organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Bromo-2-(4-methyl­phen­yl)-3-methyl­sulfinyl-1-benzo­furan

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong, Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 29 October 2012; accepted 1 November 2012; online 7 November 2012)

In the title compound, C16H13BrO2S, the 4-methyl­phenyl ring makes a dihedral angle of 29.58 (7)° with the mean plane [r.m.s. deviation = 0.007 (2) Å] of the benzofuran fragment. In the crystal, the molecules are linked by pairs of C—H⋯O hydrogen bonds into centrosymmetric dimers.

Related literature

For background information and the crystal structures of related compounds, see: Choi et al. (2007[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2007). Acta Cryst. E63, o1315-o1316.], 2010[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010). Acta Cryst. E66, o104.]).

[Scheme 1]

Experimental

Crystal data
  • C16H13BrO2S

  • Mr = 349.23

  • Triclinic, [P \overline 1]

  • a = 8.0922 (2) Å

  • b = 8.1401 (2) Å

  • c = 11.4535 (3) Å

  • α = 92.074 (2)°

  • β = 94.740 (1)°

  • γ = 111.141 (1)°

  • V = 699.50 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.09 mm−1

  • T = 173 K

  • 0.33 × 0.23 × 0.13 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.549, Tmax = 0.746

  • 12899 measured reflections

  • 3460 independent reflections

  • 3093 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.073

  • S = 1.05

  • 3460 reflections

  • 183 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.64 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯O2i 0.95 2.51 3.418 (3) 160
Symmetry code: (i) -x+1, -y, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As a part of our ongoing study of 5-bromo-3-methylsulfinyl-1-benzofuran derivatives containing phenyl (Choi et al., 2007) and 4-fluorophenyl (Choi et al., 2010) substituents in 2-position, we report herein the crystal structure of the title compound.

In the title molecule (Fig. 1), the benzofuran unit is essentially planar, with a mean deviation of 0.007 (2) Å from the least-squares plane defined by the nine constituent atoms. The dihedral angle between the 4-methylphenyl ring and the mean plane of the benzofuran fragment is 29.58 (7)°. In the crystal structure, molecules are connected by weak C—H···O hydrogen bonds (Table 1).

Related literature top

For background information and the crystal structures of related compounds, see: Choi et al. (2007, 2010).

Experimental top

3-Chloroperoxybenzoic acid (77%, 224 mg, 1.0 mmol) was added in small portions to a stirred solution of 5-bromo-2-(4-methylphenyl)-3-methylsulfanyl-1-benzofuran (300 mg, 0.9 mmol) in dichloromethane (30 mL) at 273 K. After being stirred at room temperature for 5h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (hexane–ethyl acetate, 1:1 v/v) to afford the title compound as a colorless solid [yield 78%, m.p. 467–468 K; Rf = 0.51 (hexane–ethyl acetate, 1:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in acetone at room temperature.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 Å for aryl and 0.98 Å for methyl H atoms. Uiso(H) = 1.2Ueq(C) for aryl and 1.5Ueq(C) for methyl H atoms. The positions of methyl hydrogens were optimized rotationally.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.
5-Bromo-2-(4-methylphenyl)-3-methylsulfinyl-1-benzofuran top
Crystal data top
C16H13BrO2SZ = 2
Mr = 349.23F(000) = 352
Triclinic, P1Dx = 1.658 Mg m3
Hall symbol: -P 1Melting point: 467.5 K
a = 8.0922 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.1401 (2) ÅCell parameters from 6092 reflections
c = 11.4535 (3) Åθ = 2.7–28.1°
α = 92.074 (2)°µ = 3.09 mm1
β = 94.740 (1)°T = 173 K
γ = 111.141 (1)°Block, colourless
V = 699.50 (3) Å30.33 × 0.23 × 0.13 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
3460 independent reflections
Radiation source: rotating anode3093 reflections with I > 2σ(I)
Graphite multilayer monochromatorRint = 0.044
Detector resolution: 10.0 pixels mm-1θmax = 28.3°, θmin = 2.7°
ϕ and ω scansh = 1010
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 1010
Tmin = 0.549, Tmax = 0.746l = 1515
12899 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: difference Fourier map
wR(F2) = 0.073H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0337P)2 + 0.2757P]
where P = (Fo2 + 2Fc2)/3
3460 reflections(Δ/σ)max < 0.001
183 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.64 e Å3
Crystal data top
C16H13BrO2Sγ = 111.141 (1)°
Mr = 349.23V = 699.50 (3) Å3
Triclinic, P1Z = 2
a = 8.0922 (2) ÅMo Kα radiation
b = 8.1401 (2) ŵ = 3.09 mm1
c = 11.4535 (3) ÅT = 173 K
α = 92.074 (2)°0.33 × 0.23 × 0.13 mm
β = 94.740 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
3460 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3093 reflections with I > 2σ(I)
Tmin = 0.549, Tmax = 0.746Rint = 0.044
12899 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.073H-atom parameters constrained
S = 1.05Δρmax = 0.39 e Å3
3460 reflectionsΔρmin = 0.64 e Å3
183 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.21210 (3)0.07754 (3)0.011426 (16)0.02948 (8)
S10.79265 (6)0.31621 (6)0.39466 (4)0.02465 (11)
O10.30712 (17)0.14982 (19)0.49856 (11)0.0248 (3)
O20.8172 (2)0.1916 (2)0.30537 (15)0.0374 (4)
C10.5622 (2)0.2385 (3)0.41230 (16)0.0224 (4)
C20.4203 (2)0.1408 (3)0.32362 (16)0.0221 (4)
C30.4062 (2)0.0933 (3)0.20404 (16)0.0240 (4)
H30.50740.12780.16110.029*
C40.2384 (3)0.0061 (3)0.15103 (17)0.0247 (4)
C50.0857 (3)0.0589 (3)0.21114 (18)0.0272 (4)
H50.02680.12760.17050.033*
C60.0989 (3)0.0110 (3)0.32963 (17)0.0266 (4)
H60.00250.04440.37250.032*
C70.2666 (2)0.0878 (3)0.38217 (16)0.0228 (4)
C80.4889 (2)0.2400 (3)0.51483 (17)0.0225 (4)
C90.5589 (2)0.3174 (3)0.63344 (16)0.0224 (4)
C100.7074 (3)0.4730 (3)0.65431 (18)0.0269 (4)
H100.76500.53030.59000.032*
C160.8052 (3)0.5093 (3)0.3208 (2)0.0349 (5)
H16A0.92380.56290.29410.052*
H16B0.78410.59400.37490.052*
H16C0.71480.47690.25300.052*
C110.7721 (3)0.5453 (3)0.76747 (18)0.0282 (4)
H110.87460.65070.78020.034*
C120.6884 (3)0.4647 (3)0.86292 (17)0.0256 (4)
C130.5395 (3)0.3109 (3)0.84128 (17)0.0254 (4)
H130.48120.25480.90570.030*
C140.4735 (3)0.2369 (3)0.72894 (17)0.0237 (4)
H140.37060.13190.71650.028*
C150.7567 (3)0.5428 (3)0.98612 (19)0.0354 (5)
H15A0.86620.52221.01030.053*
H15B0.66670.48721.03920.053*
H15C0.78190.67010.98930.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02978 (12)0.03373 (13)0.02214 (11)0.00932 (9)0.00028 (7)0.00267 (8)
S10.0187 (2)0.0260 (3)0.0285 (2)0.00706 (18)0.00329 (17)0.00160 (19)
O10.0202 (6)0.0304 (7)0.0221 (7)0.0074 (6)0.0031 (5)0.0015 (5)
O20.0289 (8)0.0321 (8)0.0520 (10)0.0109 (7)0.0139 (7)0.0059 (7)
C10.0207 (9)0.0242 (9)0.0228 (9)0.0088 (7)0.0020 (7)0.0002 (7)
C20.0194 (8)0.0222 (9)0.0254 (9)0.0083 (7)0.0026 (7)0.0008 (7)
C30.0230 (9)0.0269 (10)0.0232 (9)0.0103 (8)0.0040 (7)0.0000 (7)
C40.0271 (10)0.0246 (10)0.0232 (9)0.0106 (8)0.0015 (7)0.0007 (7)
C50.0221 (9)0.0287 (10)0.0279 (10)0.0071 (8)0.0020 (7)0.0002 (8)
C60.0206 (9)0.0315 (11)0.0270 (10)0.0083 (8)0.0042 (7)0.0029 (8)
C70.0239 (9)0.0251 (10)0.0208 (9)0.0106 (8)0.0024 (7)0.0008 (7)
C80.0201 (8)0.0220 (9)0.0250 (9)0.0071 (7)0.0025 (7)0.0009 (7)
C90.0226 (9)0.0241 (9)0.0220 (9)0.0103 (7)0.0026 (7)0.0004 (7)
C100.0281 (10)0.0235 (10)0.0260 (10)0.0049 (8)0.0071 (7)0.0020 (8)
C160.0376 (12)0.0293 (11)0.0397 (12)0.0120 (9)0.0114 (9)0.0102 (9)
C110.0273 (10)0.0235 (10)0.0306 (10)0.0052 (8)0.0060 (8)0.0013 (8)
C120.0273 (10)0.0267 (10)0.0237 (9)0.0114 (8)0.0020 (7)0.0025 (8)
C130.0271 (10)0.0259 (10)0.0232 (9)0.0091 (8)0.0056 (7)0.0032 (8)
C140.0225 (9)0.0224 (9)0.0256 (9)0.0076 (7)0.0023 (7)0.0022 (7)
C150.0364 (12)0.0373 (12)0.0277 (11)0.0088 (10)0.0019 (9)0.0070 (9)
Geometric parameters (Å, º) top
Br1—C41.9007 (19)C9—C101.392 (3)
S1—O21.4896 (15)C9—C141.398 (3)
S1—C11.7720 (19)C10—C111.382 (3)
S1—C161.786 (2)C10—H100.9500
O1—C71.378 (2)C16—H16A0.9800
O1—C81.379 (2)C16—H16B0.9800
C1—C81.360 (3)C16—H16C0.9800
C1—C21.440 (3)C11—C121.392 (3)
C2—C31.394 (3)C11—H110.9500
C2—C71.398 (3)C12—C131.386 (3)
C3—C41.380 (3)C12—C151.501 (3)
C3—H30.9500C13—C141.379 (3)
C4—C51.401 (3)C13—H130.9500
C5—C61.383 (3)C14—H140.9500
C5—H50.9500C15—H15A0.9800
C6—C71.376 (3)C15—H15B0.9800
C6—H60.9500C15—H15C0.9800
C8—C91.455 (3)
O2—S1—C1106.50 (9)C10—C9—C8121.49 (18)
O2—S1—C16106.04 (11)C14—C9—C8119.64 (18)
C1—S1—C1697.95 (10)C11—C10—C9120.83 (19)
C7—O1—C8106.54 (14)C11—C10—H10119.6
C8—C1—C2107.55 (16)C9—C10—H10119.6
C8—C1—S1126.28 (15)S1—C16—H16A109.5
C2—C1—S1125.68 (14)S1—C16—H16B109.5
C3—C2—C7119.12 (17)H16A—C16—H16B109.5
C3—C2—C1135.99 (17)S1—C16—H16C109.5
C7—C2—C1104.89 (16)H16A—C16—H16C109.5
C4—C3—C2116.83 (17)H16B—C16—H16C109.5
C4—C3—H3121.6C10—C11—C12120.50 (19)
C2—C3—H3121.6C10—C11—H11119.7
C3—C4—C5123.34 (18)C12—C11—H11119.7
C3—C4—Br1118.59 (14)C13—C12—C11118.29 (18)
C5—C4—Br1118.07 (15)C13—C12—C15120.79 (19)
C6—C5—C4120.02 (18)C11—C12—C15120.92 (19)
C6—C5—H5120.0C14—C13—C12121.94 (18)
C4—C5—H5120.0C14—C13—H13119.0
C7—C6—C5116.45 (18)C12—C13—H13119.0
C7—C6—H6121.8C13—C14—C9119.58 (18)
C5—C6—H6121.8C13—C14—H14120.2
C6—C7—O1125.30 (17)C9—C14—H14120.2
C6—C7—C2124.25 (18)C12—C15—H15A109.5
O1—C7—C2110.45 (16)C12—C15—H15B109.5
C1—C8—O1110.55 (16)H15A—C15—H15B109.5
C1—C8—C9134.34 (18)C12—C15—H15C109.5
O1—C8—C9115.09 (16)H15A—C15—H15C109.5
C10—C9—C14118.85 (18)H15B—C15—H15C109.5
O2—S1—C1—C8142.04 (18)C1—C2—C7—O11.0 (2)
C16—S1—C1—C8108.55 (19)C2—C1—C8—O10.3 (2)
O2—S1—C1—C228.91 (19)S1—C1—C8—O1172.59 (14)
C16—S1—C1—C280.51 (18)C2—C1—C8—C9178.7 (2)
C8—C1—C2—C3179.5 (2)S1—C1—C8—C99.0 (3)
S1—C1—C2—C38.1 (3)C7—O1—C8—C10.9 (2)
C8—C1—C2—C70.4 (2)C7—O1—C8—C9179.68 (16)
S1—C1—C2—C7171.91 (14)C1—C8—C9—C1029.9 (3)
C7—C2—C3—C40.6 (3)O1—C8—C9—C10148.46 (18)
C1—C2—C3—C4179.4 (2)C1—C8—C9—C14151.6 (2)
C2—C3—C4—C50.3 (3)O1—C8—C9—C1430.0 (2)
C2—C3—C4—Br1179.08 (14)C14—C9—C10—C111.4 (3)
C3—C4—C5—C60.2 (3)C8—C9—C10—C11179.83 (18)
Br1—C4—C5—C6179.55 (15)C9—C10—C11—C120.8 (3)
C4—C5—C6—C70.3 (3)C10—C11—C12—C130.1 (3)
C5—C6—C7—O1179.33 (18)C10—C11—C12—C15179.5 (2)
C5—C6—C7—C20.0 (3)C11—C12—C13—C140.0 (3)
C8—O1—C7—C6179.35 (19)C15—C12—C13—C14179.68 (19)
C8—O1—C7—C21.2 (2)C12—C13—C14—C90.5 (3)
C3—C2—C7—C60.5 (3)C10—C9—C14—C131.2 (3)
C1—C2—C7—C6179.53 (19)C8—C9—C14—C13179.68 (17)
C3—C2—C7—O1178.94 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···O2i0.952.513.418 (3)160
Symmetry code: (i) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC16H13BrO2S
Mr349.23
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)8.0922 (2), 8.1401 (2), 11.4535 (3)
α, β, γ (°)92.074 (2), 94.740 (1), 111.141 (1)
V3)699.50 (3)
Z2
Radiation typeMo Kα
µ (mm1)3.09
Crystal size (mm)0.33 × 0.23 × 0.13
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.549, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
12899, 3460, 3093
Rint0.044
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.073, 1.05
No. of reflections3460
No. of parameters183
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.64

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···O2i0.952.513.418 (3)159.6
Symmetry code: (i) x+1, y, z+1.
 

Acknowledgements

This work was supported by the Blue-Bio Industry Regional Innovation Center (RIC08-06-07) at Dongeui University as an RIC program under the Ministry of Knowledge Economy and Busan City.

References

First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2007). Acta Cryst. E63, o1315–o1316.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010). Acta Cryst. E66, o104.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds