organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 12| December 2012| Pages o3308-o3309

N-(2-Amino-5-chloro­phen­yl)-2-bromo­benzene­sulfonamide

aChemistry Department, Menarini Ricerche S.p.A., Via dei Sette Santi 3, I-50131 Firenze, Italy, and bDipartimento Energetica "Sergio Stecco", University of Firenze, Via S. Marta 3, I-50139 Firenze, Italy
*Correspondence e-mail: paolapaoli@unifi.it

(Received 22 October 2012; accepted 5 November 2012; online 10 November 2012)

In the title compound, C12H10BrClN2O2S, the sulfonamide group adopts a staggered conformation about the N—S bond [the C—S—N—H torsion angle is 97 (3)°] with the N-atom lone pair bis­ecting the O=S=O angle. For the C(Ar)—S bond, the ortho-substituted C atom bis­ects one of O=S–N angles [the C—C—S—N torsion angle is −57.7 (3)°]. The mean planes of the aromatic rings form a dihedral angle of 75.1 (1)°. In the crystal, mol­ecules form inversion dimers through pairs of N—H⋯NH2 hydrogen bonds. The mol­ecules are further consolidated into layers along the bc plane by weaker N—H⋯O inter­actions.

Related literature

For the synthesis of the title compound, see: Altamura et al. (2009[Altamura, M., Fedi, V., Giannotti, D., Paoli, P. & Rossi, P. (2009). New J. Chem. 33, 2219-2231.]). For the biological activity of sulfa drugs, see: Chegwidden et al. (2000[Chegwidden, W. R., Carter, N. D. & Edwards, Y. H. (2000). In The Carbonic Anhydrases New Horizons. Basel: Birkhauser Verlag.]); Lu & Tucker (2007[Lu, R. J. & Tucker, J. A. (2007). J. Med. Chem. 50, 6535-6544.]); Tappe et al. (2008[Tappe, W., Zarfl, C., Kummer, S., Burauel, P., Vereecken, H. & Groeneweg, J. (2008). Chemosphere, 72, 836-843.]); Purushottamachar et al. (2008[Purushottamachar, P., Khandelwal, A., Vasaitis, T. S., Bruno, R. D., Gediya, L. K. & Njar, V. C. O. (2008). Bioorg. Med. Chem. 16, 3519-3529.]). For structural studies of mol­ecules having the sulfonamide –SO2—NH group, see: Parkin et al. (2008[Parkin, A., Collins, A., Gilmore, C. J. & Wilson, C. C. (2008). Acta Cryst. B64, 66-71.]); Perlovich et al. (2009[Perlovich, G. L., Tkachev, V. V., Strakhova, N. N., Kazachenko, V. P., Volkova, T. V., Surov, O. V., Schaper, K.-J. & Raevsky, O. A. (2009). J. Pharm. Sci. 98, 4738-4755.], 2011[Perlovich, G. L., Ryzhakov, A. M., Tkachev, T. T. & Hansen, L. K. (2011). Cryst. Growth Des. 11, 1067-1081.]); Vega-Hissi et al. (2011[Vega-Hissi, E. G., Andrada, M. F., Zamarbide, G. N., Estrada, M. R. & Tomas-Vert, F. (2011). J. Mol. Model. 17, 1317-1323.]); Altamura et al. (2009[Altamura, M., Fedi, V., Giannotti, D., Paoli, P. & Rossi, P. (2009). New J. Chem. 33, 2219-2231.], 2012[Altamura, M., Fedi, V., Nannicini, R., Paoli, P. & Rossi, P. (2012). Acta Cryst. E68, o3144-o3145.]).

[Scheme 1]

Experimental

Crystal data
  • C12H10BrClN2O2S

  • Mr = 361.64

  • Monoclinic, P 21 /c

  • a = 13.657 (1) Å

  • b = 14.361 (2) Å

  • c = 7.0829 (9) Å

  • β = 100.75 (1)°

  • V = 1364.8 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.36 mm−1

  • T = 298 K

  • 0.32 × 0.26 × 0.22 mm

Data collection
  • Oxford Diffraction Xcalibur3 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.365, Tmax = 0.447

  • 6647 measured reflections

  • 2533 independent reflections

  • 1629 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.082

  • S = 0.94

  • 2533 reflections

  • 181 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Selected torsion angles (°)

HN1—N1—S1—C1 97 (3)
HN1—N1—S1—O1 −19 (3)
C7—N1—S1—O2 50.2 (3)
C6—C1—S1—N1 −57.7 (3)
C6—C1—S1—O1 57.8 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—HN1⋯N2i 0.78 (3) 2.26 (3) 3.022 (4) 166 (3)
N2—HN2A⋯O1ii 0.87 (3) 2.45 (3) 3.258 (4) 154 (3)
Symmetry codes: (i) -x, -y+1, -z+1; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]).

Supporting information


Comment top

The study of the structural and conformational properties of the sulfonamide group (R—SO2—NR2) is essential to the comprehension of the "sulfa drugs" action. They found applications as HIV inhibitors (Lu & Tucker, 2007), antimicrobial drugs (Tappe et al., 2008), carbonic anhydrase inhibitors (Chegwidden et al., 2000), anti-tumor agents (Purushottamachar et al., 2008), just to name a few. In this respect a lot of publications have appeared reporting structural data of compounds containing the sulfonamide function (Parkin et al., 2008, Altamura et al., 2009, Perlovich et al., 2009, Perlovich et al., 2011,Vega-Hissi et al., 2011, Altamura et al., 2012). The molecule, as expected, has a staggered conformation about the N—S bond, with the N lone pair bisecting the OŜO angle (Table 1, Fig. 1). The value of the dihedral angle C6—C1—S1—O1 (Table 1) is also in the range observed for arylsulfonamides bearing a non-hydrogen atom in ortho position (a bromine atom in this case). The sulfonamide nitrogen atom is almost planar- trigonal (Σ<N=357 (3)°). The aromatic rings are almost perpendicular to each other with a dihedral angle of 75.1 (1)°. In the crystal, dimers are formed by a couple of complementary hydrogen bonds involving the nitrogen atom of the sulfonamide grouping as a donor and amino nitrogen as an acceptor (Table 2). Dimers form layers along bc plane through weaker NH2···SO2 H-bonds between the amino group and an oxygen atom of the sulfonamide moiety (Table 2). The remaining amine H atom (HN2B) appears to be involved in bifurcated intra-molecular contacts with the oxygen and the nitrogen atoms of the sulfonamide group (HN2B···O2 = 2.72 (3) Å, N2—HN2B···O2 = 132 (3)°; HN2B···N1 = 2.58 (4) Å, N2—HN2B···N1 = 98 (3)°), which could contribute in stabilization of the observed molecular conformation.

Related literature top

For the synthesis of the title compound, see: Altamura et al. (2009). For the biological activity of sulfa drugs, see: Chegwidden et al. (2000); Lu & Tucker (2007); Tappe et al. (2008); Purushottamachar et al. (2008). For structural studies of molecules having the sulfonamide –SO2—NH group, see: Parkin et al. (2008); Perlovich et al. (2009, 2011); Vega-Hissi et al. (2011); Altamura et al. (2009, 2012).

Experimental top

For the synthesis of the title compound, see: Altamura et al. (2009). Crystals of the title compound suitable for single-crystal X-ray diffraction analysis were obtained by slow evaporation of an ethyl acetate/hexane solution of N-(2-amino-5-chlorophenyl)-2-bromobenzenesulfonamide.

Refinement top

The N—H H atoms were located in the Fourier difference map and their coordinates were refined with U(H) = 1.2Ueq(N). All other H atoms were positioned using idealized geometry and refined using a riding model with U(H) 1.2 times Ueq(C).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis CCD (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PARST (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. The structure of the title compound showing labelling and displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. Crystal structure of the title compound as viewed along the a axis. Hydrogen bonds are shown as dashed lines.
N-(2-Amino-5-chlorophenyl)-2-bromobenzenesulfonamide top
Crystal data top
C12H10BrClN2O2SZ = 4
Mr = 361.64F(000) = 720
Monoclinic, P21/cDx = 1.760 Mg m3
a = 13.657 (1) ÅMo Kα radiation, λ = 0.71069 Å
b = 14.361 (2) ŵ = 3.36 mm1
c = 7.0829 (9) ÅT = 298 K
β = 100.75 (1)°Prismatic, colourless
V = 1364.8 (3) Å30.32 × 0.26 × 0.22 mm
Data collection top
Oxford Diffraction Xcalibur3 CCD
diffractometer
2533 independent reflections
Radiation source: Enhance (Mo) X-ray Source1629 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
Detector resolution: 16.4547 pixels mm-1θmax = 27.3°, θmin = 4.5°
ω scansh = 1616
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1718
Tmin = 0.365, Tmax = 0.447l = 88
6647 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082H atoms treated by a mixture of independent and constrained refinement
S = 0.94 w = 1/[σ2(Fo2) + (0.0371P)2]
where P = (Fo2 + 2Fc2)/3
2533 reflections(Δ/σ)max < 0.001
181 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
C12H10BrClN2O2SV = 1364.8 (3) Å3
Mr = 361.64Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.657 (1) ŵ = 3.36 mm1
b = 14.361 (2) ÅT = 298 K
c = 7.0829 (9) Å0.32 × 0.26 × 0.22 mm
β = 100.75 (1)°
Data collection top
Oxford Diffraction Xcalibur3 CCD
diffractometer
2533 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1629 reflections with I > 2σ(I)
Tmin = 0.365, Tmax = 0.447Rint = 0.028
6647 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.082H atoms treated by a mixture of independent and constrained refinement
S = 0.94Δρmax = 0.32 e Å3
2533 reflectionsΔρmin = 0.38 e Å3
181 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.09409 (17)0.35073 (16)0.8889 (4)0.0597 (7)
O20.11627 (17)0.51070 (16)1.0184 (3)0.0530 (6)
S10.13873 (6)0.44073 (6)0.88946 (13)0.0402 (2)
Cl10.37936 (7)0.67877 (7)0.45078 (14)0.0597 (3)
Br10.26467 (3)0.30924 (3)0.61701 (6)0.0772 (2)
C10.2700 (2)0.4257 (2)0.9480 (5)0.0353 (8)
C20.3192 (3)0.4646 (2)1.1197 (5)0.0501 (9)
H20.28420.50221.19120.060*
C30.4190 (3)0.4482 (3)1.1847 (6)0.0648 (11)
H30.45090.47431.30000.078*
C40.4715 (3)0.3937 (3)1.0807 (6)0.0626 (11)
H40.53890.38291.12580.075*
C50.4252 (3)0.3548 (2)0.9097 (6)0.0527 (10)
H50.46110.31830.83800.063*
C60.3248 (2)0.3706 (2)0.8458 (5)0.0419 (8)
C70.1417 (2)0.5706 (2)0.6229 (4)0.0313 (7)
C80.2332 (2)0.5803 (2)0.5710 (4)0.0362 (8)
H80.27420.52860.56970.043*
C90.2643 (2)0.6666 (2)0.5209 (5)0.0373 (8)
C100.2038 (3)0.7433 (2)0.5235 (4)0.0398 (8)
H100.22520.80160.49110.048*
C110.1118 (2)0.7335 (2)0.5742 (4)0.0391 (8)
H110.07120.78540.57450.047*
C120.0789 (2)0.6470 (2)0.6248 (4)0.0292 (7)
N10.1089 (2)0.48048 (18)0.6746 (4)0.0380 (7)
HN10.091 (2)0.443 (2)0.595 (5)0.046*
N20.0166 (2)0.6362 (2)0.6676 (4)0.0428 (8)
HN2A0.045 (3)0.689 (2)0.687 (5)0.051*
HN2B0.021 (3)0.597 (2)0.750 (5)0.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0480 (14)0.0428 (15)0.088 (2)0.0138 (13)0.0117 (13)0.0216 (13)
O20.0536 (15)0.0621 (16)0.0470 (15)0.0154 (13)0.0193 (12)0.0013 (12)
S10.0373 (5)0.0376 (5)0.0473 (5)0.0003 (4)0.0122 (4)0.0064 (4)
Cl10.0463 (6)0.0695 (7)0.0655 (7)0.0078 (5)0.0160 (5)0.0115 (5)
Br10.0876 (4)0.0665 (3)0.0700 (3)0.0282 (2)0.0049 (2)0.0302 (2)
C10.0377 (19)0.0259 (18)0.043 (2)0.0002 (15)0.0094 (16)0.0059 (14)
C20.053 (2)0.052 (2)0.044 (2)0.008 (2)0.0050 (18)0.0004 (17)
C30.062 (3)0.071 (3)0.054 (3)0.001 (2)0.009 (2)0.006 (2)
C40.042 (2)0.065 (3)0.077 (3)0.006 (2)0.003 (2)0.012 (2)
C50.048 (2)0.051 (2)0.062 (3)0.009 (2)0.016 (2)0.0096 (19)
C60.044 (2)0.033 (2)0.049 (2)0.0027 (17)0.0091 (17)0.0018 (15)
C70.0335 (19)0.0278 (18)0.0318 (18)0.0037 (16)0.0040 (14)0.0002 (13)
C80.040 (2)0.0309 (19)0.038 (2)0.0035 (16)0.0072 (15)0.0028 (14)
C90.0369 (19)0.043 (2)0.0308 (19)0.0014 (17)0.0046 (14)0.0013 (14)
C100.052 (2)0.032 (2)0.034 (2)0.0057 (18)0.0023 (17)0.0065 (14)
C110.048 (2)0.034 (2)0.0329 (19)0.0083 (18)0.0013 (16)0.0009 (14)
C120.0305 (18)0.0313 (18)0.0250 (17)0.0009 (16)0.0029 (13)0.0030 (13)
N10.0424 (17)0.0304 (16)0.0391 (17)0.0034 (14)0.0021 (13)0.0018 (12)
N20.0429 (19)0.040 (2)0.046 (2)0.0065 (16)0.0081 (15)0.0001 (14)
Geometric parameters (Å, º) top
O1—S11.429 (2)C5—H50.9300
O2—S11.429 (2)C7—C81.375 (4)
S1—N11.605 (3)C7—C121.395 (4)
S1—C11.776 (3)C7—N11.438 (4)
Cl1—C91.743 (3)C8—C91.377 (4)
Br1—C61.892 (3)C8—H80.9300
C1—C61.383 (4)C9—C101.379 (4)
C1—C21.392 (4)C10—C111.376 (4)
C2—C31.375 (5)C10—H100.9300
C2—H20.9300C11—C121.390 (4)
C3—C41.366 (5)C11—H110.9300
C3—H30.9300C12—N21.402 (4)
C4—C51.377 (5)N1—HN10.78 (3)
C4—H40.9300N2—HN2A0.87 (3)
C5—C61.380 (4)N2—HN2B0.82 (3)
O1—S1—O2119.70 (16)C8—C7—C12121.0 (3)
O1—S1—N1106.66 (16)C8—C7—N1120.0 (3)
O2—S1—N1108.00 (14)C12—C7—N1119.0 (3)
O1—S1—C1107.58 (14)C7—C8—C9119.9 (3)
O2—S1—C1105.30 (15)C7—C8—H8120.0
N1—S1—C1109.34 (15)C9—C8—H8120.0
C6—C1—C2117.8 (3)C8—C9—C10120.1 (3)
C6—C1—S1124.6 (3)C8—C9—Cl1120.1 (3)
C2—C1—S1117.2 (3)C10—C9—Cl1119.8 (3)
C3—C2—C1120.7 (3)C11—C10—C9120.0 (3)
C3—C2—H2119.7C11—C10—H10120.0
C1—C2—H2119.7C9—C10—H10120.0
C4—C3—C2120.4 (4)C10—C11—C12120.9 (3)
C4—C3—H3119.8C10—C11—H11119.6
C2—C3—H3119.8C12—C11—H11119.6
C3—C4—C5120.4 (4)C11—C12—C7118.1 (3)
C3—C4—H4119.8C11—C12—N2120.9 (3)
C5—C4—H4119.8C7—C12—N2120.9 (3)
C4—C5—C6119.1 (3)C7—N1—S1121.7 (2)
C4—C5—H5120.4C7—N1—HN1120 (3)
C6—C5—H5120.4S1—N1—HN1115 (3)
C5—C6—C1121.6 (3)C12—N2—HN2A114 (2)
C5—C6—Br1116.7 (3)C12—N2—HN2B116 (3)
C1—C6—Br1121.6 (2)HN2A—N2—HN2B112 (3)
HN1—N1—S1—C197 (3)C6—C1—S1—N157.7 (3)
HN1—N1—S1—O119 (3)C6—C1—S1—O157.8 (3)
C7—N1—S1—O250.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—HN1···N2i0.78 (3)2.26 (3)3.022 (4)166 (3)
N2—HN2A···O1ii0.87 (3)2.45 (3)3.258 (4)154 (3)
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC12H10BrClN2O2S
Mr361.64
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)13.657 (1), 14.361 (2), 7.0829 (9)
β (°) 100.75 (1)
V3)1364.8 (3)
Z4
Radiation typeMo Kα
µ (mm1)3.36
Crystal size (mm)0.32 × 0.26 × 0.22
Data collection
DiffractometerOxford Diffraction Xcalibur3 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.365, 0.447
No. of measured, independent and
observed [I > 2σ(I)] reflections
6647, 2533, 1629
Rint0.028
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.082, 0.94
No. of reflections2533
No. of parameters181
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.32, 0.38

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), PARST (Nardelli, 1995).

Selected torsion angles (º) top
HN1—N1—S1—C197 (3)C6—C1—S1—N157.7 (3)
HN1—N1—S1—O119 (3)C6—C1—S1—O157.8 (3)
C7—N1—S1—O250.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—HN1···N2i0.78 (3)2.26 (3)3.022 (4)166 (3)
N2—HN2A···O1ii0.87 (3)2.45 (3)3.258 (4)154 (3)
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+1/2, z+3/2.
 

Acknowledgements

The authors acknowledge the CRIST (Centro di Cristallografia Strutturale, University of Firenze), where the data collection was performed.

References

First citationAltamura, M., Fedi, V., Giannotti, D., Paoli, P. & Rossi, P. (2009). New J. Chem. 33, 2219–2231.  Web of Science CSD CrossRef CAS Google Scholar
First citationAltamura, M., Fedi, V., Nannicini, R., Paoli, P. & Rossi, P. (2012). Acta Cryst. E68, o3144–o3145.  CSD CrossRef IUCr Journals Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationChegwidden, W. R., Carter, N. D. & Edwards, Y. H. (2000). In The Carbonic Anhydrases New Horizons. Basel: Birkhauser Verlag.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationLu, R. J. & Tucker, J. A. (2007). J. Med. Chem. 50, 6535–6544.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationParkin, A., Collins, A., Gilmore, C. J. & Wilson, C. C. (2008). Acta Cryst. B64, 66–71.  Web of Science CrossRef IUCr Journals Google Scholar
First citationPerlovich, G. L., Ryzhakov, A. M., Tkachev, T. T. & Hansen, L. K. (2011). Cryst. Growth Des. 11, 1067–1081.  Web of Science CSD CrossRef CAS Google Scholar
First citationPerlovich, G. L., Tkachev, V. V., Strakhova, N. N., Kazachenko, V. P., Volkova, T. V., Surov, O. V., Schaper, K.-J. & Raevsky, O. A. (2009). J. Pharm. Sci. 98, 4738–4755.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationPurushottamachar, P., Khandelwal, A., Vasaitis, T. S., Bruno, R. D., Gediya, L. K. & Njar, V. C. O. (2008). Bioorg. Med. Chem. 16, 3519–3529.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTappe, W., Zarfl, C., Kummer, S., Burauel, P., Vereecken, H. & Groeneweg, J. (2008). Chemosphere, 72, 836–843.  Web of Science CrossRef PubMed CAS Google Scholar
First citationVega-Hissi, E. G., Andrada, M. F., Zamarbide, G. N., Estrada, M. R. & Tomas-Vert, F. (2011). J. Mol. Model. 17, 1317–1323.  Web of Science CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 12| December 2012| Pages o3308-o3309
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds