organic compounds
Morpholine-4-carboxamidinium ethyl carbonate
aFakultät Chemie/Organische Chemie, Hochschule Aalen, Beethovenstrasse 1, D-73430 Aalen, Germany
*Correspondence e-mail: Ioannis.Tiritiris@htw-aalen.de
The 5H12N3O+·C3H5O3−, contains two carboxamidinium and two ethyl carbonate ions. In the crystal, the C—N bond lengths in the central CN3 units of the cations range between 1.324 (2) and 1.352 (2) Å, indicating partial double-bond character. The central C atoms are bonded to the three N atoms in a nearly ideal trigonal–planar geometry and the positive charges are delocalized in the CN3 planes. The morpholine rings are in chair conformations. The C—O bond lengths in both ethyl carbonate ions are characteristic for delocalized double bonds [1.243 (2)–1.251 (2) Å] and typical single bonds [1.368 (2) and 1.375 (2) Å]. In the crystal, N—H⋯O hydrogen bonds between cations and anions generate a two-dimensional network in the ac plane.
of the title salt, CRelated literature
For the synthesis and crystal structures of guanidinium hydrogen carbonates, see: Tiritiris et al. (2011). For the of 4-morpholinecarboxamidine, see: Tiritiris (2012a). For the of piperidine-1-carboxamidinium ethyl carbonate, see: Tiritiris (2012b).
Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: COLLECT (Hooft, 2004); cell SCALEPACK (Otwinowski & Minor, 1997); data reduction: SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536812046922/kp2441sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812046922/kp2441Isup2.hkl
The title compound was prepared by bubbling excess CO2 gas into an ethanolic solution of 2.0 g (15.5 mmol) 4-morpholinecarboxamidine (Tiritiris, 2012a). The resulting colorless precipitate was recrystallized from a small amount of ethanol and single crystals suitable for X-ray analysis were obtained. Yield: 3.05 g (90%). 1H NMR (500 MHz, D2O/DSS): δ = 1.17–1.20 [t, 3 H, –CH3], 3.49–3.52 [m, 4 H, –CH2], 3.64–3.68 [q, 2 H, –CH2], 3.80–3.83 [m, 4 H, –CH2]. Because of the H/D exchange, the hydrogen atoms of the –NH2 groups were not observed. 13C NMR (125 MHz, D2O/DSS): δ = 16.8 (–CH3), 45.2 (–CH2), 57.4 (–CH2), 65.4 (–CH2), 156.6 (N3C+), 160.3 (C═O).
The N-bound H atoms were located in a difference Fourier map and were refined freely [N—H = 0.84 (2)–0.93 (2) Å]. The hydrogen atoms of the methyl groups were allowed to rotate with a fixed angle around the C–C bond to best fit the experimental electron density, with U(H) set to 1.5 Ueq(C) and d(C—H) = 0.98 Å. The H atoms of the methylene groups were placed in calculated positions with d(C—H) = 0.99 Å. They were included in the
