organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Morpholine-4-carboxamidinium ethyl carbonate

aFakultät Chemie/Organische Chemie, Hochschule Aalen, Beethovenstrasse 1, D-73430 Aalen, Germany
*Correspondence e-mail: Ioannis.Tiritiris@htw-aalen.de

(Received 12 November 2012; accepted 14 November 2012; online 24 November 2012)

The asymmetric unit of the title salt, C5H12N3O+·C3H5O3, contains two carboxamidinium and two ethyl carbonate ions. In the crystal, the C—N bond lengths in the central CN3 units of the cations range between 1.324 (2) and 1.352 (2) Å, indicating partial double-bond character. The central C atoms are bonded to the three N atoms in a nearly ideal trigonal–planar geometry and the positive charges are delocalized in the CN3 planes. The morpholine rings are in chair conformations. The C—O bond lengths in both ethyl carbonate ions are characteristic for delocalized double bonds [1.243 (2)–1.251 (2) Å] and typical single bonds [1.368 (2) and 1.375 (2) Å]. In the crystal, N—H⋯O hydrogen bonds between cations and anions generate a two-dimensional network in the ac plane.

Related literature

For the synthesis and crystal structures of guanidinium hydrogen carbonates, see: Tiritiris et al. (2011[Tiritiris, I., Mezger, J., Stoyanov, E. V. & Kantlehner, W. (2011). Z. Naturforsch. Teil B, 66, 407-418.]). For the crystal structure of 4-morpholine­carboxamidine, see: Tiritiris (2012a[Tiritiris, I. (2012a). Acta Cryst. E68, o3118.]). For the crystal structure of piperidine-1-carboxamidinium ethyl carbonate, see: Tiritiris (2012b[Tiritiris, I. (2012b). Acta Cryst. E68, o3310.]).

[Scheme 1]

Experimental

Crystal data
  • C5H12N3O+·C3H5O3

  • Mr = 219.25

  • Monoclinic, P 21 /n

  • a = 10.2163 (5) Å

  • b = 20.8874 (9) Å

  • c = 10.4616 (5) Å

  • β = 109.505 (2)°

  • V = 2104.31 (17) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 100 K

  • 0.30 × 0.25 × 0.15 mm

Data collection
  • Bruker–Nonius KappaCCD diffractometer

  • 9902 measured reflections

  • 5199 independent reflections

  • 2981 reflections with I > 2σ(I)

  • Rint = 0.055

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.112

  • S = 1.00

  • 5199 reflections

  • 305 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H11⋯O4i 0.84 (2) 2.12 (2) 2.944 (1) 168 (1)
N1—H12⋯O3ii 0.89 (2) 1.91 (2) 2.795 (1) 174 (1)
N2—H21⋯O6 0.85 (2) 1.97 (2) 2.807 (1) 168 (1)
N2—H22⋯O4ii 0.92 (2) 1.95 (2) 2.851 (1) 164 (1)
N4—H41⋯O6ii 0.86 (2) 1.97 (2) 2.817 (1) 167 (1)
N4—H42⋯O7i 0.93 (2) 2.00 (2) 2.889 (1) 159 (1)
N5—H51⋯O7ii 0.90 (2) 1.99 (2) 2.879 (1) 172 (1)
N5—H52⋯O3iii 0.90 (2) 1.94 (2) 2.776 (1) 154 (1)
Symmetry codes: (i) x, y, z-1; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) x+1, y, z.

Data collection: COLLECT (Hooft, 2004[Hooft, R. W. W. (2004). COLLECT. Bruker-Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, D-53002 Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The reaction of several guanidines with CO2 in undried aprotic solvents are well described in the literature (Tiritiris et al., 2011). Here, the corresponding guanidinium hydrogen carbonate salts were obtained and their crystal structures could be determined. By reacting carboxamidines with CO2 we first used aprotic solvents and due to their water content, sparingly soluble and non crystalline hydrogen carbonate salts were also formed. By using alcohols as solvents for the reaction, we obtained a few crystalline alkyl carbonate salts. One of them is the here presented title compound. According to the structure analysis, the asymmetric unit contains two carboxamidinium and two ethyl carbonate ions. The C–N bonds of the CN3 units are ranging from 1.324 (2) to 1.352 (2) Å, showing partial double-bond character. The N–C1–N and N–C6–N angles are indicating a nearly ideal trigonal-planar surrounding of the carbon centres by the nitrogen atoms. The positive charges are completely delocalized on the CN3 planes (Fig. 1). The structural parameters of the morpholine rings in the here presented title compound agree very well with the data obtained from the X-ray analysis of the starting compound 4-morpholinecarboxamidine (Tiritiris, 2012a). The morpholine rings adopt a chair conformation. The C–O bond lengths in both ethyl carbonate ions indicate evenly distributed double bonds [1.243 (2)–1.251 (2) Å] and typical single bonds [1.368 (2) and 1.375 (2) Å]. The data fit with the C–O bond lengths and angles of the anion in piperidine-1-carboxamidinium ethyl carbonate (Tiritiris, 2012b). In the crystal structure, strong N—H···O hydrogen bonds between hydrogen atoms of carboxamidinium ions and oxygen atoms of neighboring ethyl carbonate ions are observed, generating an infinite two-dimensional network [d(H···O) = 1.91 (2)–2.12 (2) Å] (Tab. 1) with base vectors [0 0 1] and [1 0 0] (Fig. 2). In contrast to the crystal structure of 4-morpholinecarboxamidine (Tiritiris, 2012a), the oxygen atoms of the morpholine rings are not involved in the N—H···O hydrogen bonding system.

Related literature top

For the synthesis and crystal structures of guanidinium hydrogen carbonates, see: Tiritiris et al. (2011). For the crystal structure of 4-morpholinecarboxamidine, see: Tiritiris (2012a). For the crystal structure of piperidine-1-carboxamidinium ethyl carbonate, see: Tiritiris (2012b).

Experimental top

The title compound was prepared by bubbling excess CO2 gas into an ethanolic solution of 2.0 g (15.5 mmol) 4-morpholinecarboxamidine (Tiritiris, 2012a). The resulting colorless precipitate was recrystallized from a small amount of ethanol and single crystals suitable for X-ray analysis were obtained. Yield: 3.05 g (90%). 1H NMR (500 MHz, D2O/DSS): δ = 1.17–1.20 [t, 3 H, –CH3], 3.49–3.52 [m, 4 H, –CH2], 3.64–3.68 [q, 2 H, –CH2], 3.80–3.83 [m, 4 H, –CH2]. Because of the H/D exchange, the hydrogen atoms of the –NH2 groups were not observed. 13C NMR (125 MHz, D2O/DSS): δ = 16.8 (–CH3), 45.2 (–CH2), 57.4 (–CH2), 65.4 (–CH2), 156.6 (N3C+), 160.3 (CO).

Refinement top

The N-bound H atoms were located in a difference Fourier map and were refined freely [N—H = 0.84 (2)–0.93 (2) Å]. The hydrogen atoms of the methyl groups were allowed to rotate with a fixed angle around the C–C bond to best fit the experimental electron density, with U(H) set to 1.5 Ueq(C) and d(C—H) = 0.98 Å. The H atoms of the methylene groups were placed in calculated positions with d(C—H) = 0.99 Å. They were included in the refinement in the riding model approximation, with U(H) set to 1.2 Ueq(C).

