Scholar
Gündüz, M. G., Dogan, A. E., Şimşek, R., Erol, K. & Şafak, C. (2009). Med. Chem. Res. 18, 317–325. Google Scholar
Horiuchi, T., Dietrich, H. H., Tsugane, S. & Dacey, G. D. (2001). Stroke, 32, 218–224. CrossRef PubMed CAS Google Scholar
Li, T., Feng, X., Yao, C., Yu, C., Jiang, B. & Tu, S. (2011). Bioorg. Med. Chem. Lett. 21, 453–455. Web of Science CSD CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Şimşek, R., Özkan, M., Kısmetli, E., Uma, S. & Şafak, C. (2004). Il Farmaco, 59, 939–943. PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
It is well known that ion channels play an important role in cell function. Potassium channels are one type of channel that regulate function in both excitable and nonexcitable cells. Potassium channel openers have the potential to restrain or prevent contractile responses of smooth muscle to excitatory stimuli. The main vasorelaxant mechanism of these openers is to increase the potassium efflux through opening plasmalemmal potassium channels, which repolarize and/or hyperpolarize the membrane. In addition to 1,4-dihydropyridine derivatives, bicyclo (quinoline) and tricyclo (acridine) analogs have also potassium channel modulator activity (Horiuchi et al., 2001; Crestanello et al., 2000; Frank et al., 1993; Berkan et al., 2002; Şimşek et al., 2004; Fincan et al., 2012; Gündüz et al., 2009; Li et al., 2011). The structure determination of the title compound, (I), was undertaken as part of our study of to 1,4-dihydropyridine derivatives.
The molecular structure of the title compound is shown in Fig. 1. Both (C1—C6 and C8–13) cyclohexene rings are in a sofa conformation with puckering parameters (Cremer & Pople, 1975) of QT = 0.464 (2) Å, θ = 54.3 (2) °, ϕ = 123.3 (2) ° and QT = 0.462 (2) Å, θ = 50.1 (2) °, ϕ = 169.5 (3) °, respectively. The 1-H indole ring (N2/C14—C21) is essentialy planar with a maximum deviation of 0.017 (2) Å for C16, and forms a dihedral angle of 81.47 (6) ° with the 1,4-dihydro-pyridine ring (N1/C1/C6—C8/C13). The bond lengths (Allen, 2002) and angles are similar to those for reported structures (El-Khouly et al., 2012).
In the crystal structure, adjacent molecules interact by way of an N—H···O hydrogen bond (Fig. 2, Table 1). This results in C(6) chains (Etter, et al., 1990) propagating along [010].