in the riding model approximation, with U(H) set to 1.2 Ueq(C).Data collection: COLLECT (Hooft, 2004); cell
SCALEPACK (Otwinowski & Minor, 1997); data reduction: SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. The structure of the title compound with displacement ellipsoids at the 50% probability level. | |
Fig. 2. N–H···O hydrogen bonds generating a two-dimensional network in the (ac) plane. The hydrogen bonds are indicated by dashed lines. |
C5H12N3O+·C3H5O3− | F(000) = 944 |
Mr = 219.25 | Dx = 1.384 Mg m−3 |
Monoclinic, P21/n | Melting point: 413 K |
Hall symbol: -P 2yn | Mo Kα radiation, λ = 0.71073 Å |
a = 10.2163 (5) Å | Cell parameters from 5142 reflections |
b = 20.8874 (9) Å | θ = 0.4–28.3° |
c = 10.4616 (5) Å | µ = 0.11 mm−1 |
β = 109.505 (2)° | T = 100 K |
V = 2104.31 (17) Å3 | Block, colourless |
Z = 8 | 0.30 × 0.25 × 0.15 mm |
Bruker–Nonius KappaCCD diffractometer | 2981 reflections with I > 2σ(I) |
Radiation source: sealed tube | Rint = 0.055 |
Graphite monochromator | θmax = 28.3°, θmin = 2.3° |
ϕ scans, and ω scans | h = −13→13 |
9902 measured reflections | k = −27→27 |
5199 independent reflections | l = −13→13 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.050 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.112 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.00 | w = 1/[σ2(Fo2) + (0.0468P)2] where P = (Fo2 + 2Fc2)/3 |
5199 reflections | (Δ/σ)max < 0.001 |
305 parameters | Δρmax = 0.25 e Å−3 |
0 restraints | Δρmin = −0.30 e Å−3 |
C5H12N3O+·C3H5O3− | V = 2104.31 (17) Å3 |
Mr = 219.25 | Z = 8 |
Monoclinic, P21/n | Mo Kα radiation |
a = 10.2163 (5) Å | µ = 0.11 mm−1 |
b = 20.8874 (9) Å | T = 100 K |
c = 10.4616 (5) Å | 0.30 × 0.25 × 0.15 mm |
β = 109.505 (2)° |
Bruker–Nonius KappaCCD diffractometer | 2981 reflections with I > 2σ(I) |
9902 measured reflections | Rint = 0.055 |
5199 independent reflections |
R[F2 > 2σ(F2)] = 0.050 | 0 restraints |
wR(F2) = 0.112 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.00 | Δρmax = 0.25 e Å−3 |
5199 reflections | Δρmin = −0.30 e Å−3 |
305 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.14782 (18) | 0.19683 (9) | 0.08078 (17) | 0.0138 (4) | |
N1 | 0.14407 (18) | 0.21777 (9) | −0.03987 (16) | 0.0186 (4) | |
H11 | 0.082 (2) | 0.2060 (11) | −0.111 (2) | 0.027 (6)* | |
H12 | 0.209 (2) | 0.2468 (11) | −0.039 (2) | 0.028 (6)* | |
N2 | 0.24717 (16) | 0.21987 (9) | 0.18879 (16) | 0.0168 (4) | |
H21 | 0.2567 (18) | 0.2083 (9) | 0.269 (2) | 0.013 (5)* | |
H22 | 0.308 (2) | 0.2486 (11) | 0.171 (2) | 0.032 (6)* | |
N3 | 0.05782 (14) | 0.15198 (8) | 0.09382 (13) | 0.0138 (3) | |
C2 | 0.04415 (18) | 0.14053 (10) | 0.22786 (16) | 0.0174 (4) | |
H2A | −0.0106 | 0.1755 | 0.2491 | 0.021* | |
H2B | 0.1374 | 0.1404 | 0.2982 | 0.021* | |
C3 | −0.02671 (19) | 0.07728 (10) | 0.22976 (17) | 0.0239 (5) | |
H3A | 0.0343 | 0.0421 | 0.2203 | 0.029* | |
H3B | −0.0410 | 0.0721 | 0.3182 | 0.029* | |
O1 | −0.15763 (13) | 0.07261 (7) | 0.12343 (12) | 0.0227 (3) | |
C4 | −0.13597 (19) | 0.07748 (10) | −0.00376 (17) | 0.0194 (4) | |
H4A | −0.2261 | 0.0727 | −0.0777 | 0.023* | |
H4B | −0.0746 | 0.0422 | −0.0120 | 0.023* | |
C5 | −0.07145 (18) | 0.14066 (9) | −0.01951 (17) | 0.0168 (4) | |
H5A | −0.0515 | 0.1408 | −0.1058 | 0.020* | |
H5B | −0.1379 | 0.1757 | −0.0233 | 0.020* | |
C6 | 0.61678 (17) | 0.19115 (9) | 0.08546 (16) | 0.0122 (4) | |
N4 | 0.60204 (17) | 0.21566 (9) | −0.03589 (15) | 0.0161 (4) | |
H41 | 0.656 (2) | 0.2472 (11) | −0.038 (2) | 0.026 (6)* | |
H42 | 0.533 (2) | 0.2013 (12) | −0.113 (2) | 0.041 (7)* | |
N5 | 0.71439 (16) | 0.21538 (8) | 0.19268 (15) | 0.0144 (4) | |
H51 | 0.773 (2) | 0.2459 (11) | 0.185 (2) | 0.023 (6)* | |
H52 | 0.745 (2) | 0.1933 (11) | 0.271 (2) | 0.035 (6)* | |
N6 | 0.53305 (14) | 0.14360 (7) | 0.10007 (13) | 0.0134 (3) | |
C7 | 0.56842 (19) | 0.11205 (10) | 0.23299 (16) | 0.0176 (4) | |
H7A | 0.5906 | 0.1449 | 0.3053 | 0.021* | |
H7B | 0.6517 | 0.0850 | 0.2480 | 0.021* | |
C8 | 0.4493 (2) | 0.07110 (10) | 0.24096 (17) | 0.0189 (4) | |
H8A | 0.4791 | 0.0472 | 0.3277 | 0.023* | |
H8B | 0.3709 | 0.0991 | 0.2401 | 0.023* | |
O2 | 0.40359 (13) | 0.02701 (6) | 0.13163 (11) | 0.0198 (3) | |
C9 | 0.35206 (18) | 0.06230 (10) | 0.00799 (17) | 0.0182 (4) | |
H9A | 0.2758 | 0.0907 | 0.0117 | 0.022* | |
H9B | 0.3137 | 0.0321 | −0.0684 | 0.022* | |
C10 | 0.46389 (18) | 0.10203 (9) | −0.01694 (17) | 0.0169 (4) | |
H10A | 0.5335 | 0.0734 | −0.0341 | 0.020* | |
H10B | 0.4226 | 0.1288 | −0.0986 | 0.020* | |
C11 | −0.07231 (18) | 0.16716 (9) | 0.57058 (16) | 0.0133 (4) | |
O3 | −0.16622 (12) | 0.18499 (7) | 0.46539 (11) | 0.0196 (3) | |
O4 | −0.04966 (12) | 0.18664 (6) | 0.68830 (11) | 0.0179 (3) | |
O5 | 0.01060 (12) | 0.11991 (7) | 0.54704 (11) | 0.0181 (3) | |
C12 | 0.12224 (18) | 0.09664 (10) | 0.66226 (17) | 0.0188 (4) | |
H12A | 0.0849 | 0.0761 | 0.7281 | 0.023* | |
H12B | 0.1836 | 0.1324 | 0.7081 | 0.023* | |
C13 | 0.20159 (19) | 0.04887 (10) | 0.60972 (18) | 0.0224 (5) | |
H13A | 0.2355 | 0.0695 | 0.5427 | 0.034* | |
H13B | 0.1405 | 0.0131 | 0.5671 | 0.034* | |
H13C | 0.2806 | 0.0328 | 0.6851 | 0.034* | |
C14 | 0.40406 (17) | 0.17608 (9) | 0.57044 (16) | 0.0130 (4) | |
O6 | 0.31041 (12) | 0.19554 (6) | 0.46676 (11) | 0.0180 (3) | |
O7 | 0.42103 (13) | 0.19133 (6) | 0.69029 (11) | 0.0183 (3) | |
O8 | 0.49287 (12) | 0.13310 (6) | 0.54411 (11) | 0.0166 (3) | |
C15 | 0.60379 (18) | 0.10913 (10) | 0.65905 (17) | 0.0179 (4) | |
H15A | 0.5655 | 0.0877 | 0.7232 | 0.021* | |
H15B | 0.6641 | 0.1448 | 0.7070 | 0.021* | |
C16 | 0.68612 (19) | 0.06219 (10) | 0.60715 (18) | 0.0199 (4) | |
H16A | 0.6270 | 0.0257 | 0.5651 | 0.030* | |
H16B | 0.7659 | 0.0470 | 0.6828 | 0.030* | |
H16C | 0.7190 | 0.0833 | 0.5398 | 0.030* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0137 (9) | 0.0140 (11) | 0.0127 (9) | 0.0045 (8) | 0.0031 (7) | 0.0005 (7) |
N1 | 0.0180 (9) | 0.0236 (10) | 0.0114 (8) | −0.0068 (8) | 0.0011 (7) | 0.0008 (7) |
N2 | 0.0189 (9) | 0.0223 (10) | 0.0080 (8) | −0.0050 (7) | 0.0031 (7) | 0.0016 (7) |
N3 | 0.0118 (7) | 0.0192 (9) | 0.0088 (7) | −0.0017 (7) | 0.0012 (6) | −0.0003 (6) |
C2 | 0.0178 (9) | 0.0251 (12) | 0.0085 (8) | −0.0042 (8) | 0.0033 (7) | −0.0007 (8) |
C3 | 0.0261 (11) | 0.0301 (13) | 0.0102 (9) | −0.0091 (9) | −0.0011 (8) | 0.0013 (8) |
O1 | 0.0251 (7) | 0.0279 (9) | 0.0138 (6) | −0.0121 (6) | 0.0048 (5) | −0.0029 (6) |
C4 | 0.0217 (10) | 0.0216 (12) | 0.0130 (9) | −0.0007 (9) | 0.0032 (8) | −0.0024 (8) |
C5 | 0.0148 (9) | 0.0201 (11) | 0.0115 (8) | −0.0027 (8) | −0.0007 (7) | 0.0001 (8) |
C6 | 0.0143 (9) | 0.0123 (10) | 0.0107 (9) | 0.0040 (8) | 0.0051 (7) | −0.0004 (7) |
N4 | 0.0166 (8) | 0.0182 (10) | 0.0107 (8) | −0.0043 (8) | 0.0009 (7) | 0.0016 (7) |
N5 | 0.0164 (8) | 0.0145 (10) | 0.0103 (8) | −0.0029 (7) | 0.0018 (6) | 0.0000 (6) |
N6 | 0.0158 (8) | 0.0148 (9) | 0.0083 (7) | −0.0017 (7) | 0.0023 (6) | −0.0007 (6) |
C7 | 0.0218 (10) | 0.0185 (11) | 0.0105 (9) | −0.0053 (8) | 0.0027 (7) | 0.0016 (7) |
C8 | 0.0268 (10) | 0.0179 (12) | 0.0125 (9) | −0.0045 (9) | 0.0074 (8) | −0.0022 (8) |
O2 | 0.0281 (7) | 0.0145 (8) | 0.0147 (6) | −0.0057 (6) | 0.0043 (5) | −0.0011 (5) |
C9 | 0.0187 (10) | 0.0187 (12) | 0.0137 (9) | −0.0021 (8) | 0.0006 (7) | 0.0008 (8) |
C10 | 0.0200 (10) | 0.0167 (11) | 0.0117 (8) | −0.0022 (8) | 0.0025 (7) | −0.0013 (7) |
C11 | 0.0130 (9) | 0.0173 (11) | 0.0095 (9) | −0.0009 (8) | 0.0037 (7) | 0.0013 (7) |
O3 | 0.0191 (7) | 0.0258 (9) | 0.0101 (6) | 0.0043 (6) | −0.0001 (5) | 0.0003 (5) |
O4 | 0.0183 (7) | 0.0231 (8) | 0.0102 (6) | 0.0030 (6) | 0.0020 (5) | −0.0016 (5) |
O5 | 0.0175 (7) | 0.0238 (8) | 0.0108 (6) | 0.0056 (6) | 0.0016 (5) | −0.0002 (5) |
C12 | 0.0167 (10) | 0.0226 (12) | 0.0138 (9) | 0.0045 (8) | 0.0007 (7) | 0.0022 (8) |
C13 | 0.0234 (10) | 0.0219 (12) | 0.0211 (10) | 0.0027 (9) | 0.0064 (8) | 0.0014 (8) |
C14 | 0.0131 (9) | 0.0131 (11) | 0.0116 (9) | −0.0027 (8) | 0.0027 (7) | 0.0001 (7) |
O6 | 0.0179 (7) | 0.0231 (8) | 0.0101 (6) | 0.0050 (6) | 0.0010 (5) | 0.0010 (5) |
O7 | 0.0208 (7) | 0.0215 (8) | 0.0096 (6) | 0.0050 (6) | 0.0010 (5) | −0.0021 (5) |
O8 | 0.0163 (7) | 0.0211 (8) | 0.0103 (6) | 0.0056 (6) | 0.0014 (5) | 0.0005 (5) |
C15 | 0.0177 (9) | 0.0214 (12) | 0.0113 (9) | 0.0057 (8) | 0.0005 (7) | 0.0012 (8) |
C16 | 0.0171 (10) | 0.0218 (12) | 0.0198 (10) | 0.0037 (8) | 0.0047 (8) | 0.0023 (8) |
C1—N1 | 1.324 (2) | C7—H7A | 0.9900 |
C1—N2 | 1.331 (2) | C7—H7B | 0.9900 |
C1—N3 | 1.351 (2) | C8—O2 | 1.420 (2) |
N1—H11 | 0.84 (2) | C8—H8A | 0.9900 |
N1—H12 | 0.89 (2) | C8—H8B | 0.9900 |
N2—H21 | 0.85 (2) | O2—C9 | 1.428 (2) |
N2—H22 | 0.92 (2) | C9—C10 | 1.504 (3) |
N3—C5 | 1.470 (2) | C9—H9A | 0.9900 |
N3—C2 | 1.474 (2) | C9—H9B | 0.9900 |
C2—C3 | 1.510 (3) | C10—H10A | 0.9900 |
C2—H2A | 0.9900 | C10—H10B | 0.9900 |
C2—H2B | 0.9900 | C11—O4 | 1.243 (2) |
C3—O1 | 1.429 (2) | C11—O3 | 1.251 (2) |
C3—H3A | 0.9900 | C11—O5 | 1.375 (2) |
C3—H3B | 0.9900 | O5—C12 | 1.439 (2) |
O1—C4 | 1.424 (2) | C12—C13 | 1.501 (3) |
C4—C5 | 1.508 (3) | C12—H12A | 0.9900 |
C4—H4A | 0.9900 | C12—H12B | 0.9900 |
C4—H4B | 0.9900 | C13—H13A | 0.9800 |
C5—H5A | 0.9900 | C13—H13B | 0.9800 |
C5—H5B | 0.9900 | C13—H13C | 0.9800 |
C6—N5 | 1.327 (2) | C14—O7 | 1.248 (2) |
C6—N4 | 1.330 (2) | C14—O6 | 1.2507 (19) |
C6—N6 | 1.352 (2) | C14—O8 | 1.368 (2) |
N4—H41 | 0.86 (2) | O8—C15 | 1.4390 (19) |
N4—H42 | 0.93 (2) | C15—C16 | 1.506 (3) |
N5—H51 | 0.90 (2) | C15—H15A | 0.9900 |
N5—H52 | 0.90 (2) | C15—H15B | 0.9900 |
N6—C7 | 1.471 (2) | C16—H16A | 0.9800 |
N6—C10 | 1.474 (2) | C16—H16B | 0.9800 |
C7—C8 | 1.512 (3) | C16—H16C | 0.9800 |
N1—C1—N2 | 117.44 (18) | C8—C7—H7B | 109.5 |
N1—C1—N3 | 121.41 (16) | H7A—C7—H7B | 108.0 |
N2—C1—N3 | 121.10 (16) | O2—C8—C7 | 112.11 (14) |
C1—N1—H11 | 121.6 (14) | O2—C8—H8A | 109.2 |
C1—N1—H12 | 115.2 (13) | C7—C8—H8A | 109.2 |
H11—N1—H12 | 123.1 (19) | O2—C8—H8B | 109.2 |
C1—N2—H21 | 122.7 (13) | C7—C8—H8B | 109.2 |
C1—N2—H22 | 116.0 (13) | H8A—C8—H8B | 107.9 |
H21—N2—H22 | 121.3 (17) | C8—O2—C9 | 108.51 (14) |
C1—N3—C5 | 119.25 (14) | O2—C9—C10 | 111.74 (14) |
C1—N3—C2 | 119.50 (14) | O2—C9—H9A | 109.3 |
C5—N3—C2 | 113.33 (13) | C10—C9—H9A | 109.3 |
N3—C2—C3 | 110.65 (14) | O2—C9—H9B | 109.3 |
N3—C2—H2A | 109.5 | C10—C9—H9B | 109.3 |
C3—C2—H2A | 109.5 | H9A—C9—H9B | 107.9 |
N3—C2—H2B | 109.5 | N6—C10—C9 | 111.24 (14) |
C3—C2—H2B | 109.5 | N6—C10—H10A | 109.4 |
H2A—C2—H2B | 108.1 | C9—C10—H10A | 109.4 |
O1—C3—C2 | 112.19 (15) | N6—C10—H10B | 109.4 |
O1—C3—H3A | 109.2 | C9—C10—H10B | 109.4 |
C2—C3—H3A | 109.2 | H10A—C10—H10B | 108.0 |
O1—C3—H3B | 109.2 | O4—C11—O3 | 127.48 (17) |
C2—C3—H3B | 109.2 | O4—C11—O5 | 119.35 (15) |
H3A—C3—H3B | 107.9 | O3—C11—O5 | 113.17 (14) |
C4—O1—C3 | 109.00 (13) | C11—O5—C12 | 117.10 (13) |
O1—C4—C5 | 112.00 (15) | O5—C12—C13 | 106.96 (14) |
O1—C4—H4A | 109.2 | O5—C12—H12A | 110.3 |
C5—C4—H4A | 109.2 | C13—C12—H12A | 110.3 |
O1—C4—H4B | 109.2 | O5—C12—H12B | 110.3 |
C5—C4—H4B | 109.2 | C13—C12—H12B | 110.3 |
H4A—C4—H4B | 107.9 | H12A—C12—H12B | 108.6 |
N3—C5—C4 | 111.13 (14) | C12—C13—H13A | 109.5 |
N3—C5—H5A | 109.4 | C12—C13—H13B | 109.5 |
C4—C5—H5A | 109.4 | H13A—C13—H13B | 109.5 |
N3—C5—H5B | 109.4 | C12—C13—H13C | 109.5 |
C4—C5—H5B | 109.4 | H13A—C13—H13C | 109.5 |
H5A—C5—H5B | 108.0 | H13B—C13—H13C | 109.5 |
N5—C6—N4 | 118.27 (17) | O7—C14—O6 | 126.70 (17) |
N5—C6—N6 | 120.64 (15) | O7—C14—O8 | 119.38 (14) |
N4—C6—N6 | 121.08 (16) | O6—C14—O8 | 113.91 (14) |
C6—N4—H41 | 116.3 (13) | C14—O8—C15 | 116.75 (12) |
C6—N4—H42 | 121.0 (14) | O8—C15—C16 | 107.70 (14) |
H41—N4—H42 | 122.5 (19) | O8—C15—H15A | 110.2 |
C6—N5—H51 | 121.8 (13) | C16—C15—H15A | 110.2 |
C6—N5—H52 | 120.7 (14) | O8—C15—H15B | 110.2 |
H51—N5—H52 | 114.0 (18) | C16—C15—H15B | 110.2 |
C6—N6—C7 | 118.09 (13) | H15A—C15—H15B | 108.5 |
C6—N6—C10 | 118.98 (14) | C15—C16—H16A | 109.5 |
C7—N6—C10 | 114.80 (15) | C15—C16—H16B | 109.5 |
N6—C7—C8 | 110.93 (14) | H16A—C16—H16B | 109.5 |
N6—C7—H7A | 109.5 | C15—C16—H16C | 109.5 |
C8—C7—H7A | 109.5 | H16A—C16—H16C | 109.5 |
N6—C7—H7B | 109.5 | H16B—C16—H16C | 109.5 |
N1—C1—N3—C5 | −19.3 (3) | N4—C6—N6—C10 | 23.7 (2) |
N2—C1—N3—C5 | 163.26 (16) | C6—N6—C7—C8 | 167.46 (16) |
N1—C1—N3—C2 | −166.30 (17) | C10—N6—C7—C8 | −44.1 (2) |
N2—C1—N3—C2 | 16.3 (3) | N6—C7—C8—O2 | 53.4 (2) |
C1—N3—C2—C3 | −163.24 (16) | C7—C8—O2—C9 | −62.83 (19) |
C5—N3—C2—C3 | 47.9 (2) | C8—O2—C9—C10 | 62.98 (19) |
N3—C2—C3—O1 | −54.7 (2) | C6—N6—C10—C9 | −167.27 (15) |
C2—C3—O1—C4 | 61.1 (2) | C7—N6—C10—C9 | 44.6 (2) |
C3—O1—C4—C5 | −60.9 (2) | O2—C9—C10—N6 | −53.8 (2) |
C1—N3—C5—C4 | 163.03 (16) | O4—C11—O5—C12 | −1.3 (2) |
C2—N3—C5—C4 | −48.1 (2) | O3—C11—O5—C12 | 179.62 (15) |
O1—C4—C5—N3 | 54.7 (2) | C11—O5—C12—C13 | −176.69 (15) |
N5—C6—N6—C7 | −10.5 (2) | O7—C14—O8—C15 | −1.3 (2) |
N4—C6—N6—C7 | 170.74 (16) | O6—C14—O8—C15 | 179.56 (15) |
N5—C6—N6—C10 | −157.57 (16) | C14—O8—C15—C16 | 179.01 (15) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H11···O4i | 0.84 (2) | 2.12 (2) | 2.944 (1) | 168 (1) |
N1—H12···O3ii | 0.89 (2) | 1.91 (2) | 2.795 (1) | 174 (1) |
N2—H21···O6 | 0.85 (2) | 1.97 (2) | 2.807 (1) | 168 (1) |
N2—H22···O4ii | 0.92 (2) | 1.95 (2) | 2.851 (1) | 164 (1) |
N4—H41···O6ii | 0.86 (2) | 1.97 (2) | 2.817 (1) | 167 (1) |
N4—H42···O7i | 0.93 (2) | 2.00 (2) | 2.889 (1) | 159 (1) |
N5—H51···O7ii | 0.90 (2) | 1.99 (2) | 2.879 (1) | 172 (1) |
N5—H52···O3iii | 0.90 (2) | 1.94 (2) | 2.776 (1) | 154 (1) |
Symmetry codes: (i) x, y, z−1; (ii) x+1/2, −y+1/2, z−1/2; (iii) x+1, y, z. |
Experimental details
Crystal data | |
Chemical formula | C5H12N3O+·C3H5O3− |
Mr | 219.25 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 100 |
a, b, c (Å) | 10.2163 (5), 20.8874 (9), 10.4616 (5) |
β (°) | 109.505 (2) |
V (Å3) | 2104.31 (17) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.11 |
Crystal size (mm) | 0.30 × 0.25 × 0.15 |
Data collection | |
Diffractometer | Bruker–Nonius KappaCCD diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 9902, 5199, 2981 |
Rint | 0.055 |
(sin θ/λ)max (Å−1) | 0.667 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.050, 0.112, 1.00 |
No. of reflections | 5199 |
No. of parameters | 305 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.25, −0.30 |
Computer programs: COLLECT (Hooft, 2004), SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H11···O4i | 0.84 (2) | 2.12 (2) | 2.944 (1) | 168 (1) |
N1—H12···O3ii | 0.89 (2) | 1.91 (2) | 2.795 (1) | 174 (1) |
N2—H21···O6 | 0.85 (2) | 1.97 (2) | 2.807 (1) | 168 (1) |
N2—H22···O4ii | 0.92 (2) | 1.95 (2) | 2.851 (1) | 164 (1) |
N4—H41···O6ii | 0.86 (2) | 1.97 (2) | 2.817 (1) | 167 (1) |
N4—H42···O7i | 0.93 (2) | 2.00 (2) | 2.889 (1) | 159 (1) |
N5—H51···O7ii | 0.90 (2) | 1.99 (2) | 2.879 (1) | 172 (1) |
N5—H52···O3iii | 0.90 (2) | 1.94 (2) | 2.776 (1) | 154 (1) |
Symmetry codes: (i) x, y, z−1; (ii) x+1/2, −y+1/2, z−1/2; (iii) x+1, y, z. |
Acknowledgements
The author thanks Dr F. Lissner (Institut für Anorganische Chemie, Universität Stuttgart) for the data collection.
References
Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, D-53002 Bonn, Germany. Google Scholar
Hooft, R. W. W. (2004). COLLECT. Bruker–Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tiritiris, I. (2012a). Acta Cryst. E68, o3118. CSD CrossRef IUCr Journals Google Scholar
Tiritiris, I. (2012b). Acta Cryst. E68, o3310. CSD CrossRef IUCr Journals Google Scholar
Tiritiris, I., Mezger, J., Stoyanov, E. V. & Kantlehner, W. (2011). Z. Naturforsch. Teil B, 66, 407–418. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The reaction of several guanidines with CO2 in undried aprotic solvents are well described in the literature (Tiritiris et al., 2011). Here, the corresponding guanidinium hydrogen carbonate salts were obtained and their crystal structures could be determined. By reacting carboxamidines with CO2 we first used aprotic solvents and due to their water content, sparingly soluble and non crystalline hydrogen carbonate salts were also formed. By using alcohols as solvents for the reaction, we obtained a few crystalline alkyl carbonate salts. One of them is the here presented title compound. According to the structure analysis, the asymmetric unit contains two carboxamidinium and two ethyl carbonate ions. The C–N bonds of the CN3 units are ranging from 1.324 (2) to 1.352 (2) Å, showing partial double-bond character. The N–C1–N and N–C6–N angles are indicating a nearly ideal trigonal-planar surrounding of the carbon centres by the nitrogen atoms. The positive charges are completely delocalized on the CN3 planes (Fig. 1). The structural parameters of the morpholine rings in the here presented title compound agree very well with the data obtained from the X-ray analysis of the starting compound 4-morpholinecarboxamidine (Tiritiris, 2012a). The morpholine rings adopt a chair conformation. The C–O bond lengths in both ethyl carbonate ions indicate evenly distributed double bonds [1.243 (2)–1.251 (2) Å] and typical single bonds [1.368 (2) and 1.375 (2) Å]. The data fit with the C–O bond lengths and angles of the anion in piperidine-1-carboxamidinium ethyl carbonate (Tiritiris, 2012b). In the crystal structure, strong N—H···O hydrogen bonds between hydrogen atoms of carboxamidinium ions and oxygen atoms of neighboring ethyl carbonate ions are observed, generating an infinite two-dimensional network [d(H···O) = 1.91 (2)–2.12 (2) Å] (Tab. 1) with base vectors [0 0 1] and [1 0 0] (Fig. 2). In contrast to the crystal structure of 4-morpholinecarboxamidine (Tiritiris, 2012a), the oxygen atoms of the morpholine rings are not involved in the N—H···O hydrogen bonding system.