organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 12| December 2012| Pages o3365-o3366

3,3,6,6-Tetra­methyl-9-(1-methyl-1H-indol-2-yl)-1,2,3,4,5,6,7,8,9,10-deca­hydro­acridine-1,8-dione

aDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, and cHacettepe University, Faculty of Pharmacy, Dept. of Pharmaceutical Chemistry, 06100 Sihhiye-Ankara, Turkey
*Correspondence e-mail: rbutcher99@yahoo.com

(Received 2 November 2012; accepted 5 November 2012; online 17 November 2012)

In the acridine system of the title mol­ecule, C26H30N2O2, both cyclo­hex-2-enone rings adopt sofa conformations. The indole ring system is essentially planar, with a maximum deviation of 0.017 (2) Å for a bridgehead C atom. An intra­molecular C—H⋯O hydrogen bond occurs. The mol­ecules assemble into C(6) chains in the crystal by way of N—H⋯O hydrogen bonds.

Related literature

For potassium channel modulator activity for bicyclo (quinoline) and tricyclo (acridine) analogs, see: Horiuchi et al. (2001[Horiuchi, T., Dietrich, H. H., Tsugane, S. & Dacey, G. D. (2001). Stroke, 32, 218-224.]); Crestanello et al. (2000[Crestanello, J. A., Doliba, N. M., Babsky, A. M., Debliba, N. M., Niiobori, K., Osbakken, M. & Whitman, G. J. (2000). J. Surg. Res. 94, 116-123.]); Frank et al. (1993[Frank, C. A., Forst, J. M., Grant, T., Harris, R. J., Kau, S. T., Li, J. H., Ohnmacht, C. J., Smith, R. W., Trainor, D. A. & Trivedi, S. (1993). Bioorg. Med. Chem. Lett. 3, 2725-2726.]); Berkan et al. (2002[Berkan, O., Saraç, B., Şimşek, R., Yildirim, A., Sarioglu, Y. & Şafak, C. (2002). Eur. J. Med. Chem. 37, 519-523.]); Şimşek et al. (2004[Şimşek, R., Özkan, M., Kısmetli, E., Uma, S. & Şafak, C. (2004). Il Farmaco, 59, 939-943.]); Fincan et al. (2012[Fincan, G. S. Ö., Gündüz, M., Vural, I. M., Şimşek, R., Sarioglu, Y. & Şafak, C. (2012). Med. Chem. Res. 21, 1817-1824.]); Gündüz et al. (2009[Gündüz, M. G., Dogan, A. E., Şimşek, R., Erol, K. & Şafak, C. (2009). Med. Chem. Res. 18, 317-325.]); Li et al. (2011[Li, T., Feng, X., Yao, C., Yu, C., Jiang, B. & Tu, S. (2011). Bioorg. Med. Chem. Lett. 21, 453-455.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). For a similar structure, see: El-Khouly et al. (2012[El-Khouly, A., Öztürk Yildirim, S., Butcher, R. J., Şimsek, R. & Şafak, C. (2012). Acta Cryst. E68, o3337.]). For geometric analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For hydrogen-bond motifs, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]).

[Scheme 1]

Experimental

Crystal data
  • C26H30N2O2

  • Mr = 402.54

  • Orthorhombic, P n a 21

  • a = 14.09072 (13) Å

  • b = 15.04800 (15) Å

  • c = 10.39178 (12) Å

  • V = 2203.44 (4) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.60 mm−1

  • T = 123 K

  • 0.50 × 0.45 × 0.40 mm

Data collection
  • Agilent Xcalibur (Ruby, Gemini) diffractometer

  • Absorption correction: multi-scan [CrysAlis RED (Agilent, 2011[Agilent (2011). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]), based on expressions derived from Clark & Reid (1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.])] Tmin = 0.753, Tmax = 0.795

  • 10170 measured reflections

  • 3713 independent reflections

  • 3682 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.096

  • S = 1.02

  • 3713 reflections

  • 276 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C22—H22C⋯O2 0.98 2.54 3.314 (2) 136
N1—H1A⋯O1i 0.88 1.87 2.7437 (15) 170
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z].

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

It is well known that ion channels play an important role in cell function. Potassium channels are one type of channel that regulate function in both excitable and nonexcitable cells. Potassium channel openers have the potential to restrain or prevent contractile responses of smooth muscle to excitatory stimuli. The main vasorelaxant mechanism of these openers is to increase the potassium efflux through opening plasmalemmal potassium channels, which repolarize and/or hyperpolarize the membrane. In addition to 1,4-dihydropyridine derivatives, bicyclo (quinoline) and tricyclo (acridine) analogs have also potassium channel modulator activity (Horiuchi et al., 2001; Crestanello et al., 2000; Frank et al., 1993; Berkan et al., 2002; Şimşek et al., 2004; Fincan et al., 2012; Gündüz et al., 2009; Li et al., 2011). The structure determination of the title compound, (I), was undertaken as part of our study of to 1,4-dihydropyridine derivatives.

The molecular structure of the title compound is shown in Fig. 1. Both (C1—C6 and C8–13) cyclohexene rings are in a sofa conformation with puckering parameters (Cremer & Pople, 1975) of QT = 0.464 (2) Å, θ = 54.3 (2) °, ϕ = 123.3 (2) ° and QT = 0.462 (2) Å, θ = 50.1 (2) °, ϕ = 169.5 (3) °, respectively. The 1-H indole ring (N2/C14—C21) is essentialy planar with a maximum deviation of 0.017 (2) Å for C16, and forms a dihedral angle of 81.47 (6) ° with the 1,4-dihydro-pyridine ring (N1/C1/C6—C8/C13). The bond lengths (Allen, 2002) and angles are similar to those for reported structures (El-Khouly et al., 2012).

In the crystal structure, adjacent molecules interact by way of an N—H···O hydrogen bond (Fig. 2, Table 1). This results in C(6) chains (Etter, et al., 1990) propagating along [010].

Related literature top

For potassium channel modulator activity for bicyclo (quinoline) and tricyclo (acridine) analogs, see: Horiuchi et al. (2001); Crestanello et al. (2000); Frank et al. (1993); Berkan et al. (2002); Şimşek et al. (2004); Fincan et al. (2012); Gündüz et al. (2009); Li et al. (2011). For a description of the Cambridge Structural Database, see: Allen (2002). For a similar structure, see: El-Khouly et al. (2012). For geometric analysis, see: Cremer & Pople (1975). For hydrogen-bond motifs, see: Etter et al. (1990).

Experimental top

A mixture of 1-methylindole-2-carbaldehyde (1.0 mmol), 5,5-dimethyl-1,3-cyclohexanedione (2.0 mmol), ammonium acetate (5.0 mmol) was dissolved in 5 ml of methanol and refluxed until the reaction was completed (monitored by TLC). The precipitate which formed was filtered off and crystallized from ethanol. Crystals were grown by slow evaporation of a methanol solution.

Refinement top

All H atoms were positioned geometrically and refined using a riding model with C—H = 0.95–1.00 Å; N—H = 0.88 Å and Uiso(H) = 1.2 Ueq(C, N) or 1.5 Ueq(Cmethyl). A rotating-group model was applied for the methyl groups.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 30% probability displacement ellipsoids for non-H atoms. Intramolecular hydrogen bond is shown as a dashed line.
[Figure 2] Fig. 2. The crystal structure of the title compound, viewed along the b axis. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity.
3,3,6,6-Tetramethyl-9-(1-methyl-1H-indol-2-yl)-1,2,3,4,5,6,7,8,9,10- decahydroacridine-1,8-dione top
Crystal data top
C26H30N2O2F(000) = 864
Mr = 402.54Dx = 1.213 Mg m3
Orthorhombic, Pna21Cu Kα radiation, λ = 1.54178 Å
Hall symbol: P 2c -2nCell parameters from 8837 reflections
a = 14.09072 (13) Åθ = 2.9–75.6°
b = 15.04800 (15) ŵ = 0.60 mm1
c = 10.39178 (12) ÅT = 123 K
V = 2203.44 (4) Å3Block, colorless
Z = 40.50 × 0.45 × 0.40 mm
Data collection top
Agilent Xcalibur (Ruby, Gemini)
diffractometer
3713 independent reflections
Radiation source: Enhance (Cu) X-ray Source3682 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
Detector resolution: 10.5081 pixels mm-1θmax = 75.7°, θmin = 4.3°
ω scansh = 1717
Absorption correction: multi-scan
[CrysAlis RED (Agilent, 2011), based on expressions derived from Clark & Reid (1995)]
k = 1618
Tmin = 0.753, Tmax = 0.795l = 138
10170 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.096 w = 1/[σ2(Fo2) + (0.0699P)2 + 0.2623P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
3713 reflectionsΔρmax = 0.21 e Å3
276 parametersΔρmin = 0.24 e Å3
1 restraintAbsolute structure: Flack (1983), 1302 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.17 (19)
Crystal data top
C26H30N2O2V = 2203.44 (4) Å3
Mr = 402.54Z = 4
Orthorhombic, Pna21Cu Kα radiation
a = 14.09072 (13) ŵ = 0.60 mm1
b = 15.04800 (15) ÅT = 123 K
c = 10.39178 (12) Å0.50 × 0.45 × 0.40 mm
Data collection top
Agilent Xcalibur (Ruby, Gemini)
diffractometer
3713 independent reflections
Absorption correction: multi-scan
[CrysAlis RED (Agilent, 2011), based on expressions derived from Clark & Reid (1995)]
3682 reflections with I > 2σ(I)
Tmin = 0.753, Tmax = 0.795Rint = 0.021
10170 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.096Δρmax = 0.21 e Å3
S = 1.02Δρmin = 0.24 e Å3
3713 reflectionsAbsolute structure: Flack (1983), 1302 Friedel pairs
276 parametersAbsolute structure parameter: 0.17 (19)
1 restraint
Special details top

Experimental. Absorption correction: CrysAlis RED, (Agilent, 2011) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. (Clark & Reid, 1995).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.75903 (7)0.25747 (7)0.00557 (13)0.0295 (3)
O20.88973 (8)0.50670 (7)0.28897 (12)0.0327 (3)
N11.08387 (8)0.31288 (8)0.04851 (15)0.0286 (3)
H1A1.14230.29680.02950.034*
N20.76168 (8)0.31668 (8)0.29367 (15)0.0277 (3)
C11.01031 (10)0.26736 (8)0.00433 (16)0.0237 (3)
C21.03649 (10)0.19916 (9)0.10381 (18)0.0282 (3)
H2A1.09740.17110.07910.034*
H2B1.04600.22920.18760.034*
C30.96102 (10)0.12665 (9)0.11949 (17)0.0265 (3)
C40.86446 (10)0.17241 (10)0.13694 (17)0.0284 (3)
H4A0.86350.20260.22160.034*
H4B0.81410.12650.13750.034*
C50.84223 (10)0.23979 (9)0.03302 (16)0.0236 (3)
C60.91909 (10)0.28578 (9)0.02966 (15)0.0222 (3)
C70.89455 (9)0.35180 (9)0.13511 (15)0.0227 (3)
H7A0.84580.39410.10130.027*
C80.98218 (10)0.40439 (9)0.17348 (16)0.0240 (3)
C90.96904 (11)0.48130 (9)0.25718 (16)0.0261 (3)
C101.05765 (12)0.52769 (11)0.30610 (18)0.0332 (3)
H10A1.07960.49730.38520.040*
H10B1.04130.58960.32940.040*
C111.13923 (10)0.52915 (9)0.20810 (17)0.0284 (3)
C121.15872 (10)0.43298 (10)0.16739 (19)0.0319 (4)
H12A1.20280.43310.09320.038*
H12B1.19030.40140.23920.038*
C131.06997 (10)0.38350 (9)0.13094 (17)0.0256 (3)
C140.85201 (10)0.30123 (9)0.24773 (16)0.0245 (3)
C150.89064 (10)0.23076 (9)0.31221 (17)0.0275 (3)
H15A0.95210.20650.29900.033*
C160.82205 (11)0.20026 (10)0.40284 (17)0.0294 (3)
C170.81850 (14)0.13028 (12)0.49248 (19)0.0380 (4)
H17A0.87120.09160.50310.046*
C180.73717 (15)0.11860 (13)0.5648 (2)0.0441 (4)
H18A0.73440.07150.62560.053*
C190.65921 (14)0.17453 (13)0.5502 (2)0.0436 (4)
H19A0.60440.16480.60140.052*
C200.65970 (13)0.24415 (12)0.4624 (2)0.0385 (4)
H20A0.60640.28220.45270.046*
C210.74192 (11)0.25582 (10)0.38884 (18)0.0290 (3)
C220.69626 (11)0.38452 (11)0.2494 (2)0.0374 (4)
H22A0.63590.37870.29550.056*
H22B0.68530.37730.15680.056*
H22C0.72340.44340.26590.056*
C231.22930 (12)0.56706 (11)0.2695 (2)0.0402 (4)
H23A1.28130.56510.20700.060*
H23B1.24620.53160.34510.060*
H23C1.21800.62870.29560.060*
C241.11188 (12)0.58625 (11)0.09208 (19)0.0368 (4)
H24A1.16370.58570.02920.055*
H24B1.10020.64740.12040.055*
H24D1.05420.56220.05240.055*
C250.98527 (11)0.07126 (11)0.2383 (2)0.0358 (4)
H25A0.99070.11030.31330.054*
H25D0.93500.02750.25330.054*
H25B1.04570.04040.22430.054*
C260.95850 (13)0.06656 (10)0.00001 (19)0.0364 (4)
H26D1.02070.03850.01170.055*
H26A0.91010.02050.01160.055*
H26B0.94320.10230.07600.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0178 (5)0.0333 (5)0.0374 (7)0.0021 (4)0.0009 (5)0.0032 (5)
O20.0318 (6)0.0337 (5)0.0325 (7)0.0063 (4)0.0036 (5)0.0037 (5)
N10.0146 (5)0.0261 (5)0.0450 (9)0.0008 (4)0.0005 (6)0.0079 (5)
N20.0213 (5)0.0287 (6)0.0329 (8)0.0027 (5)0.0063 (5)0.0026 (5)
C10.0196 (6)0.0204 (6)0.0312 (8)0.0003 (5)0.0001 (6)0.0004 (6)
C20.0200 (6)0.0290 (6)0.0355 (9)0.0012 (5)0.0032 (6)0.0067 (6)
C30.0241 (6)0.0248 (6)0.0305 (8)0.0027 (5)0.0007 (7)0.0024 (6)
C40.0242 (6)0.0317 (7)0.0294 (9)0.0047 (5)0.0036 (6)0.0016 (6)
C50.0196 (6)0.0253 (6)0.0260 (8)0.0007 (5)0.0003 (6)0.0065 (5)
C60.0195 (6)0.0227 (6)0.0244 (8)0.0012 (5)0.0004 (5)0.0017 (5)
C70.0171 (6)0.0213 (6)0.0297 (8)0.0020 (4)0.0012 (5)0.0008 (5)
C80.0216 (6)0.0221 (6)0.0282 (8)0.0004 (5)0.0009 (6)0.0012 (5)
C90.0285 (7)0.0264 (6)0.0235 (7)0.0023 (5)0.0008 (6)0.0009 (6)
C100.0355 (8)0.0356 (8)0.0285 (9)0.0028 (6)0.0002 (7)0.0097 (6)
C110.0256 (7)0.0267 (6)0.0328 (9)0.0039 (5)0.0021 (7)0.0059 (6)
C120.0201 (6)0.0290 (7)0.0467 (10)0.0005 (5)0.0030 (7)0.0081 (7)
C130.0208 (6)0.0228 (6)0.0333 (8)0.0004 (5)0.0017 (6)0.0023 (6)
C140.0195 (6)0.0261 (6)0.0279 (8)0.0021 (5)0.0014 (6)0.0025 (6)
C150.0251 (7)0.0285 (7)0.0288 (8)0.0036 (5)0.0019 (6)0.0012 (6)
C160.0291 (7)0.0311 (7)0.0279 (8)0.0032 (5)0.0033 (7)0.0012 (6)
C170.0448 (9)0.0372 (8)0.0321 (9)0.0042 (7)0.0083 (8)0.0059 (7)
C180.0568 (11)0.0448 (9)0.0307 (10)0.0167 (8)0.0032 (9)0.0093 (7)
C190.0450 (9)0.0533 (10)0.0324 (10)0.0181 (8)0.0081 (8)0.0021 (8)
C200.0319 (8)0.0452 (8)0.0383 (11)0.0054 (6)0.0069 (8)0.0015 (8)
C210.0284 (7)0.0299 (6)0.0287 (8)0.0052 (5)0.0003 (7)0.0010 (6)
C220.0256 (7)0.0363 (7)0.0504 (11)0.0100 (6)0.0095 (8)0.0088 (7)
C230.0341 (8)0.0393 (8)0.0471 (11)0.0082 (7)0.0072 (8)0.0134 (8)
C240.0383 (8)0.0346 (7)0.0375 (10)0.0090 (6)0.0005 (8)0.0030 (7)
C250.0306 (7)0.0374 (8)0.0395 (10)0.0054 (6)0.0015 (8)0.0120 (7)
C260.0456 (9)0.0249 (7)0.0386 (10)0.0024 (6)0.0000 (8)0.0028 (6)
Geometric parameters (Å, º) top
O1—C51.2356 (18)C11—C121.5325 (19)
O2—C91.2265 (18)C12—C131.5039 (18)
N1—C11.3583 (19)C12—H12A0.9900
N1—C131.3789 (19)C12—H12B0.9900
N1—H1A0.8800C14—C151.368 (2)
N2—C211.376 (2)C15—C161.425 (2)
N2—C141.3790 (18)C15—H15A0.9500
N2—C221.4505 (19)C16—C171.407 (2)
C1—C61.3614 (19)C16—C211.413 (2)
C1—C21.503 (2)C17—C181.382 (3)
C2—C31.5323 (18)C17—H17A0.9500
C2—H2A0.9900C18—C191.392 (3)
C2—H2B0.9900C18—H18A0.9500
C3—C251.528 (2)C19—C201.389 (3)
C3—C41.5357 (19)C19—H19A0.9500
C3—C261.536 (2)C20—C211.399 (2)
C4—C51.514 (2)C20—H20A0.9500
C4—H4A0.9900C22—H22A0.9800
C4—H4B0.9900C22—H22B0.9800
C5—C61.441 (2)C22—H22C0.9800
C6—C71.519 (2)C23—H23A0.9800
C7—C141.519 (2)C23—H23B0.9800
C7—C81.5199 (18)C23—H23C0.9800
C7—H7A1.0000C24—H24A0.9800
C8—C131.351 (2)C24—H24B0.9800
C8—C91.459 (2)C24—H24D0.9800
C9—C101.518 (2)C25—H25A0.9800
C10—C111.536 (2)C25—H25D0.9800
C10—H10A0.9900C25—H25B0.9800
C10—H10B0.9900C26—H26D0.9800
C11—C241.530 (2)C26—H26A0.9800
C11—C231.531 (2)C26—H26B0.9800
C1—N1—C13122.10 (12)C13—C12—H12B109.0
C1—N1—H1A118.9C11—C12—H12B109.0
C13—N1—H1A118.9H12A—C12—H12B107.8
C21—N2—C14108.87 (13)C8—C13—N1120.85 (13)
C21—N2—C22124.59 (13)C8—C13—C12124.32 (14)
C14—N2—C22126.53 (14)N1—C13—C12114.83 (12)
N1—C1—C6120.86 (13)C15—C14—N2109.18 (14)
N1—C1—C2115.80 (12)C15—C14—C7127.50 (13)
C6—C1—C2123.32 (13)N2—C14—C7123.13 (13)
C1—C2—C3112.90 (12)C14—C15—C16107.67 (13)
C1—C2—H2A109.0C14—C15—H15A126.2
C3—C2—H2A109.0C16—C15—H15A126.2
C1—C2—H2B109.0C17—C16—C21118.88 (16)
C3—C2—H2B109.0C17—C16—C15134.63 (16)
H2A—C2—H2B107.8C21—C16—C15106.46 (14)
C25—C3—C2108.61 (12)C18—C17—C16119.00 (17)
C25—C3—C4110.33 (14)C18—C17—H17A120.5
C2—C3—C4107.95 (11)C16—C17—H17A120.5
C25—C3—C26109.69 (13)C17—C18—C19121.22 (17)
C2—C3—C26110.44 (14)C17—C18—H18A119.4
C4—C3—C26109.81 (13)C19—C18—H18A119.4
C5—C4—C3113.54 (13)C20—C19—C18121.57 (17)
C5—C4—H4A108.9C20—C19—H19A119.2
C3—C4—H4A108.9C18—C19—H19A119.2
C5—C4—H4B108.9C19—C20—C21117.24 (17)
C3—C4—H4B108.9C19—C20—H20A121.4
H4A—C4—H4B107.7C21—C20—H20A121.4
O1—C5—C6120.36 (14)N2—C21—C20130.07 (15)
O1—C5—C4120.34 (13)N2—C21—C16107.83 (13)
C6—C5—C4119.25 (12)C20—C21—C16122.09 (16)
C1—C6—C5119.64 (14)N2—C22—H22A109.5
C1—C6—C7122.36 (13)N2—C22—H22B109.5
C5—C6—C7117.98 (12)H22A—C22—H22B109.5
C6—C7—C14108.54 (11)N2—C22—H22C109.5
C6—C7—C8110.18 (11)H22A—C22—H22C109.5
C14—C7—C8112.29 (13)H22B—C22—H22C109.5
C6—C7—H7A108.6C11—C23—H23A109.5
C14—C7—H7A108.6C11—C23—H23B109.5
C8—C7—H7A108.6H23A—C23—H23B109.5
C13—C8—C9119.72 (13)C11—C23—H23C109.5
C13—C8—C7122.47 (13)H23A—C23—H23C109.5
C9—C8—C7117.79 (12)H23B—C23—H23C109.5
O2—C9—C8121.55 (14)C11—C24—H24A109.5
O2—C9—C10121.06 (14)C11—C24—H24B109.5
C8—C9—C10117.38 (13)H24A—C24—H24B109.5
C9—C10—C11113.58 (14)C11—C24—H24D109.5
C9—C10—H10A108.8H24A—C24—H24D109.5
C11—C10—H10A108.8H24B—C24—H24D109.5
C9—C10—H10B108.8C3—C25—H25A109.5
C11—C10—H10B108.8C3—C25—H25D109.5
H10A—C10—H10B107.7H25A—C25—H25D109.5
C24—C11—C23109.14 (13)C3—C25—H25B109.5
C24—C11—C12110.98 (14)H25A—C25—H25B109.5
C23—C11—C12108.56 (12)H25D—C25—H25B109.5
C24—C11—C10110.00 (13)C3—C26—H26D109.5
C23—C11—C10110.47 (14)C3—C26—H26A109.5
C12—C11—C10107.68 (13)H26D—C26—H26A109.5
C13—C12—C11112.83 (12)C3—C26—H26B109.5
C13—C12—H12A109.0H26D—C26—H26B109.5
C11—C12—H12A109.0H26A—C26—H26B109.5
C13—N1—C1—C64.8 (2)C23—C11—C12—C13168.26 (16)
C13—N1—C1—C2173.19 (14)C10—C11—C12—C1348.64 (19)
N1—C1—C2—C3156.80 (14)C9—C8—C13—N1177.92 (14)
C6—C1—C2—C325.2 (2)C7—C8—C13—N10.6 (2)
C1—C2—C3—C25169.70 (14)C9—C8—C13—C122.1 (2)
C1—C2—C3—C450.08 (18)C7—C8—C13—C12179.34 (15)
C1—C2—C3—C2669.98 (17)C1—N1—C13—C87.2 (2)
C25—C3—C4—C5170.93 (13)C1—N1—C13—C12172.86 (15)
C2—C3—C4—C552.40 (18)C11—C12—C13—C824.4 (2)
C26—C3—C4—C568.06 (15)C11—C12—C13—N1155.59 (15)
C3—C4—C5—O1153.53 (14)C21—N2—C14—C150.16 (19)
C3—C4—C5—C629.08 (19)C22—N2—C14—C15178.97 (16)
N1—C1—C6—C5176.66 (14)C21—N2—C14—C7175.40 (14)
C2—C1—C6—C51.2 (2)C22—N2—C14—C73.7 (3)
N1—C1—C6—C75.2 (2)C6—C7—C14—C1554.4 (2)
C2—C1—C6—C7176.95 (14)C8—C7—C14—C1567.67 (19)
O1—C5—C6—C1178.11 (14)C6—C7—C14—N2119.94 (15)
C4—C5—C6—C10.7 (2)C8—C7—C14—N2118.01 (15)
O1—C5—C6—C73.6 (2)N2—C14—C15—C160.04 (19)
C4—C5—C6—C7178.96 (13)C7—C14—C15—C16175.01 (14)
C1—C6—C7—C14112.01 (15)C14—C15—C16—C17177.88 (18)
C5—C6—C7—C1466.18 (16)C14—C15—C16—C210.09 (18)
C1—C6—C7—C811.32 (19)C21—C16—C17—C180.6 (3)
C5—C6—C7—C8170.49 (12)C15—C16—C17—C18178.36 (19)
C6—C7—C8—C139.1 (2)C16—C17—C18—C190.1 (3)
C14—C7—C8—C13112.07 (16)C17—C18—C19—C200.1 (3)
C6—C7—C8—C9169.54 (13)C18—C19—C20—C210.1 (3)
C14—C7—C8—C969.34 (16)C14—N2—C21—C20179.10 (17)
C13—C8—C9—O2173.83 (16)C22—N2—C21—C200.1 (3)
C7—C8—C9—O24.8 (2)C14—N2—C21—C160.22 (18)
C13—C8—C9—C107.5 (2)C22—N2—C21—C16178.94 (16)
C7—C8—C9—C10173.86 (14)C19—C20—C21—N2178.18 (18)
O2—C9—C10—C11145.85 (15)C19—C20—C21—C160.6 (3)
C8—C9—C10—C1135.5 (2)C17—C16—C21—N2178.16 (15)
C9—C10—C11—C2466.05 (16)C15—C16—C21—N20.19 (18)
C9—C10—C11—C23173.41 (13)C17—C16—C21—C200.8 (3)
C9—C10—C11—C1255.01 (18)C15—C16—C21—C20179.18 (16)
C24—C11—C12—C1371.80 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C22—H22C···O20.982.543.314 (2)136
N1—H1A···O1i0.881.872.7437 (15)170
Symmetry code: (i) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC26H30N2O2
Mr402.54
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)123
a, b, c (Å)14.09072 (13), 15.04800 (15), 10.39178 (12)
V3)2203.44 (4)
Z4
Radiation typeCu Kα
µ (mm1)0.60
Crystal size (mm)0.50 × 0.45 × 0.40
Data collection
DiffractometerAgilent Xcalibur (Ruby, Gemini)
diffractometer
Absorption correctionMulti-scan
[CrysAlis RED (Agilent, 2011), based on expressions derived from Clark & Reid (1995)]
Tmin, Tmax0.753, 0.795
No. of measured, independent and
observed [I > 2σ(I)] reflections
10170, 3713, 3682
Rint0.021
(sin θ/λ)max1)0.629
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.096, 1.02
No. of reflections3713
No. of parameters276
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.24
Absolute structureFlack (1983), 1302 Friedel pairs
Absolute structure parameter0.17 (19)

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C22—H22C···O20.982.543.314 (2)135.6
N1—H1A···O1i0.881.872.7437 (15)170.1
Symmetry code: (i) x+1/2, y+1/2, z.
 

Acknowledgements

RJB acknowledges the NSF–MRI program (grant No. CHE-0619278) for funds to purchase the diffractometer.

References

First citationAgilent (2011). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBerkan, O., Saraç, B., Şimşek, R., Yildirim, A., Sarioglu, Y. & Şafak, C. (2002). Eur. J. Med. Chem. 37, 519–523.  Web of Science CrossRef PubMed CAS Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationCrestanello, J. A., Doliba, N. M., Babsky, A. M., Debliba, N. M., Niiobori, K., Osbakken, M. & Whitman, G. J. (2000). J. Surg. Res. 94, 116–123.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEl-Khouly, A., Öztürk Yildirim, S., Butcher, R. J., Şimsek, R. & Şafak, C. (2012). Acta Cryst. E68, o3337.  CSD CrossRef IUCr Journals Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFincan, G. S. Ö., Gündüz, M., Vural, I. M., Şimşek, R., Sarioglu, Y. & Şafak, C. (2012). Med. Chem. Res. 21, 1817–1824.  Web of Science CrossRef CAS Google Scholar
First citationFrank, C. A., Forst, J. M., Grant, T., Harris, R. J., Kau, S. T., Li, J. H., Ohnmacht, C. J., Smith, R. W., Trainor, D. A. & Trivedi, S. (1993). Bioorg. Med. Chem. Lett. 3, 2725–2726.  CrossRef CAS Web of Science Google Scholar
First citationGündüz, M. G., Dogan, A. E., Şimşek, R., Erol, K. & Şafak, C. (2009). Med. Chem. Res. 18, 317–325.  Google Scholar
First citationHoriuchi, T., Dietrich, H. H., Tsugane, S. & Dacey, G. D. (2001). Stroke, 32, 218–224.  CrossRef PubMed CAS Google Scholar
First citationLi, T., Feng, X., Yao, C., Yu, C., Jiang, B. & Tu, S. (2011). Bioorg. Med. Chem. Lett. 21, 453–455.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationŞimşek, R., Özkan, M., Kısmetli, E., Uma, S. & Şafak, C. (2004). Il Farmaco, 59, 939–943.  PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 12| December 2012| Pages o3365-o3366
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds