organic compounds
3-[(Furan-2-yl)carbonyl]-1-(pyrimidin-2-yl)thiourea
aDepartment of Chemistry, M.M.V., Banaras Hindu University, Varanasi 221 005, India, bSchool of Studies in Chemistry, Jiwaji University, Gwalior 474 011, India, and cDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA
*Correspondence e-mail: rbutcher99@yahoo.com
The title compound, C10H8N4O2S, was synthesized from furoyl isothiocynate and 2-aminopyrimidine in dry acetone. The two N—H groups are in an anti conformation with respect to each other and one N—H group is anti to the C=S group while the other is syn. The amide C=S and the C=O groups are syn to each other. The mean plane of the central thiourea fragment forms dihedral angles of 13.50 (14) and 5.03 (11)° with the furan and pyrimidine rings, respectively. The dihedral angle between the furan and pyrimidine rings is 18.43 (10)°. The molecular conformation is stabilized by an intramolecular N—H⋯N hydrogen bond generating an S(6) ring motif. In the crystal, molecules are linked by pairs of N—H⋯N and weak C—H⋯S hydrogen bonds to form inversion dimers.
Related literature
For a general background to the biological activity of thiourea, see: Koketsu & Ishihara (2006). For heterocyclic derivatives, metal complexes and molecular electronics, see: Zeng et al. (2003); D'hooghe et al. (2005); Aly et al. (2007); Duque et al. (2009). For related structures, see: Singh et al. (2012); Koch (2001); Hassan et al. (2007); Pérez et al. (2008); Yan & Xue (2008).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis PRO (Agilent, 2011); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536812044029/lh5548sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812044029/lh5548Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536812044029/lh5548Isup3.cml
A solution of 2-thiophenecarbonyl chloride (0.01 mol) in anhydrous acetone (80 ml) was added dropwise to a suspension of ammonium thiocyanate (0.01 mol) in anhydrous acetone (50 ml) and the reaction mixture was refluxed for 50 minutes. After cooling to room temperature, a solution of 4-chloroaniline (0.01 mol) in dry acetone (25 ml) was added and the resulting mixture refluxed for 2 h. The reaction mixture was poured into five times its volume of cold water, upon which the thiourea precipitated. The resulting solide product was crystallized from acetone yielding yellow colour X-ray quality single crystals. Yield: 80%; M.P.: 455 - 456 K). Anal. Calc. for C10H8N4O2S (%): C, 48.38; H,3.25; N, 22.57. Found: C, 48.49; H, 3.28; N, 22.50.
All H atoms were placed in calculated positions and refined using a riding-model approximation with C—H = 0.93 Å, N—H = 0.86Å and Uiso(H) = 1.2Ueq(C,N).
Data collection: CrysAlis PRO (Agilent, 2011); cell
CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C10H8N4O2S | F(000) = 512 |
Mr = 248.26 | Dx = 1.572 Mg m−3 |
Monoclinic, P21/n | Cu Kα radiation, λ = 1.54178 Å |
Hall symbol: -P 2yn | Cell parameters from 4415 reflections |
a = 5.6962 (2) Å | θ = 4.2–72.7° |
b = 21.0530 (7) Å | µ = 2.74 mm−1 |
c = 8.7901 (3) Å | T = 123 K |
β = 95.559 (3)° | Plate, colorless |
V = 1049.17 (6) Å3 | 0.40 × 0.22 × 0.11 mm |
Z = 4 |
Agilent Xcalibur (Ruby, Gemini) diffractometer | 2028 independent reflections |
Radiation source: Enhance (Cu) X-ray Source | 1951 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.028 |
Detector resolution: 10.5081 pixels mm-1 | θmax = 72.8°, θmin = 4.2° |
ω scans | h = −6→5 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) | k = −25→25 |
Tmin = 0.421, Tmax = 1.000 | l = −10→9 |
6957 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.038 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.108 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0735P)2 + 0.4136P] where P = (Fo2 + 2Fc2)/3 |
2028 reflections | (Δ/σ)max = 0.001 |
154 parameters | Δρmax = 0.46 e Å−3 |
0 restraints | Δρmin = −0.21 e Å−3 |
C10H8N4O2S | V = 1049.17 (6) Å3 |
Mr = 248.26 | Z = 4 |
Monoclinic, P21/n | Cu Kα radiation |
a = 5.6962 (2) Å | µ = 2.74 mm−1 |
b = 21.0530 (7) Å | T = 123 K |
c = 8.7901 (3) Å | 0.40 × 0.22 × 0.11 mm |
β = 95.559 (3)° |
Agilent Xcalibur (Ruby, Gemini) diffractometer | 2028 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) | 1951 reflections with I > 2σ(I) |
Tmin = 0.421, Tmax = 1.000 | Rint = 0.028 |
6957 measured reflections |
R[F2 > 2σ(F2)] = 0.038 | 0 restraints |
wR(F2) = 0.108 | H-atom parameters constrained |
S = 1.04 | Δρmax = 0.46 e Å−3 |
2028 reflections | Δρmin = −0.21 e Å−3 |
154 parameters |
Experimental. FT IR (selected, KBr, cm-1):3424, 3207 [ν(N – H)]; 1712 [amide-I,C═O]; 1586, 1556 [ν(C═C)]; 1505[thioureido-I], 1327 [thioureido-II], 1177 [thioureido-III], 763 [thioureido-IV]. 1H NMR (300 MHz, dmso-d6): δ 14.08 (s, 1H, H-bonded N–H); 11.90 (s, 1H,free N–H); 8.80 (d,J = 7.1 Hz, 2H, pyrimidine CH); 8.05 (d, J = 7.5 Hz, 1H, furan CH); 7.50(d,J = 7.8 Hz, 1H, pyrimidine CH);7.30 (t, J1(H,H) = 6.8 Hz,J2(H,H) = 7.1 Hz, 1H, pyrimidine CH);6.76 (t, J(H,H) = 7.8 Hz, 1H, furan CH). 13C NMR (75 MHz,dmso-d6): δ 177.4, 158.5, 157.1, 155.4, 147.6, 146.4, 117.6, 117.1, 112.9. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.47026 (7) | 0.555126 (18) | 0.19269 (4) | 0.02308 (17) | |
O1 | −0.1466 (2) | 0.71757 (6) | 0.45239 (14) | 0.0270 (3) | |
O2 | 0.0499 (2) | 0.63600 (6) | 0.26198 (14) | 0.0283 (3) | |
N1 | 0.3619 (2) | 0.61674 (6) | 0.44577 (15) | 0.0214 (3) | |
H1B | 0.4047 | 0.6248 | 0.5403 | 0.026* | |
N2 | 0.7006 (2) | 0.55592 (6) | 0.46685 (16) | 0.0201 (3) | |
H2B | 0.7901 | 0.5300 | 0.4235 | 0.024* | |
N3 | 0.6446 (2) | 0.60768 (6) | 0.69888 (15) | 0.0234 (3) | |
N4 | 0.9782 (2) | 0.54126 (7) | 0.67136 (15) | 0.0216 (3) | |
C1 | −0.1833 (3) | 0.76232 (8) | 0.5596 (2) | 0.0285 (4) | |
H1A | −0.3194 | 0.7867 | 0.5597 | 0.034* | |
C2 | 0.0017 (3) | 0.76645 (8) | 0.6641 (2) | 0.0304 (4) | |
H2A | 0.0183 | 0.7937 | 0.7478 | 0.036* | |
C3 | 0.1690 (3) | 0.72089 (8) | 0.6224 (2) | 0.0288 (4) | |
H3A | 0.3162 | 0.7124 | 0.6737 | 0.035* | |
C4 | 0.0718 (3) | 0.69251 (7) | 0.49378 (18) | 0.0214 (3) | |
C5 | 0.1539 (3) | 0.64564 (7) | 0.38553 (18) | 0.0204 (3) | |
C6 | 0.5082 (3) | 0.57705 (7) | 0.37439 (17) | 0.0192 (3) | |
C7 | 0.7750 (3) | 0.56938 (7) | 0.61922 (18) | 0.0196 (3) | |
C8 | 0.7219 (3) | 0.61687 (8) | 0.84626 (19) | 0.0257 (4) | |
H8A | 0.6344 | 0.6426 | 0.9055 | 0.031* | |
C9 | 0.9258 (3) | 0.58957 (8) | 0.91292 (19) | 0.0261 (4) | |
H9A | 0.9775 | 0.5958 | 1.0154 | 0.031* | |
C10 | 1.0498 (3) | 0.55213 (8) | 0.81814 (19) | 0.0250 (4) | |
H10A | 1.1902 | 0.5336 | 0.8591 | 0.030* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0259 (3) | 0.0236 (3) | 0.0195 (3) | 0.00267 (13) | 0.00100 (17) | −0.00364 (13) |
O1 | 0.0233 (6) | 0.0286 (6) | 0.0280 (6) | 0.0067 (5) | −0.0032 (5) | −0.0046 (5) |
O2 | 0.0252 (6) | 0.0347 (7) | 0.0245 (6) | 0.0026 (5) | −0.0006 (5) | −0.0060 (5) |
N1 | 0.0242 (7) | 0.0215 (6) | 0.0182 (6) | 0.0022 (5) | 0.0012 (5) | −0.0023 (5) |
N2 | 0.0232 (7) | 0.0180 (6) | 0.0195 (7) | 0.0021 (5) | 0.0041 (5) | −0.0022 (5) |
N3 | 0.0273 (7) | 0.0210 (6) | 0.0218 (7) | 0.0036 (5) | 0.0024 (5) | −0.0017 (5) |
N4 | 0.0224 (7) | 0.0207 (6) | 0.0217 (7) | 0.0005 (5) | 0.0026 (5) | −0.0017 (5) |
C1 | 0.0292 (9) | 0.0246 (8) | 0.0315 (9) | 0.0081 (6) | 0.0023 (7) | −0.0038 (6) |
C2 | 0.0315 (9) | 0.0282 (9) | 0.0304 (9) | 0.0086 (7) | −0.0025 (7) | −0.0094 (7) |
C3 | 0.0264 (8) | 0.0286 (8) | 0.0303 (9) | 0.0072 (7) | −0.0030 (7) | −0.0073 (7) |
C4 | 0.0198 (7) | 0.0201 (7) | 0.0240 (8) | 0.0013 (6) | 0.0010 (6) | 0.0024 (6) |
C5 | 0.0212 (7) | 0.0194 (7) | 0.0206 (7) | −0.0026 (6) | 0.0023 (6) | 0.0006 (6) |
C6 | 0.0219 (7) | 0.0152 (7) | 0.0210 (7) | −0.0023 (5) | 0.0042 (6) | 0.0003 (5) |
C7 | 0.0224 (8) | 0.0163 (7) | 0.0205 (8) | −0.0012 (6) | 0.0037 (6) | 0.0014 (6) |
C8 | 0.0316 (9) | 0.0240 (8) | 0.0218 (8) | 0.0038 (6) | 0.0041 (6) | −0.0034 (6) |
C9 | 0.0323 (9) | 0.0253 (8) | 0.0202 (8) | 0.0011 (6) | 0.0000 (6) | −0.0034 (6) |
C10 | 0.0241 (8) | 0.0258 (9) | 0.0245 (9) | 0.0022 (6) | −0.0011 (7) | 0.0002 (6) |
S1—C6 | 1.6565 (15) | N4—C7 | 1.340 (2) |
O1—C1 | 1.363 (2) | C1—C2 | 1.332 (3) |
O1—C4 | 1.3679 (19) | C1—H1A | 0.9300 |
O2—C5 | 1.203 (2) | C2—C3 | 1.425 (2) |
N1—C6 | 1.3739 (19) | C2—H2A | 0.9300 |
N1—C5 | 1.390 (2) | C3—C4 | 1.349 (2) |
N1—H1B | 0.8600 | C3—H3A | 0.9300 |
N2—C6 | 1.373 (2) | C4—C5 | 1.478 (2) |
N2—C7 | 1.394 (2) | C8—C9 | 1.375 (2) |
N2—H2B | 0.8600 | C8—H8A | 0.9300 |
N3—C7 | 1.339 (2) | C9—C10 | 1.389 (2) |
N3—C8 | 1.341 (2) | C9—H9A | 0.9300 |
N4—C10 | 1.335 (2) | C10—H10A | 0.9300 |
C1—O1—C4 | 106.22 (13) | O1—C4—C5 | 115.00 (14) |
C6—N1—C5 | 128.64 (13) | O2—C5—N1 | 126.67 (15) |
C6—N1—H1B | 115.7 | O2—C5—C4 | 122.34 (15) |
C5—N1—H1B | 115.7 | N1—C5—C4 | 110.98 (13) |
C6—N2—C7 | 130.81 (13) | N2—C6—N1 | 114.28 (13) |
C6—N2—H2B | 114.6 | N2—C6—S1 | 120.16 (11) |
C7—N2—H2B | 114.6 | N1—C6—S1 | 125.56 (12) |
C7—N3—C8 | 116.43 (14) | N3—C7—N4 | 126.26 (14) |
C10—N4—C7 | 115.33 (14) | N3—C7—N2 | 119.48 (14) |
C2—C1—O1 | 110.97 (15) | N4—C7—N2 | 114.26 (13) |
C2—C1—H1A | 124.5 | N3—C8—C9 | 122.41 (15) |
O1—C1—H1A | 124.5 | N3—C8—H8A | 118.8 |
C1—C2—C3 | 106.41 (15) | C9—C8—H8A | 118.8 |
C1—C2—H2A | 126.8 | C8—C9—C10 | 116.07 (15) |
C3—C2—H2A | 126.8 | C8—C9—H9A | 122.0 |
C4—C3—C2 | 106.46 (15) | C10—C9—H9A | 122.0 |
C4—C3—H3A | 126.8 | N4—C10—C9 | 123.46 (15) |
C2—C3—H3A | 126.8 | N4—C10—H10A | 118.3 |
C3—C4—O1 | 109.94 (14) | C9—C10—H10A | 118.3 |
C3—C4—C5 | 134.87 (15) | ||
C4—O1—C1—C2 | 0.5 (2) | C7—N2—C6—S1 | 177.23 (12) |
O1—C1—C2—C3 | −0.5 (2) | C5—N1—C6—N2 | −179.49 (14) |
C1—C2—C3—C4 | 0.3 (2) | C5—N1—C6—S1 | 1.3 (2) |
C2—C3—C4—O1 | 0.0 (2) | C8—N3—C7—N4 | −2.3 (2) |
C2—C3—C4—C5 | 174.44 (18) | C8—N3—C7—N2 | 177.72 (14) |
C1—O1—C4—C3 | −0.26 (18) | C10—N4—C7—N3 | 1.7 (2) |
C1—O1—C4—C5 | −175.93 (14) | C10—N4—C7—N2 | −178.32 (13) |
C6—N1—C5—O2 | 8.1 (3) | C6—N2—C7—N3 | 2.0 (2) |
C6—N1—C5—C4 | −171.00 (14) | C6—N2—C7—N4 | −177.98 (14) |
C3—C4—C5—O2 | −165.63 (19) | C7—N3—C8—C9 | 1.0 (2) |
O1—C4—C5—O2 | 8.6 (2) | N3—C8—C9—C10 | 0.6 (2) |
C3—C4—C5—N1 | 13.5 (3) | C7—N4—C10—C9 | 0.2 (2) |
O1—C4—C5—N1 | −172.23 (12) | C8—C9—C10—N4 | −1.3 (2) |
C7—N2—C6—N1 | −2.0 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1B···N3 | 0.86 | 1.89 | 2.6240 (18) | 142 |
N2—H2B···N4i | 0.86 | 2.21 | 3.0726 (19) | 175 |
C10—H10A···S1i | 0.93 | 2.76 | 3.5536 (17) | 144 |
Symmetry code: (i) −x+2, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C10H8N4O2S |
Mr | 248.26 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 123 |
a, b, c (Å) | 5.6962 (2), 21.0530 (7), 8.7901 (3) |
β (°) | 95.559 (3) |
V (Å3) | 1049.17 (6) |
Z | 4 |
Radiation type | Cu Kα |
µ (mm−1) | 2.74 |
Crystal size (mm) | 0.40 × 0.22 × 0.11 |
Data collection | |
Diffractometer | Agilent Xcalibur (Ruby, Gemini) diffractometer |
Absorption correction | Multi-scan (CrysAlis PRO; Agilent, 2011) |
Tmin, Tmax | 0.421, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6957, 2028, 1951 |
Rint | 0.028 |
(sin θ/λ)max (Å−1) | 0.620 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.038, 0.108, 1.04 |
No. of reflections | 2028 |
No. of parameters | 154 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.46, −0.21 |
Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1B···N3 | 0.86 | 1.89 | 2.6240 (18) | 142.4 |
N2—H2B···N4i | 0.86 | 2.21 | 3.0726 (19) | 175.4 |
C10—H10A···S1i | 0.93 | 2.76 | 3.5536 (17) | 143.8 |
Symmetry code: (i) −x+2, −y+1, −z+1. |
Acknowledgements
DPS and SP are grateful to Banaras Hindu University, Varanasi, for financial support. RJB acknowledges the NSF–MRI program (grant No. CHE0619278) for funds to purchase the X-ray diffractometer. SKG wishes to acknowledge the USIEF for the award of a Fulbright–Nehru Senior Research Fellowship.
References
Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England. Google Scholar
Aly, A. A., Ahmed, E. K., El-Mokadem, K. M. & Hegazy, M. E. F. (2007). J. Sulfur Chem. 28, 73–93. CrossRef CAS Google Scholar
D'hooghe, M., Waterinckx, A. & De Kimpe, N. (2005). J. Org. Chem. 70, 227–232. Web of Science PubMed CAS Google Scholar
Duque, J., Estevez-Hernandez, O., Reguera, E., Ellena, J. & Correa, R. S. (2009). J. Coord. Chem. 62, 2804–2813. Web of Science CSD CrossRef CAS Google Scholar
Hassan, N. N. N., Kadir, M. A., Yusof, M. S. M. & Yamin, B. M. (2007). Acta Cryst. E63, o4224. Web of Science CSD CrossRef IUCr Journals Google Scholar
Koch, K. R. (2001). Coord. Chem. Rev. 216–217, 473–488. Web of Science CrossRef CAS Google Scholar
Koketsu, M. & Ishihara, H. (2006). Curr. Org. Synth. 3, 439–455. Web of Science CrossRef CAS Google Scholar
Pérez, H., Mascarenhas, Y., Estévez-Hernández, O., Santos Jr, S. & Duque, J. (2008). Acta Cryst. E64, o513. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Singh, D. P., Pratap, S., Gupta, S. K. & Butcher, R. J. (2012). Acta Cryst. E68, o2882–o2883. CSD CrossRef IUCr Journals Google Scholar
Yan, L. & Xue, S.-J. (2008). Chin. J. Struct. Chem. 27, 543–546. CAS Google Scholar
Zeng, R.-S., Zou, S.-J. & Shen, Q. (2003). Org. Lett. 5, 1657–1659. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Thiourea and its derivatives are known to exhibit a wide variety of biological activities (Koketsu & Ishihara, 2006). These are also widely used as precursors or intermediates towards the syntheisis of a variety of heterocyclic compounds (Zeng et al., 2003; D'hooghe, et al., 2005). In addition, aroylthioureas have applications in metal complexes and molecular electronics (Aly et al., 2007; Duque et al., 2009). The structure of a related compound was recently published (Yan & Xue, 2008) in which the molecule showed excellent herbicidal activity.
In view of the biological importance of thiourea and its furoic acid derviatives, the structure of the title compound was determined. In the title compound (Fig. 1), the conformation of the two N—H bonds are anti to each other, and one of them is anti to the C═S and the other is syn in the urea moiety. Furthermore, the amide C═S and the C═O groups are syn to each other, similar to the syn conformation observed in 1-furoyl-3-methyl-3-phenylthiourea (Pérez et al., 2008) and in N-(2-furoyl)-N'(6-methyl-2-pyridyl)thiourea (Hassan et al., 2007). The bond lengths and angles in the title compound are comparable to other thiourea derivatives (Koch 2001; Pérez et al., 2008; Singh et al., 2012). The C6—S1 and C5—O2 bonds show typical double-bond character. However, the C—N bond lengths, C5—N1, C6—N1, C6—N2 are shorter than the normal C—N single-bond length of about 1.48 Å. These results can be explained by the existence of resonance in this part of the molecule. The central thiourea fragment (O2/C5/N1/C6/N2) makes dihedral angle of 13.50 (14)° with furan ring (O1/C1/C2/C3/C4)and 5.03 (11)° with pyrimidine ring (C7/N3/C8/C9/C10/N4), respectively. The dihedral angle between the mean planes of the furan and pyrimidine rings is 18.43 (10)°. The moleculer geometry is stabilized by an intramolecular N—H···N hydrogen bond generating an S(6) ring motif. In the crystal, molecules are linked by pairs of N—H···N and weak C—H···S hydrogen bonds (Table 1) forming centrosymmetric dimers (Fig. 2).