Computing details top

Data collection: COLLECT (Hooft, 2004); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound with displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. N–H···O hydrogen bonds generating a two-dimensional network in the (ac) plane. The hydrogen bonds are indicated by dashed lines.
Morpholine-4-carboxamidinium ethyl carbonate top
Crystal data top
C5H12N3O+·C3H5O3F(000) = 944
Mr = 219.25Dx = 1.384 Mg m3
Monoclinic, P21/nMelting point: 413 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 10.2163 (5) ÅCell parameters from 5142 reflections
b = 20.8874 (9) Åθ = 0.4–28.3°
c = 10.4616 (5) ŵ = 0.11 mm1
β = 109.505 (2)°T = 100 K
V = 2104.31 (17) Å3Block, colourless
Z = 80.30 × 0.25 × 0.15 mm
Data collection top
Bruker–Nonius KappaCCD
diffractometer
2981 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.055
Graphite monochromatorθmax = 28.3°, θmin = 2.3°
ϕ scans, and ω scansh = 1313
9902 measured reflectionsk = 2727
5199 independent reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: difference Fourier map
wR(F2) = 0.112H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0468P)2]
where P = (Fo2 + 2Fc2)/3
5199 reflections(Δ/σ)max < 0.001
305 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C5H12N3O+·C3H5O3V = 2104.31 (17) Å3
Mr = 219.25Z = 8
Monoclinic, P21/nMo Kα radiation
a = 10.2163 (5) ŵ = 0.11 mm1
b = 20.8874 (9) ÅT = 100 K
c = 10.4616 (5) Å0.30 × 0.25 × 0.15 mm
β = 109.505 (2)°
Data collection top
Bruker–Nonius KappaCCD
diffractometer
2981 reflections with I > 2σ(I)
9902 measured reflectionsRint = 0.055
5199 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.112H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.25 e Å3
5199 reflectionsΔρmin = 0.30 e Å3
305 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.14782 (18)0.19683 (9)0.08078 (17)0.0138 (4)
N10.14407 (18)0.21777 (9)0.03987 (16)0.0186 (4)
H110.082 (2)0.2060 (11)0.111 (2)0.027 (6)*
H120.209 (2)0.2468 (11)0.039 (2)0.028 (6)*
N20.24717 (16)0.21987 (9)0.18879 (16)0.0168 (4)
H210.2567 (18)0.2083 (9)0.269 (2)0.013 (5)*
H220.308 (2)0.2486 (11)0.171 (2)0.032 (6)*
N30.05782 (14)0.15198 (8)0.09382 (13)0.0138 (3)
C20.04415 (18)0.14053 (10)0.22786 (16)0.0174 (4)
H2A0.01060.17550.24910.021*
H2B0.13740.14040.29820.021*
C30.02671 (19)0.07728 (10)0.22976 (17)0.0239 (5)
H3A0.03430.04210.22030.029*
H3B0.04100.07210.31820.029*
O10.15763 (13)0.07261 (7)0.12343 (12)0.0227 (3)
C40.13597 (19)0.07748 (10)0.00376 (17)0.0194 (4)
H4A0.22610.07270.07770.023*
H4B0.07460.04220.01200.023*
C50.07145 (18)0.14066 (9)0.01951 (17)0.0168 (4)
H5A0.05150.14080.10580.020*
H5B0.13790.17570.02330.020*
C60.61678 (17)0.19115 (9)0.08546 (16)0.0122 (4)
N40.60204 (17)0.21566 (9)0.03589 (15)0.0161 (4)
H410.656 (2)0.2472 (11)0.038 (2)0.026 (6)*
H420.533 (2)0.2013 (12)0.113 (2)0.041 (7)*
N50.71439 (16)0.21538 (8)0.19268 (15)0.0144 (4)
H510.773 (2)0.2459 (11)0.185 (2)0.023 (6)*
H520.745 (2)0.1933 (11)0.271 (2)0.035 (6)*
N60.53305 (14)0.14360 (7)0.10007 (13)0.0134 (3)
C70.56842 (19)0.11205 (10)0.23299 (16)0.0176 (4)
H7A0.59060.14490.30530.021*
H7B0.65170.08500.24800.021*
C80.4493 (2)0.07110 (10)0.24096 (17)0.0189 (4)
H8A0.47910.04720.32770.023*
H8B0.37090.09910.24010.023*
O20.40359 (13)0.02701 (6)0.13163 (11)0.0198 (3)
C90.35206 (18)0.06230 (10)0.00799 (17)0.0182 (4)
H9A0.27580.09070.01170.022*
H9B0.31370.03210.06840.022*
C100.46389 (18)0.10203 (9)0.01694 (17)0.0169 (4)
H10A0.53350.07340.03410.020*
H10B0.42260.12880.09860.020*
C110.07231 (18)0.16716 (9)0.57058 (16)0.0133 (4)
O30.16622 (12)0.18499 (7)0.46539 (11)0.0196 (3)
O40.04966 (12)0.18664 (6)0.68830 (11)0.0179 (3)
O50.01060 (12)0.11991 (7)0.54704 (11)0.0181 (3)
C120.12224 (18)0.09664 (10)0.66226 (17)0.0188 (4)
H12A0.08490.07610.72810.023*
H12B0.18360.13240.70810.023*
C130.20159 (19)0.04887 (10)0.60972 (18)0.0224 (5)
H13A0.23550.06950.54270.034*
H13B0.14050.01310.56710.034*
H13C0.28060.03280.68510.034*
C140.40406 (17)0.17608 (9)0.57044 (16)0.0130 (4)
O60.31041 (12)0.19554 (6)0.46676 (11)0.0180 (3)
O70.42103 (13)0.19133 (6)0.69029 (11)0.0183 (3)
O80.49287 (12)0.13310 (6)0.54411 (11)0.0166 (3)
C150.60379 (18)0.10913 (10)0.65905 (17)0.0179 (4)
H15A0.56550.08770.72320.021*
H15B0.66410.14480.70700.021*
C160.68612 (19)0.06219 (10)0.60715 (18)0.0199 (4)
H16A0.62700.02570.56510.030*
H16B0.76590.04700.68280.030*
H16C0.71900.08330.53980.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0137 (9)0.0140 (11)0.0127 (9)0.0045 (8)0.0031 (7)0.0005 (7)
N10.0180 (9)0.0236 (10)0.0114 (8)0.0068 (8)0.0011 (7)0.0008 (7)
N20.0189 (9)0.0223 (10)0.0080 (8)0.0050 (7)0.0031 (7)0.0016 (7)
N30.0118 (7)0.0192 (9)0.0088 (7)0.0017 (7)0.0012 (6)0.0003 (6)
C20.0178 (9)0.0251 (12)0.0085 (8)0.0042 (8)0.0033 (7)0.0007 (8)
C30.0261 (11)0.0301 (13)0.0102 (9)0.0091 (9)0.0011 (8)0.0013 (8)
O10.0251 (7)0.0279 (9)0.0138 (6)0.0121 (6)0.0048 (5)0.0029 (6)
C40.0217 (10)0.0216 (12)0.0130 (9)0.0007 (9)0.0032 (8)0.0024 (8)
C50.0148 (9)0.0201 (11)0.0115 (8)0.0027 (8)0.0007 (7)0.0001 (8)
C60.0143 (9)0.0123 (10)0.0107 (9)0.0040 (8)0.0051 (7)0.0004 (7)
N40.0166 (8)0.0182 (10)0.0107 (8)0.0043 (8)0.0009 (7)0.0016 (7)
N50.0164 (8)0.0145 (10)0.0103 (8)0.0029 (7)0.0018 (6)0.0000 (6)
N60.0158 (8)0.0148 (9)0.0083 (7)0.0017 (7)0.0023 (6)0.0007 (6)
C70.0218 (10)0.0185 (11)0.0105 (9)0.0053 (8)0.0027 (7)0.0016 (7)
C80.0268 (10)0.0179 (12)0.0125 (9)0.0045 (9)0.0074 (8)0.0022 (8)
O20.0281 (7)0.0145 (8)0.0147 (6)0.0057 (6)0.0043 (5)0.0011 (5)
C90.0187 (10)0.0187 (12)0.0137 (9)0.0021 (8)0.0006 (7)0.0008 (8)
C100.0200 (10)0.0167 (11)0.0117 (8)0.0022 (8)0.0025 (7)0.0013 (7)
C110.0130 (9)0.0173 (11)0.0095 (9)0.0009 (8)0.0037 (7)0.0013 (7)
O30.0191 (7)0.0258 (9)0.0101 (6)0.0043 (6)0.0001 (5)0.0003 (5)
O40.0183 (7)0.0231 (8)0.0102 (6)0.0030 (6)0.0020 (5)0.0016 (5)
O50.0175 (7)0.0238 (8)0.0108 (6)0.0056 (6)0.0016 (5)0.0002 (5)
C120.0167 (10)0.0226 (12)0.0138 (9)0.0045 (8)0.0007 (7)0.0022 (8)
C130.0234 (10)0.0219 (12)0.0211 (10)0.0027 (9)0.0064 (8)0.0014 (8)
C140.0131 (9)0.0131 (11)0.0116 (9)0.0027 (8)0.0027 (7)0.0001 (7)
O60.0179 (7)0.0231 (8)0.0101 (6)0.0050 (6)0.0010 (5)0.0010 (5)
O70.0208 (7)0.0215 (8)0.0096 (6)0.0050 (6)0.0010 (5)0.0021 (5)
O80.0163 (7)0.0211 (8)0.0103 (6)0.0056 (6)0.0014 (5)0.0005 (5)
C150.0177 (9)0.0214 (12)0.0113 (9)0.0057 (8)0.0005 (7)0.0012 (8)
C160.0171 (10)0.0218 (12)0.0198 (10)0.0037 (8)0.0047 (8)0.0023 (8)
Geometric parameters (Å, º) top
C1—N11.324 (2)C7—H7A0.9900
C1—N21.331 (2)C7—H7B0.9900
C1—N31.351 (2)C8—O21.420 (2)
N1—H110.84 (2)C8—H8A0.9900
N1—H120.89 (2)C8—H8B0.9900
N2—H210.85 (2)O2—C91.428 (2)
N2—H220.92 (2)C9—C101.504 (3)
N3—C51.470 (2)C9—H9A0.9900
N3—C21.474 (2)C9—H9B0.9900
C2—C31.510 (3)C10—H10A0.9900
C2—H2A0.9900C10—H10B0.9900
C2—H2B0.9900C11—O41.243 (2)
C3—O11.429 (2)C11—O31.251 (2)
C3—H3A0.9900C11—O51.375 (2)
C3—H3B0.9900O5—C121.439 (2)
O1—C41.424 (2)C12—C131.501 (3)
C4—C51.508 (3)C12—H12A0.9900
C4—H4A0.9900C12—H12B0.9900
C4—H4B0.9900C13—H13A0.9800
C5—H5A0.9900C13—H13B0.9800
C5—H5B0.9900C13—H13C0.9800
C6—N51.327 (2)C14—O71.248 (2)
C6—N41.330 (2)C14—O61.2507 (19)
C6—N61.352 (2)C14—O81.368 (2)
N4—H410.86 (2)O8—C151.4390 (19)
N4—H420.93 (2)C15—C161.506 (3)
N5—H510.90 (2)C15—H15A0.9900
N5—H520.90 (2)C15—H15B0.9900
N6—C71.471 (2)C16—H16A0.9800
N6—C101.474 (2)C16—H16B0.9800
C7—C81.512 (3)C16—H16C0.9800
N1—C1—N2117.44 (18)C8—C7—H7B109.5
N1—C1—N3121.41 (16)H7A—C7—H7B108.0
N2—C1—N3121.10 (16)O2—C8—C7112.11 (14)
C1—N1—H11121.6 (14)O2—C8—H8A109.2
C1—N1—H12115.2 (13)C7—C8—H8A109.2
H11—N1—H12123.1 (19)O2—C8—H8B109.2
C1—N2—H21122.7 (13)C7—C8—H8B109.2
C1—N2—H22116.0 (13)H8A—C8—H8B107.9
H21—N2—H22121.3 (17)C8—O2—C9108.51 (14)
C1—N3—C5119.25 (14)O2—C9—C10111.74 (14)
C1—N3—C2119.50 (14)O2—C9—H9A109.3
C5—N3—C2113.33 (13)C10—C9—H9A109.3
N3—C2—C3110.65 (14)O2—C9—H9B109.3
N3—C2—H2A109.5C10—C9—H9B109.3
C3—C2—H2A109.5H9A—C9—H9B107.9
N3—C2—H2B109.5N6—C10—C9111.24 (14)
C3—C2—H2B109.5N6—C10—H10A109.4
H2A—C2—H2B108.1C9—C10—H10A109.4
O1—C3—C2112.19 (15)N6—C10—H10B109.4
O1—C3—H3A109.2C9—C10—H10B109.4
C2—C3—H3A109.2H10A—C10—H10B108.0
O1—C3—H3B109.2O4—C11—O3127.48 (17)
C2—C3—H3B109.2O4—C11—O5119.35 (15)
H3A—C3—H3B107.9O3—C11—O5113.17 (14)
C4—O1—C3109.00 (13)C11—O5—C12117.10 (13)
O1—C4—C5112.00 (15)O5—C12—C13106.96 (14)
O1—C4—H4A109.2O5—C12—H12A110.3
C5—C4—H4A109.2C13—C12—H12A110.3
O1—C4—H4B109.2O5—C12—H12B110.3
C5—C4—H4B109.2C13—C12—H12B110.3
H4A—C4—H4B107.9H12A—C12—H12B108.6
N3—C5—C4111.13 (14)C12—C13—H13A109.5
N3—C5—H5A109.4C12—C13—H13B109.5
C4—C5—H5A109.4H13A—C13—H13B109.5
N3—C5—H5B109.4C12—C13—H13C109.5
C4—C5—H5B109.4H13A—C13—H13C109.5
H5A—C5—H5B108.0H13B—C13—H13C109.5
N5—C6—N4118.27 (17)O7—C14—O6126.70 (17)
N5—C6—N6120.64 (15)O7—C14—O8119.38 (14)
N4—C6—N6121.08 (16)O6—C14—O8113.91 (14)
C6—N4—H41116.3 (13)C14—O8—C15116.75 (12)
C6—N4—H42121.0 (14)O8—C15—C16107.70 (14)
H41—N4—H42122.5 (19)O8—C15—H15A110.2
C6—N5—H51121.8 (13)C16—C15—H15A110.2
C6—N5—H52120.7 (14)O8—C15—H15B110.2
H51—N5—H52114.0 (18)C16—C15—H15B110.2
C6—N6—C7118.09 (13)H15A—C15—H15B108.5
C6—N6—C10118.98 (14)C15—C16—H16A109.5
C7—N6—C10114.80 (15)C15—C16—H16B109.5
N6—C7—C8110.93 (14)H16A—C16—H16B109.5
N6—C7—H7A109.5C15—C16—H16C109.5
C8—C7—H7A109.5H16A—C16—H16C109.5
N6—C7—H7B109.5H16B—C16—H16C109.5
N1—C1—N3—C519.3 (3)N4—C6—N6—C1023.7 (2)
N2—C1—N3—C5163.26 (16)C6—N6—C7—C8167.46 (16)
N1—C1—N3—C2166.30 (17)C10—N6—C7—C844.1 (2)
N2—C1—N3—C216.3 (3)N6—C7—C8—O253.4 (2)
C1—N3—C2—C3163.24 (16)C7—C8—O2—C962.83 (19)
C5—N3—C2—C347.9 (2)C8—O2—C9—C1062.98 (19)
N3—C2—C3—O154.7 (2)C6—N6—C10—C9167.27 (15)
C2—C3—O1—C461.1 (2)C7—N6—C10—C944.6 (2)
C3—O1—C4—C560.9 (2)O2—C9—C10—N653.8 (2)
C1—N3—C5—C4163.03 (16)O4—C11—O5—C121.3 (2)
C2—N3—C5—C448.1 (2)O3—C11—O5—C12179.62 (15)
O1—C4—C5—N354.7 (2)C11—O5—C12—C13176.69 (15)
N5—C6—N6—C710.5 (2)O7—C14—O8—C151.3 (2)
N4—C6—N6—C7170.74 (16)O6—C14—O8—C15179.56 (15)
N5—C6—N6—C10157.57 (16)C14—O8—C15—C16179.01 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H11···O4i0.84 (2)2.12 (2)2.944 (1)168 (1)
N1—H12···O3ii0.89 (2)1.91 (2)2.795 (1)174 (1)
N2—H21···O60.85 (2)1.97 (2)2.807 (1)168 (1)
N2—H22···O4ii0.92 (2)1.95 (2)2.851 (1)164 (1)
N4—H41···O6ii0.86 (2)1.97 (2)2.817 (1)167 (1)
N4—H42···O7i0.93 (2)2.00 (2)2.889 (1)159 (1)
N5—H51···O7ii0.90 (2)1.99 (2)2.879 (1)172 (1)
N5—H52···O3iii0.90 (2)1.94 (2)2.776 (1)154 (1)
Symmetry codes: (i) x, y, z1; (ii) x+1/2, y+1/2, z1/2; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC5H12N3O+·C3H5O3
Mr219.25
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)10.2163 (5), 20.8874 (9), 10.4616 (5)
β (°) 109.505 (2)
V3)2104.31 (17)
Z8
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.30 × 0.25 × 0.15
Data collection
DiffractometerBruker–Nonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
9902, 5199, 2981
Rint0.055
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.112, 1.00
No. of reflections5199
No. of parameters305
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.25, 0.30

Computer programs: COLLECT (Hooft, 2004), SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H11···O4i0.84 (2)2.12 (2)2.944 (1)168 (1)
N1—H12···O3ii0.89 (2)1.91 (2)2.795 (1)174 (1)
N2—H21···O60.85 (2)1.97 (2)2.807 (1)168 (1)
N2—H22···O4ii0.92 (2)1.95 (2)2.851 (1)164 (1)
N4—H41···O6ii0.86 (2)1.97 (2)2.817 (1)167 (1)
N4—H42···O7i0.93 (2)2.00 (2)2.889 (1)159 (1)
N5—H51···O7ii0.90 (2)1.99 (2)2.879 (1)172 (1)
N5—H52···O3iii0.90 (2)1.94 (2)2.776 (1)154 (1)
Symmetry codes: (i) x, y, z1; (ii) x+1/2, y+1/2, z1/2; (iii) x+1, y, z.
 

Acknowledgements

The author thanks Dr F. Lissner (Institut für Anorganische Chemie, Universität Stuttgart) for the data collection.

References

First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, D-53002 Bonn, Germany.  Google Scholar
First citationHooft, R. W. W. (2004). COLLECT. Bruker–Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTiritiris, I. (2012a). Acta Cryst. E68, o3118.  CSD CrossRef IUCr Journals Google Scholar
First citationTiritiris, I. (2012b). Acta Cryst. E68, o3310.  CSD CrossRef IUCr Journals Google Scholar
First citationTiritiris, I., Mezger, J., Stoyanov, E. V. & Kantlehner, W. (2011). Z. Naturforsch. Teil B, 66, 407–418.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds