organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[(Adamantan-1-yl)amino­meth­yl]-4-chloro­phenol hemihydrate

aCollege of Chemistry, Liaoning University, Shenyang 110036, People's Republic of China
*Correspondence e-mail: jinxudong@yahoo.com

(Received 31 August 2012; accepted 1 November 2012; online 7 November 2012)

In the title compound, C17H22ClNO·0.5H2O, the water mol­ecule O atom resides on a twofold rotation axis. In the organic mol­ecule, the phenol group forms an intra­molecular O—H⋯N hydrogen bond. In the crystal, pairs of organic mol­ecules are hydrogen bonded through bridging solvent water mol­ecules, forming chains along the b-axis direction.

Related literature

For the synthesis and crystal structure of 2-[(adamantan-1-yl­amino)­meth­yl]phenol, see: Wang & Tao (2012[Wang, Y.-C. & Tao, R. (2012). Acta Cryst. E68, o293.]). For the synthesis and applications of amantadine derivatives, see: Camps et al. (2008[Camps, P., Duque, M. D., Vazquez, S., Naesens, L., De-Clercq, E., Sureda, F. X., Lopez-Querol, M., Camins, A., Pallas, M., Prathalingam, S. R., Kelly, J. M., Romero, V., Ivorra, D. & Cortes, D. (2008). Bioorg. Med. Chem. 16, 9925-9936.]).

[Scheme 1]

Experimental

Crystal data
  • C17H22ClNO·0.5H2O

  • Mr = 300.82

  • Monoclinic, C 2/c

  • a = 25.469 (16) Å

  • b = 6.365 (4) Å

  • c = 18.306 (11) Å

  • β = 91.815 (12)°

  • V = 2966 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 296 K

  • 0.35 × 0.30 × 0.16 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.915, Tmax = 0.960

  • 6372 measured reflections

  • 2606 independent reflections

  • 1798 reflections with I > 2σ(I)

  • Rint = 0.098

Refinement
  • R[F2 > 2σ(F2)] = 0.069

  • wR(F2) = 0.216

  • S = 1.08

  • 2606 reflections

  • 198 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.83 (6) 2.07 (9) 2.611 (5) 122 (7)
O1W—H1W⋯O1i 0.84 (4) 1.99 (4) 2.768 (5) 153 (5)
N1—H1A⋯O1W 0.90 (4) 2.20 (4) 3.012 (5) 150 (4)
Symmetry code: (i) [-x+1, y+1, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Amantadine and its derivatives attract interest because of their biological activity and many potential applications (Camps et al., 2008). As an extension of our previous work on the compounds containing an adamantane group, we synthesized the title compound by reduction of the corresponding Schiff base. It crystallizes with solvent water. Asymmetric unit contains one molecule of the title compound and one half of solvent water (Fig. 1). In the organic molecule, all bond lengths and angles are normal and comparable with another reported compound, N-(2-Hydroxybenzyl)adamantan-1-amine (Wang et al., 2012). The hydroxyl O atom is involved in hydrogen bond (Table 1) with amino N atom with the OH···N distance of 2.611 (5) Å. This intra-molecular hydrogen bond formally results in a chiral center at the nitrogen atom, but the centrosymmetric crystal represents a racemate. The intramolecular hydrogen bond forms a R21(6) ring which stabilizes the molecular conformation (Table 1). In the crystal, the couples of organic molecules are alternated with crystallization water molecules along b axis forming intermolecular O(W)—H···O and N—H···O(W) hydrogen bonds (Fig. 2).

Related literature top

For the synthesis and crystal structure of 2-[(adamantan-1-ylamino)methyl]phenol, see: Wang & Tao (2012). For the synthesis and applications of amantadine derivatives, see: Camps et al. (2008).

Experimental top

Amantadine hydrochloride (0.376 g, 2.0 mmol) and KOH (0.112 g, 2.0 mmol) were stirred in 10 ml of anhydrous alcohol for 2 h. The produced white precipitate was filtered out and the transparent filtrate was added dropwise to 5-chloro-2-hydroxybenzaldehyde (0.312 g, 2.0 mmol) in 10 ml of anhydrous alcohol under constant stirring. The resulting solution was refluxed for ca. 3 h, concentrated to about 5 ml through reduced pressure distillation and then left at room temperature. A yellow Schiff base precipitate was obtained after one week under slow solvent evaporation.

NaBH4 (0.303 g, 8 mmol) was added into solution of the Schiff base (0.580 g, 2 mmol) in anhydrous methanol (10 ml). After 1 h stirring, a light-yellow solid, 4-chloro-2-((adamantan-1-ylamino)methyl)phenol was filtered and dried. A crystal of the title compound suitable for X-ray analysis has developed from a solution in H2O/EtOH mixture (1:2 v/v) after 5 days of slow solvent evaporation.

Refinement top

The C-bound H atoms were positioned geometrically with C—H = 0.93–0.98 Å, and treated as riding with Uiso(H) = 1.2 Ueq(C). H atoms bonded to N and O atoms were located in difference Fourier series and refined isotropically.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with displacement ellipsoids drawn at 30% probability level.
[Figure 2] Fig. 2. Packing diagram showing the H-bonded chains parallel to b axis. H atoms are omitted for clarity.
2-[(Adamantan-1-yl)aminomethyl]-4-chlorophenol hemihydrate top
Crystal data top
C17H22ClNO·0.5H2OF(000) = 1288
Mr = 300.82Dx = 1.347 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 941 reflections
a = 25.469 (16) Åθ = 3.3–22.6°
b = 6.365 (4) ŵ = 0.26 mm1
c = 18.306 (11) ÅT = 296 K
β = 91.815 (12)°Block, yellow
V = 2966 (3) Å30.35 × 0.30 × 0.16 mm
Z = 8
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2606 independent reflections
Radiation source: fine-focus sealed tube1798 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.098
ϕ and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 3028
Tmin = 0.915, Tmax = 0.960k = 77
6372 measured reflectionsl = 1321
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.069Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.216H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0716P)2 + 4.2412P]
where P = (Fo2 + 2Fc2)/3
2606 reflections(Δ/σ)max = 0.001
198 parametersΔρmax = 0.39 e Å3
3 restraintsΔρmin = 0.40 e Å3
Crystal data top
C17H22ClNO·0.5H2OV = 2966 (3) Å3
Mr = 300.82Z = 8
Monoclinic, C2/cMo Kα radiation
a = 25.469 (16) ŵ = 0.26 mm1
b = 6.365 (4) ÅT = 296 K
c = 18.306 (11) Å0.35 × 0.30 × 0.16 mm
β = 91.815 (12)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2606 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1798 reflections with I > 2σ(I)
Tmin = 0.915, Tmax = 0.960Rint = 0.098
6372 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0693 restraints
wR(F2) = 0.216H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.39 e Å3
2606 reflectionsΔρmin = 0.40 e Å3
198 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.68802 (17)0.9819 (7)0.1855 (2)0.0245 (10)
H1C0.67181.08570.21640.029*
H1D0.72541.01150.18470.029*
C20.67926 (18)0.7615 (7)0.2166 (2)0.0276 (11)
H20.69480.75260.26620.033*
C30.61919 (16)0.7207 (7)0.2187 (2)0.0225 (10)
H3A0.61280.58280.23920.027*
H3B0.60300.82460.24950.027*
C40.59505 (16)0.7331 (6)0.1410 (2)0.0181 (9)
C50.60470 (15)0.9535 (6)0.1103 (2)0.0194 (9)
H5A0.58841.05770.14100.023*
H5B0.58900.96460.06150.023*
C60.66397 (17)0.9950 (7)0.1079 (2)0.0222 (10)
H60.67001.13540.08790.027*
C70.68971 (16)0.8294 (6)0.0594 (2)0.0194 (9)
H7A0.67480.83770.01010.023*
H7B0.72710.85600.05750.023*
C80.70416 (16)0.5981 (7)0.1683 (3)0.0256 (10)
H8A0.69850.45900.18820.031*
H8B0.74170.62210.16710.031*
C90.68029 (16)0.6101 (6)0.0909 (2)0.0217 (10)
H90.69670.50420.06010.026*
C100.62049 (16)0.5697 (7)0.0927 (2)0.0215 (10)
H10A0.60520.57760.04350.026*
H10B0.61400.43010.11170.026*
C110.50199 (15)0.7241 (6)0.0828 (2)0.0195 (9)
H11A0.49700.87390.07580.023*
H11B0.51730.66690.03930.023*
C120.45058 (16)0.6210 (6)0.0955 (2)0.0182 (9)
C130.44999 (15)0.4119 (6)0.1226 (2)0.0190 (9)
C140.40219 (17)0.3142 (7)0.1333 (2)0.0225 (10)
H140.40170.17680.15060.027*
C150.35494 (16)0.4183 (7)0.1187 (2)0.0220 (9)
H150.32300.35220.12630.026*
C160.35647 (16)0.6241 (7)0.0923 (2)0.0196 (9)
C170.40353 (16)0.7250 (6)0.0811 (2)0.0184 (9)
H170.40370.86260.06400.022*
Cl10.29758 (4)0.75941 (17)0.07489 (6)0.0262 (4)
H10.5251 (19)0.367 (15)0.133 (6)0.16 (5)*
H1A0.5178 (18)0.748 (7)0.181 (2)0.045 (16)*
N10.53801 (14)0.6858 (6)0.14802 (19)0.0207 (8)
O10.49570 (13)0.3128 (5)0.13804 (18)0.0272 (8)
O1W0.50001.0204 (8)0.25000.0532 (17)
H1W0.491 (2)1.097 (7)0.286 (2)0.040 (16)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.025 (2)0.030 (2)0.019 (2)0.0099 (19)0.0030 (17)0.0067 (19)
C20.027 (2)0.038 (3)0.017 (2)0.005 (2)0.0043 (18)0.005 (2)
C30.021 (2)0.028 (2)0.019 (2)0.0037 (18)0.0025 (17)0.0021 (18)
C40.017 (2)0.015 (2)0.022 (2)0.0023 (16)0.0028 (16)0.0003 (17)
C50.019 (2)0.020 (2)0.020 (2)0.0036 (17)0.0064 (16)0.0012 (17)
C60.029 (2)0.016 (2)0.022 (2)0.0015 (18)0.0032 (18)0.0026 (18)
C70.019 (2)0.020 (2)0.020 (2)0.0029 (17)0.0056 (16)0.0023 (17)
C80.015 (2)0.025 (2)0.036 (3)0.0031 (18)0.0000 (18)0.006 (2)
C90.020 (2)0.018 (2)0.028 (3)0.0019 (17)0.0057 (17)0.0041 (18)
C100.025 (2)0.018 (2)0.021 (2)0.0047 (18)0.0019 (17)0.0019 (17)
C110.018 (2)0.022 (2)0.019 (2)0.0006 (17)0.0007 (16)0.0023 (17)
C120.024 (2)0.018 (2)0.013 (2)0.0003 (17)0.0001 (16)0.0017 (16)
C130.021 (2)0.021 (2)0.016 (2)0.0025 (17)0.0014 (16)0.0028 (17)
C140.030 (2)0.015 (2)0.022 (2)0.0027 (18)0.0010 (18)0.0008 (18)
C150.021 (2)0.029 (2)0.016 (2)0.0024 (18)0.0002 (16)0.0037 (18)
C160.022 (2)0.026 (2)0.011 (2)0.0057 (18)0.0022 (16)0.0013 (17)
C170.024 (2)0.018 (2)0.013 (2)0.0010 (17)0.0009 (16)0.0015 (16)
Cl10.0204 (6)0.0357 (7)0.0225 (6)0.0044 (5)0.0000 (4)0.0045 (5)
N10.0196 (18)0.029 (2)0.0139 (19)0.0023 (16)0.0018 (14)0.0034 (15)
O10.0271 (18)0.0216 (16)0.0326 (19)0.0043 (14)0.0043 (14)0.0000 (14)
O1W0.037 (3)0.017 (3)0.106 (6)0.0000.012 (3)0.000
Geometric parameters (Å, º) top
C1—C61.531 (6)C8—H8B0.9700
C1—C21.533 (6)C9—C101.546 (6)
C1—H1C0.9700C9—H90.9800
C1—H1D0.9700C10—H10A0.9700
C2—C81.517 (6)C10—H10B0.9700
C2—C31.553 (6)C11—C121.489 (6)
C2—H20.9800C11—N11.502 (5)
C3—C41.534 (6)C11—H11A0.9700
C3—H3A0.9700C11—H11B0.9700
C3—H3B0.9700C12—C171.387 (6)
C4—N11.493 (5)C12—C131.421 (6)
C4—C101.523 (6)C13—O11.346 (5)
C4—C51.534 (5)C13—C141.387 (6)
C5—C61.534 (6)C14—C151.392 (6)
C5—H5A0.9700C14—H140.9300
C5—H5B0.9700C15—C161.397 (6)
C6—C71.539 (6)C15—H150.9300
C6—H60.9800C16—C171.381 (6)
C7—C91.532 (6)C16—Cl11.750 (4)
C7—H7A0.9700C17—H170.9300
C7—H7B0.9700N1—H1A0.90 (2)
C8—C91.524 (6)O1—H10.83 (2)
C8—H8A0.9700O1W—H1W0.847 (19)
C6—C1—C2109.6 (3)C9—C8—H8A109.6
C6—C1—H1C109.8C2—C8—H8B109.6
C2—C1—H1C109.8C9—C8—H8B109.6
C6—C1—H1D109.8H8A—C8—H8B108.1
C2—C1—H1D109.8C8—C9—C7109.4 (3)
H1C—C1—H1D108.2C8—C9—C10109.7 (3)
C8—C2—C1110.0 (4)C7—C9—C10109.0 (3)
C8—C2—C3109.3 (4)C8—C9—H9109.6
C1—C2—C3108.5 (4)C7—C9—H9109.6
C8—C2—H2109.7C10—C9—H9109.6
C1—C2—H2109.7C4—C10—C9109.6 (3)
C3—C2—H2109.7C4—C10—H10A109.7
C4—C3—C2109.5 (3)C9—C10—H10A109.7
C4—C3—H3A109.8C4—C10—H10B109.7
C2—C3—H3A109.8C9—C10—H10B109.7
C4—C3—H3B109.8H10A—C10—H10B108.2
C2—C3—H3B109.8C12—C11—N1108.9 (3)
H3A—C3—H3B108.2C12—C11—H11A109.9
N1—C4—C10110.2 (3)N1—C11—H11A109.9
N1—C4—C5112.6 (3)C12—C11—H11B109.9
C10—C4—C5109.7 (3)N1—C11—H11B109.9
N1—C4—C3105.8 (3)H11A—C11—H11B108.3
C10—C4—C3109.7 (3)C17—C12—C13119.7 (4)
C5—C4—C3108.8 (3)C17—C12—C11121.3 (4)
C4—C5—C6109.7 (3)C13—C12—C11119.1 (3)
C4—C5—H5A109.7O1—C13—C14121.2 (4)
C6—C5—H5A109.7O1—C13—C12119.6 (4)
C4—C5—H5B109.7C14—C13—C12119.3 (4)
C6—C5—H5B109.7C13—C14—C15121.1 (4)
H5A—C5—H5B108.2C13—C14—H14119.4
C1—C6—C5109.2 (3)C15—C14—H14119.4
C1—C6—C7109.5 (3)C14—C15—C16118.6 (4)
C5—C6—C7109.7 (3)C14—C15—H15120.7
C1—C6—H6109.5C16—C15—H15120.7
C5—C6—H6109.5C17—C16—C15121.4 (4)
C7—C6—H6109.5C17—C16—Cl1119.2 (3)
C9—C7—C6109.4 (3)C15—C16—Cl1119.4 (3)
C9—C7—H7A109.8C16—C17—C12119.9 (4)
C6—C7—H7A109.8C16—C17—H17120.0
C9—C7—H7B109.8C12—C17—H17120.0
C6—C7—H7B109.8C4—N1—C11118.0 (3)
H7A—C7—H7B108.2C4—N1—H1A123 (4)
C2—C8—C9110.2 (3)C11—N1—H1A96 (4)
C2—C8—H8A109.6C13—O1—H1124 (7)
C6—C1—C2—C859.0 (5)C5—C4—C10—C960.1 (4)
C6—C1—C2—C360.5 (4)C3—C4—C10—C959.4 (4)
C8—C2—C3—C459.4 (4)C8—C9—C10—C459.3 (4)
C1—C2—C3—C460.6 (4)C7—C9—C10—C460.5 (4)
C2—C3—C4—N1178.3 (3)N1—C11—C12—C17134.1 (4)
C2—C3—C4—C1059.5 (4)N1—C11—C12—C1346.0 (5)
C2—C3—C4—C560.5 (4)C17—C12—C13—O1178.6 (4)
N1—C4—C5—C6177.4 (3)C11—C12—C13—O11.5 (6)
C10—C4—C5—C659.5 (4)C17—C12—C13—C140.9 (6)
C3—C4—C5—C660.5 (4)C11—C12—C13—C14179.0 (4)
C2—C1—C6—C560.9 (4)O1—C13—C14—C15178.8 (4)
C2—C1—C6—C759.2 (4)C12—C13—C14—C150.7 (6)
C4—C5—C6—C160.7 (4)C13—C14—C15—C160.4 (6)
C4—C5—C6—C759.3 (4)C14—C15—C16—C170.4 (6)
C1—C6—C7—C959.9 (4)C14—C15—C16—Cl1178.9 (3)
C5—C6—C7—C959.9 (4)C15—C16—C17—C120.7 (6)
C1—C2—C8—C959.3 (4)Cl1—C16—C17—C12179.2 (3)
C3—C2—C8—C959.7 (4)C13—C12—C17—C160.9 (6)
C2—C8—C9—C759.7 (4)C11—C12—C17—C16179.0 (4)
C2—C8—C9—C1059.8 (4)C10—C4—N1—C1172.3 (4)
C6—C7—C9—C859.8 (4)C5—C4—N1—C1150.5 (5)
C6—C7—C9—C1060.1 (4)C3—C4—N1—C11169.2 (3)
N1—C4—C10—C9175.5 (3)C12—C11—N1—C4166.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.83 (6)2.07 (9)2.611 (5)122 (7)
O1W—H1W···O1i0.84 (4)1.99 (4)2.768 (5)153 (5)
N1—H1A···O1W0.90 (4)2.20 (4)3.012 (5)150 (4)
Symmetry code: (i) x+1, y+1, z+1/2.

Experimental details

Crystal data
Chemical formulaC17H22ClNO·0.5H2O
Mr300.82
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)25.469 (16), 6.365 (4), 18.306 (11)
β (°) 91.815 (12)
V3)2966 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.35 × 0.30 × 0.16
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.915, 0.960
No. of measured, independent and
observed [I > 2σ(I)] reflections
6372, 2606, 1798
Rint0.098
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.069, 0.216, 1.08
No. of reflections2606
No. of parameters198
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.39, 0.40

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.83 (6)2.07 (9)2.611 (5)122 (7)
O1W—H1W···O1i0.84 (4)1.99 (4)2.768 (5)153 (5)
N1—H1A···O1W0.90 (4)2.20 (4)3.012 (5)150 (4)
Symmetry code: (i) x+1, y+1, z+1/2.
 

Acknowledgements

This work was supported financially by the Foundation of Liaoning Educational Department (No. 2008T073&LT2012001), the Science and Technology Foundation of Liaoning Province (No. 20071027), the Liaoning University Foundation of 211 Project for Innovative Talents Training and the Technology Major Projects Research Foundation (No. 2011ZX09102–007–02), China.

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCamps, P., Duque, M. D., Vazquez, S., Naesens, L., De-Clercq, E., Sureda, F. X., Lopez-Querol, M., Camins, A., Pallas, M., Prathalingam, S. R., Kelly, J. M., Romero, V., Ivorra, D. & Cortes, D. (2008). Bioorg. Med. Chem. 16, 9925–9936.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Y.-C. & Tao, R. (2012). Acta Cryst. E68, o293.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds