organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 12| December 2012| Pages o3433-o3434

(2E)-3-(4-Bromo­phen­yl)-1-(4,4′′-di­fluoro-5′-meth­­oxy-1,1′:3′,1′′-terphenyl-4′-yl)prop-2-en-1-one

aMangalore University, Department of Studies in Chemistry, Mangalagangotri 574 199, India, bUniversity of Mysore, Department of Studies in Chemistry, Manasagangotri, Mysore 570 006, India, and cNelson Mandela Metropolitan University, Summerstrand Campus, Department of Chemistry, University Way, Summerstrand, PO Box 77000, Port Elizabeth, 6031, South Africa
*Correspondence e-mail: richard.betz@webmail.co.za

(Received 16 October 2012; accepted 14 November 2012; online 24 November 2012)

In the title compound, C28H19BrF2O2, the C=C double bond is E-configured. In the crystal, C—H⋯O and C—H⋯F contacts connect mol­ecules into planes perpendicular to the c axis. The shortest centroid–centroid distance between two aromatic systems is 3.6745 (12) Å between one of the para-fluoro­phenyl rings and its symmetry-generated equivalent.

Related literature

For background to polysubstituted aromatics, see: Astrue (2002[Astrue, D. (2002). In Modern Arene Chemistry. Weinheim: Wiley-VCH.]). For the pharmacological properties of terphenyls, see: Liu (2006[Liu, J. K. (2006). Chem. Rev. 106, 2209-2223.]). For the crystal structures of various terphenyl chalcones, see: Fun et al. (2012a[Fun, H.-K., Loh, W.-S., Samshuddin, S., Narayana, B. & Sarojini, B. K. (2012a). Acta Cryst. E68, o2024.],b[Fun, H.-K., Loh, W.-S., Samshuddin, S., Narayana, B. & Sarojini, B. K. (2012b). Acta Cryst. E68, o1877-o1878.],c[Fun, H.-K., Chia, T. S., Samshuddin, S., Narayana, B. & Sarojini, B. K. (2012c). Acta Cryst. E68, o1560-o1561.],d[Fun, H.-K., Chia, T. S., Samshuddin, S., Narayana, B. & Sarojini, B. K. (2012d). Acta Cryst. E68, o1314-o1315.],e[Fun, H.-K., Hemamalini, M., Samshuddin, S., Narayana, B. & Sarojini, B. K. (2012e). Acta Cryst. E68, o163.]); Betz et al. (2011a[Betz, R., Gerber, T., Hosten, E., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2011a). Acta Cryst. E67, o3323-o3324.],b[Betz, R., Gerber, T., Hosten, E., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2011b). Acta Cryst. E67, o3159-o3160.],c[Betz, R., Gerber, T., Hosten, E., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2011c). Acta Cryst. E67, o3181-o3182.],d[Betz, R., Gerber, T., Hosten, E., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2011d). Acta Cryst. E67, o3179-o3180.],e[Betz, R., Gerber, T., Hosten, E., Samshuddin, S., Narayana, B. & Sarojini, B. K. (2011e). Acta Cryst. E67, o2996-o2997.]). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C28H19BrF2O2

  • Mr = 505.34

  • Triclinic, [P \overline 1]

  • a = 6.9648 (2) Å

  • b = 11.3616 (3) Å

  • c = 14.7219 (4) Å

  • α = 95.983 (1)°

  • β = 92.601 (1)°

  • γ = 105.676 (1)°

  • V = 1112.23 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.89 mm−1

  • T = 200 K

  • 0.39 × 0.18 × 0.06 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS. Bruker Inc., Madison, Wisconsin, USA.]) Tmin = 0.843, Tmax = 1.000

  • 20205 measured reflections

  • 5513 independent reflections

  • 4082 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.089

  • S = 1.03

  • 5513 reflections

  • 299 parameters

  • H-atom parameters constrained

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.59 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4B⋯F1i 0.98 2.51 3.428 (2) 156
C25—H25⋯O1ii 0.95 2.43 3.268 (2) 147
Symmetry codes: (i) x+1, y+1, z; (ii) x, y-1, z.

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The synthesis of polysubstituted aromatics has been and is a fascinating area in the field of organic chemistry (Astrue, 2002). In recent years, it has been reported that some terphenyls exhibit considerable biological activities such as anticoagulant, immunosuppressant, antithrombotic, neuroprotective, specific 5-lipoxygenase inhibitory and cytotoxic activities (Liu, 2006). Recently, the crystal structures of several terphenyl derivatives have been reported (Fun et al., 2012a,b,c,d,e; Betz et al., 2011a,b,c,d,e). In continuation of our ongoing interest in terphenyl derivatives, the title compound was prepared and its crystal structure determined.

The C=C double of the Michael system is (E)-configured. The least-squares planes defined by the carbon atoms of the para-fluoro phenyl rings of the terphenyl moiety and its central phenyl ring enclose angles of 41.74 (9)° and 46.49 (9)°, respectively (Fig. 1).

In the crystal structure, C–H···O as well as C–H···F contacts are present whose range falls by up to 0.2 Å below the sum of van-der-Waals radii of the atoms participating in them. While the C–H···O contacts are apparent between the ketonic oxygen atom and one of the para-fluorophenyl-bonded hydrogen atoms, the C–H···F contacts are supported by one of the hydrogen atoms of the methoxy substituent on the terphenyl's central phenyl group. In terms of graph-set analysis (Etter et al., 1990; Bernstein et al., 1995), the C–H···O contacts necessitate a C11(10) descriptor on the unitary level and the C–H···F contacts necessitate a C11(11) descriptor on the same level. These two antidromic chains connect the molecules to planes perpendicular to the crystallographic c axis. Details about metrical parameters of these contacts as well as information about their symmetry can be found in Table 1. The shortest intercentroid distance between two aromatic systems was found at 3.6745 (12) Å and is apparent between one of the para-fluoro phenyl moieties and its symmetry-generated equivalent (Fig. 2).

Related literature top

For background to polysubstituted aromatics, see: Astrue (2002). For the pharmacological properties of terphenyls, see: Liu (2006). For the crystal structures of various terphenyl chalcones, see: Fun et al. (2012a,b,c,d,e); Betz et al. (2011a,b,c,d,e). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990); Bernstein et al. (1995).

Experimental top

To a mixture of 1-(4,4''-difluoro-5'-methoxy-1,1':3',1''-terphenyl-4'-yl) ethanone (0.338 g, 0.001 mol) and 4-bromobenzaldehyde (0.185 g, 0.001 mol) in ethanol (20 ml), 10% sodium hydroxide solution (1 ml) was added and stirred at 278–283 K for 3 h. The precipitate formed was collected by filtration and dried (yield: 89%). Single crystals suitable for the X-ray diffraction study were grown from a DMF-ethanol mixture (v:v = 1:1) by slow evaporation at room temperature.

Refinement top

Carbon-bound H atoms were placed in calculated positions (C—H 0.95 Å for aromatic and vinylic carbon atoms) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C). The H atoms of the methyl groups were allowed to rotate with a fixed angle around the C—C bond to best fit the experimental electron density (HFIX 137 in the SHELX program suite (Sheldrick, 2008)), with U(H) set to 1.5Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and anisotropic displacement ellipsoids (drawn at 50% probability level).
[Figure 2] Fig. 2. Intermolecular contacts, viewed approximately along [1 1 1]. Symmetry operators: i x - 1, y - 1, z; ii x, y - 1, z; iii x, y + 1, z; iv x + 1, y + 1, z.
(2E)-3-(4-Bromophenyl)-1-(4,4''-difluoro-5'-methoxy-1,1':3',1''- terphenyl-4'-yl)prop-2-en-1-one top
Crystal data top
C28H19BrF2O2Z = 2
Mr = 505.34F(000) = 512
Triclinic, P1Dx = 1.509 Mg m3
Hall symbol: -P 1Melting point: 465 K
a = 6.9648 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.3616 (3) ÅCell parameters from 9095 reflections
c = 14.7219 (4) Åθ = 2.8–28.1°
α = 95.983 (1)°µ = 1.89 mm1
β = 92.601 (1)°T = 200 K
γ = 105.676 (1)°Platelet, yellow
V = 1112.23 (5) Å30.39 × 0.18 × 0.06 mm
Data collection top
Bruker APEXII CCD
diffractometer
5513 independent reflections
Radiation source: fine-focus sealed tube4082 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ϕ and ω scansθmax = 28.3°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 98
Tmin = 0.843, Tmax = 1.000k = 1415
20205 measured reflectionsl = 1419
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0367P)2 + 0.5261P]
where P = (Fo2 + 2Fc2)/3
5513 reflections(Δ/σ)max = 0.001
299 parametersΔρmax = 0.52 e Å3
0 restraintsΔρmin = 0.59 e Å3
Crystal data top
C28H19BrF2O2γ = 105.676 (1)°
Mr = 505.34V = 1112.23 (5) Å3
Triclinic, P1Z = 2
a = 6.9648 (2) ÅMo Kα radiation
b = 11.3616 (3) ŵ = 1.89 mm1
c = 14.7219 (4) ÅT = 200 K
α = 95.983 (1)°0.39 × 0.18 × 0.06 mm
β = 92.601 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
5513 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
4082 reflections with I > 2σ(I)
Tmin = 0.843, Tmax = 1.000Rint = 0.021
20205 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.089H-atom parameters constrained
S = 1.03Δρmax = 0.52 e Å3
5513 reflectionsΔρmin = 0.59 e Å3
299 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br11.47038 (4)0.69865 (2)0.964665 (19)0.06360 (11)
F10.17425 (18)0.70616 (9)0.46554 (9)0.0449 (3)
F20.2992 (2)0.05818 (15)0.95348 (10)0.0660 (4)
O10.2956 (2)0.21292 (12)0.70234 (10)0.0411 (3)
O20.68643 (19)0.09212 (11)0.60575 (9)0.0333 (3)
C10.4330 (3)0.16804 (16)0.71582 (12)0.0283 (4)
C20.6299 (3)0.24098 (16)0.75928 (12)0.0311 (4)
H20.72760.19950.77240.037*
C30.6763 (3)0.36236 (17)0.78083 (13)0.0333 (4)
H30.57600.40150.76680.040*
C40.8438 (3)0.06260 (18)0.55674 (13)0.0354 (4)
H4A0.90210.00900.59050.053*
H4B0.94730.13860.55040.053*
H4C0.78950.02000.49590.053*
C110.4061 (2)0.03293 (15)0.68905 (11)0.0241 (3)
C120.5376 (2)0.00254 (15)0.62941 (11)0.0254 (3)
C130.5083 (2)0.12487 (15)0.59477 (11)0.0256 (3)
H130.59590.14700.55280.031*
C140.3504 (3)0.21496 (15)0.62163 (11)0.0247 (3)
C150.2252 (3)0.18096 (15)0.68441 (11)0.0256 (3)
H150.12120.24300.70500.031*
C160.2490 (2)0.05819 (15)0.71756 (11)0.0242 (3)
C210.3091 (2)0.34537 (15)0.58143 (12)0.0250 (3)
C220.3101 (3)0.37450 (16)0.48739 (12)0.0294 (4)
H220.34290.31020.44950.035*
C230.2639 (3)0.49584 (17)0.44818 (13)0.0318 (4)
H230.26350.51560.38380.038*
C240.2190 (3)0.58645 (16)0.50428 (14)0.0318 (4)
C250.2171 (3)0.56276 (17)0.59744 (14)0.0339 (4)
H250.18630.62790.63460.041*
C260.2615 (3)0.44072 (16)0.63582 (13)0.0307 (4)
H260.25940.42200.70010.037*
C310.1056 (3)0.02790 (16)0.78209 (11)0.0260 (3)
C320.0973 (3)0.08727 (18)0.76598 (12)0.0313 (4)
H320.14270.14800.71450.038*
C330.2352 (3)0.0592 (2)0.82402 (14)0.0389 (5)
H330.37380.10020.81300.047*
C340.1653 (3)0.0291 (2)0.89732 (14)0.0422 (5)
C350.0336 (3)0.08800 (19)0.91716 (14)0.0422 (5)
H350.07730.14780.96930.051*
C360.1697 (3)0.05844 (17)0.85951 (12)0.0327 (4)
H360.30850.09750.87290.039*
C410.8670 (3)0.44118 (16)0.82402 (13)0.0337 (4)
C420.8910 (3)0.56700 (18)0.84722 (15)0.0420 (5)
H420.78310.60040.83410.050*
C431.0695 (3)0.64393 (19)0.88910 (15)0.0463 (5)
H431.08420.72940.90450.056*
C441.2251 (3)0.59503 (19)0.90813 (13)0.0406 (5)
C451.2077 (4)0.4715 (2)0.88436 (16)0.0467 (5)
H451.31710.43900.89680.056*
C461.0300 (3)0.39593 (18)0.84251 (15)0.0432 (5)
H461.01820.31110.82590.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.05179 (16)0.05650 (17)0.06461 (17)0.00644 (11)0.00125 (12)0.01426 (12)
F10.0442 (7)0.0223 (5)0.0631 (8)0.0047 (5)0.0065 (6)0.0069 (5)
F20.0665 (9)0.0897 (11)0.0614 (9)0.0480 (8)0.0353 (7)0.0150 (8)
O10.0397 (8)0.0304 (7)0.0576 (9)0.0162 (6)0.0013 (7)0.0093 (6)
O20.0317 (7)0.0250 (6)0.0404 (7)0.0014 (5)0.0131 (6)0.0045 (5)
C10.0344 (10)0.0236 (8)0.0288 (8)0.0095 (7)0.0055 (7)0.0064 (7)
C20.0360 (10)0.0258 (9)0.0319 (9)0.0092 (7)0.0016 (8)0.0041 (7)
C30.0382 (10)0.0275 (9)0.0346 (9)0.0094 (8)0.0059 (8)0.0027 (7)
C40.0262 (9)0.0389 (10)0.0394 (10)0.0038 (8)0.0102 (8)0.0072 (8)
C110.0248 (8)0.0231 (8)0.0252 (8)0.0081 (7)0.0006 (6)0.0032 (6)
C120.0231 (8)0.0250 (8)0.0275 (8)0.0046 (7)0.0025 (7)0.0055 (7)
C130.0240 (8)0.0261 (8)0.0275 (8)0.0078 (7)0.0041 (7)0.0030 (7)
C140.0256 (8)0.0235 (8)0.0253 (8)0.0076 (7)0.0005 (6)0.0032 (6)
C150.0235 (8)0.0249 (8)0.0282 (8)0.0054 (7)0.0031 (6)0.0048 (7)
C160.0233 (8)0.0266 (8)0.0236 (8)0.0084 (7)0.0002 (6)0.0039 (6)
C210.0202 (8)0.0231 (8)0.0316 (9)0.0062 (6)0.0020 (7)0.0024 (7)
C220.0285 (9)0.0264 (9)0.0326 (9)0.0063 (7)0.0033 (7)0.0038 (7)
C230.0309 (9)0.0303 (9)0.0320 (9)0.0073 (7)0.0030 (7)0.0033 (7)
C240.0241 (9)0.0219 (8)0.0472 (11)0.0054 (7)0.0023 (8)0.0033 (8)
C250.0326 (10)0.0250 (9)0.0457 (11)0.0078 (7)0.0063 (8)0.0099 (8)
C260.0322 (10)0.0287 (9)0.0320 (9)0.0092 (7)0.0040 (7)0.0046 (7)
C310.0281 (9)0.0265 (8)0.0272 (8)0.0121 (7)0.0048 (7)0.0077 (7)
C320.0299 (9)0.0355 (10)0.0313 (9)0.0120 (8)0.0039 (7)0.0087 (8)
C330.0287 (10)0.0533 (12)0.0430 (11)0.0187 (9)0.0092 (8)0.0211 (10)
C340.0500 (13)0.0532 (13)0.0381 (11)0.0324 (11)0.0210 (9)0.0163 (9)
C350.0570 (14)0.0402 (11)0.0345 (10)0.0211 (10)0.0131 (9)0.0026 (9)
C360.0364 (10)0.0319 (9)0.0306 (9)0.0104 (8)0.0050 (8)0.0041 (7)
C410.0426 (11)0.0245 (9)0.0315 (9)0.0051 (8)0.0065 (8)0.0021 (7)
C420.0468 (12)0.0283 (10)0.0494 (12)0.0105 (9)0.0081 (9)0.0047 (9)
C430.0547 (13)0.0285 (10)0.0483 (12)0.0038 (9)0.0129 (10)0.0122 (9)
C440.0436 (12)0.0374 (11)0.0325 (10)0.0005 (9)0.0052 (8)0.0030 (8)
C450.0477 (13)0.0373 (11)0.0528 (13)0.0079 (10)0.0022 (10)0.0077 (10)
C460.0491 (12)0.0233 (9)0.0537 (13)0.0063 (9)0.0039 (10)0.0024 (9)
Geometric parameters (Å, º) top
Br1—C441.891 (2)C22—H220.9500
F1—C241.3657 (19)C23—C241.366 (3)
F2—C341.357 (2)C23—H230.9500
O1—C11.217 (2)C24—C251.371 (3)
O2—C121.364 (2)C25—C261.388 (2)
O2—C41.433 (2)C25—H250.9500
C1—C21.474 (3)C26—H260.9500
C1—C111.503 (2)C31—C321.389 (3)
C2—C31.329 (3)C31—C361.395 (2)
C2—H20.9500C32—C331.392 (3)
C3—C411.460 (3)C32—H320.9500
C3—H30.9500C33—C341.368 (3)
C4—H4A0.9800C33—H330.9500
C4—H4B0.9800C34—C351.369 (3)
C4—H4C0.9800C35—C361.385 (3)
C11—C161.402 (2)C35—H350.9500
C11—C121.404 (2)C36—H360.9500
C12—C131.387 (2)C41—C461.394 (3)
C13—C141.389 (2)C41—C421.397 (3)
C13—H130.9500C42—C431.386 (3)
C14—C151.395 (2)C42—H420.9500
C14—C211.483 (2)C43—C441.376 (3)
C15—C161.392 (2)C43—H430.9500
C15—H150.9500C44—C451.382 (3)
C16—C311.491 (2)C45—C461.376 (3)
C21—C221.390 (2)C45—H450.9500
C21—C261.391 (2)C46—H460.9500
C22—C231.384 (2)
C12—O2—C4118.13 (14)F1—C24—C25118.62 (17)
O1—C1—C2122.64 (16)C23—C24—C25123.09 (16)
O1—C1—C11120.39 (16)C24—C25—C26118.00 (17)
C2—C1—C11116.97 (15)C24—C25—H25121.0
C3—C2—C1122.68 (18)C26—C25—H25121.0
C3—C2—H2118.7C25—C26—C21120.92 (17)
C1—C2—H2118.7C25—C26—H26119.5
C2—C3—C41126.11 (19)C21—C26—H26119.5
C2—C3—H3116.9C32—C31—C36118.52 (16)
C41—C3—H3116.9C32—C31—C16119.79 (15)
O2—C4—H4A109.5C36—C31—C16121.69 (16)
O2—C4—H4B109.5C31—C32—C33121.10 (18)
H4A—C4—H4B109.5C31—C32—H32119.5
O2—C4—H4C109.5C33—C32—H32119.5
H4A—C4—H4C109.5C34—C33—C32118.06 (19)
H4B—C4—H4C109.5C34—C33—H33121.0
C16—C11—C12119.02 (15)C32—C33—H33121.0
C16—C11—C1122.48 (15)F2—C34—C33118.4 (2)
C12—C11—C1118.42 (15)F2—C34—C35118.7 (2)
O2—C12—C13123.84 (15)C33—C34—C35122.91 (18)
O2—C12—C11114.96 (15)C34—C35—C36118.53 (19)
C13—C12—C11121.13 (15)C34—C35—H35120.7
C12—C13—C14119.82 (15)C36—C35—H35120.7
C12—C13—H13120.1C35—C36—C31120.82 (19)
C14—C13—H13120.1C35—C36—H36119.6
C13—C14—C15119.27 (15)C31—C36—H36119.6
C13—C14—C21120.73 (15)C46—C41—C42117.83 (19)
C15—C14—C21119.95 (15)C46—C41—C3122.37 (17)
C16—C15—C14121.53 (16)C42—C41—C3119.79 (19)
C16—C15—H15119.2C43—C42—C41121.1 (2)
C14—C15—H15119.2C43—C42—H42119.4
C15—C16—C11119.11 (15)C41—C42—H42119.4
C15—C16—C31118.76 (15)C44—C43—C42119.18 (19)
C11—C16—C31122.13 (15)C44—C43—H43120.4
C22—C21—C26118.73 (16)C42—C43—H43120.4
C22—C21—C14120.05 (15)C43—C44—C45121.1 (2)
C26—C21—C14121.18 (15)C43—C44—Br1119.81 (15)
C23—C22—C21120.91 (17)C45—C44—Br1119.05 (17)
C23—C22—H22119.5C46—C45—C44119.2 (2)
C21—C22—H22119.5C46—C45—H45120.4
C24—C23—C22118.35 (17)C44—C45—H45120.4
C24—C23—H23120.8C45—C46—C41121.47 (19)
C22—C23—H23120.8C45—C46—H46119.3
F1—C24—C23118.30 (17)C41—C46—H46119.3
O1—C1—C2—C35.0 (3)C22—C23—C24—C250.1 (3)
C11—C1—C2—C3175.70 (17)F1—C24—C25—C26179.59 (16)
C1—C2—C3—C41179.87 (17)C23—C24—C25—C260.6 (3)
O1—C1—C11—C1653.0 (2)C24—C25—C26—C210.8 (3)
C2—C1—C11—C16126.29 (18)C22—C21—C26—C250.4 (3)
O1—C1—C11—C12123.62 (19)C14—C21—C26—C25178.02 (16)
C2—C1—C11—C1257.1 (2)C15—C16—C31—C3242.3 (2)
C4—O2—C12—C1312.6 (3)C11—C16—C31—C32137.48 (18)
C4—O2—C12—C11170.62 (15)C15—C16—C31—C36137.16 (18)
C16—C11—C12—O2179.64 (15)C11—C16—C31—C3643.1 (2)
C1—C11—C12—O23.6 (2)C36—C31—C32—C331.8 (3)
C16—C11—C12—C133.4 (3)C16—C31—C32—C33178.73 (16)
C1—C11—C12—C13173.33 (16)C31—C32—C33—C340.3 (3)
O2—C12—C13—C14178.88 (16)C32—C33—C34—F2179.10 (17)
C11—C12—C13—C142.2 (3)C32—C33—C34—C351.9 (3)
C12—C13—C14—C151.0 (3)F2—C34—C35—C36179.76 (18)
C12—C13—C14—C21176.46 (16)C33—C34—C35—C361.2 (3)
C13—C14—C15—C163.0 (3)C34—C35—C36—C311.0 (3)
C21—C14—C15—C16174.42 (16)C32—C31—C36—C352.5 (3)
C14—C15—C16—C111.8 (3)C16—C31—C36—C35178.06 (17)
C14—C15—C16—C31177.93 (16)C2—C3—C41—C464.2 (3)
C12—C11—C16—C151.4 (2)C2—C3—C41—C42176.57 (19)
C1—C11—C16—C15175.23 (16)C46—C41—C42—C431.4 (3)
C12—C11—C16—C31178.87 (15)C3—C41—C42—C43179.34 (19)
C1—C11—C16—C314.5 (3)C41—C42—C43—C440.1 (3)
C13—C14—C21—C2245.3 (2)C42—C43—C44—C451.5 (3)
C15—C14—C21—C22132.09 (18)C42—C43—C44—Br1179.66 (16)
C13—C14—C21—C26137.12 (18)C43—C44—C45—C461.2 (3)
C15—C14—C21—C2645.5 (2)Br1—C44—C45—C46179.46 (17)
C26—C21—C22—C230.3 (3)C44—C45—C46—C410.3 (3)
C14—C21—C22—C23177.33 (16)C42—C41—C46—C451.6 (3)
C21—C22—C23—C240.6 (3)C3—C41—C46—C45179.13 (19)
C22—C23—C24—F1179.72 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4B···F1i0.982.513.428 (2)156
C25—H25···O1ii0.952.433.268 (2)147
Symmetry codes: (i) x+1, y+1, z; (ii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC28H19BrF2O2
Mr505.34
Crystal system, space groupTriclinic, P1
Temperature (K)200
a, b, c (Å)6.9648 (2), 11.3616 (3), 14.7219 (4)
α, β, γ (°)95.983 (1), 92.601 (1), 105.676 (1)
V3)1112.23 (5)
Z2
Radiation typeMo Kα
µ (mm1)1.89
Crystal size (mm)0.39 × 0.18 × 0.06
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.843, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
20205, 5513, 4082
Rint0.021
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.089, 1.03
No. of reflections5513
No. of parameters299
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.52, 0.59

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2010), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 2012) and Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4B···F1i0.982.513.428 (2)155.8
C25—H25···O1ii0.952.433.268 (2)147.2
Symmetry codes: (i) x+1, y+1, z; (ii) x, y1, z.
 

Acknowledgements

BN thanks the UGC for financial assistance through a BSR one-time grant for the purchase of chemicals. SS thanks Mangalore University for the research facilities.

References

First citationAstrue, D. (2002). In Modern Arene Chemistry. Weinheim: Wiley–VCH.  Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBetz, R., Gerber, T., Hosten, E., Samshuddin, S., Narayana, B. & Sarojini, B. K. (2011e). Acta Cryst. E67, o2996–o2997.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBetz, R., Gerber, T., Hosten, E., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2011a). Acta Cryst. E67, o3323–o3324.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBetz, R., Gerber, T., Hosten, E., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2011b). Acta Cryst. E67, o3159–o3160.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBetz, R., Gerber, T., Hosten, E., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2011c). Acta Cryst. E67, o3181–o3182.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBetz, R., Gerber, T., Hosten, E., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2011d). Acta Cryst. E67, o3179–o3180.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2008). SADABS. Bruker Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Chia, T. S., Samshuddin, S., Narayana, B. & Sarojini, B. K. (2012c). Acta Cryst. E68, o1560–o1561.  CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Chia, T. S., Samshuddin, S., Narayana, B. & Sarojini, B. K. (2012d). Acta Cryst. E68, o1314–o1315.  CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Hemamalini, M., Samshuddin, S., Narayana, B. & Sarojini, B. K. (2012e). Acta Cryst. E68, o163.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Loh, W.-S., Samshuddin, S., Narayana, B. & Sarojini, B. K. (2012a). Acta Cryst. E68, o2024.  CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Loh, W.-S., Samshuddin, S., Narayana, B. & Sarojini, B. K. (2012b). Acta Cryst. E68, o1877–o1878.  CSD CrossRef IUCr Journals Google Scholar
First citationLiu, J. K. (2006). Chem. Rev. 106, 2209–2223.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 12| December 2012| Pages o3433-o3434
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds