metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 12| December 2012| Pages m1506-m1507

(1-Acetyl­thio­urea-κS)bromido­bis­(tri­phenyl­phosphane-κP)silver(I)

aDepartment of Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand, and bDepartment of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
*Correspondence e-mail: chaveng.p@psu.ac.th

(Received 26 October 2012; accepted 1 November 2012; online 17 November 2012)

In the title complex, [AgBr(C3H6N2OS)(C18H15P)2], the AgI ion is in a distorted tetra­hedral geometry coordinated by two P atoms from two triphenyl­phosphane ligands, one S atom of an acetyl­thio­urea ligand and one bromide ligand. There are intra­molecular N—H⋯Br and N—H⋯O hydrogen bonds present. In the crystal, pairs of N—H⋯S hydrogen bonds involving thio­urea groups form inversion dimers. In addition, moleclues pack to give sixfold phenyl embraces with an inter­molecular P⋯P distance of 6.4586 (17) Å.

Related literature

For the definition of sixfold phenyl embraces, see: Dance & Scudder(2000[Dance, I. & Scudder, M. (2000). J. Chem. Soc. Dalton Trans. pp. 1587-1594.]). For the synthesis and structure of silver(I) coordination compounds and their potential applications, see: Ferrari et al. (2007[Ferrari, M. B., Bisceglie, F., Cavalli, E., Pelosi, G., Tarasconi, P. & Verdolino, V. (2007). Inorg. Chim. Acta, 360, 3233-3240.]); Lobana et al. (2008[Lobana, T. S., Sultana, R. & Hundal, G. (2008). Polyhedron, 27, 1008-1016.]); Isab et al. (2010[Isab, A. A., Nawaz, S., Saleem, M., Altaf, M., Monim-ul-Mehboob, M., Ahmad, S. & Evans, H. S. (2010). Polyhedron, 29, 1251-1256.]); Nawaz et al. (2011[Nawaz, S., Isab, A. A., Merz, K., Vasylyeva, V., Metzler-Nolte, N., Saleem, M. & Ahmad, S. (2011). Polyhedron, 30, 1502-1506.]). For relevant examples of discrete complexes, see: Aslanidis et al. (1997[Aslanidis, P., Karagiannidis, P., Akrivos, P. D., Krebs, B. & Lage, M. (1997). Inorg. Chem. 254, 277-284.]); Nomiya et al. (1998[Nomiya, K., Tsuda, K. & Kasuga, N. C. (1998). J. Chem. Soc. Dalton Trans. pp. 1653-1659.]); Lobana et al. (2008[Lobana, T. S., Sultana, R. & Hundal, G. (2008). Polyhedron, 27, 1008-1016.]); Zhang et al. (2008[Zhang, Y.-Y., Wang, Y., Tao, X., Wang, N. & Shen, Y.-Z. (2008). Polyhedron, 27, 2501-2505.]).

[Scheme 1]

Experimental

Crystal data
  • [AgBr(C3H6N2OS)(C18H15P)2]

  • Mr = 830.48

  • Triclinic, [P \overline 1]

  • a = 10.4684 (12) Å

  • b = 12.9898 (14) Å

  • c = 14.8354 (16) Å

  • α = 71.091 (2)°

  • β = 80.955 (3)°

  • γ = 72.261 (2)°

  • V = 1813.9 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.84 mm−1

  • T = 293 K

  • 0.23 × 0.11 × 0.02 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2003[Bruker (2003). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.793, Tmax = 0.957

  • 25247 measured reflections

  • 8788 independent reflections

  • 6789 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.099

  • S = 1.07

  • 8788 reflections

  • 434 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.86 e Å−3

  • Δρmin = −0.47 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Si 0.84 (4) 2.74 (4) 3.524 (4) 158 (3)
N1—H1B⋯O 0.84 (4) 1.99 (4) 2.642 (5) 135 (4)
N2—H2⋯Br 0.89 (4) 2.52 (4) 3.402 (3) 174 (3)
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae, 2008)[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]; software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The studies of silver(I) complexes with tertiary phosphane and sulfur donor ligands as co-ligainds has progressed extensively in recent years (Lobana et al., 2008; Nawaz et al., 2011) because of their potential applications such as antimicrobial activities (Isab et al., 2010) and they also often show interesting luminescence properties (Ferrari et al., 2007). Moreover, sixfold phenyl embraces (6PE), a common motif of the six phenyl groups of two adjacent triphenylphosphane (PPh3) ligands have been also widely studied, where six phenyl rings in the interaction zone participate in a concerted cycle of edge-to-face (ef) phenyl···phenyl interactions (Dance et al., 2000).

The molecular structure of the title compound (I) is shown in Fig. 1. In the mononuclear complex, the AgI ion exists in a distorted tetrahedral geometry. The Ag—P1 and Ag—P2 distances of 2.4807 (9) and 2.4657 (9) Å are closed to the values of [AgBr(–S-Hpytsc(Ph3P)2].CH3CN (Ag—P1 = 2.4605 (19), Ag—P2 = 2.4926 (19) Å) (Lobana et al., 2008). The observed Ag—S distance of 2.8789 (10) Å in (I) is appreciably longer than the mean value of 2.632 (1) Å for [Ag(PPh3)2(pytH)2]NO3 (Aslanidis et al., 1997). The P1—Ag—P2 angle of 124.52 (3)° approaches close to the average value found in compounds containing an AgI ion bound to two triphenylphosphanes e.g. in [Ag(1,2,4-L)(PPh3)2]n (HL = triazole) (P2—Ag—P1 = 126.29 (7)°) (Nomiya et al., 1998) and in [(Ph3P)2AgO3SCH3] (P2—Ag—P1 = 132.4 (4)°) (Zhang et al.,2008). There are intramolecular N2—H···Br and N1—H···O hydrogen bonds present. In the crystal, N and S atoms of the thiourea groups are invovled in forming hydrogen bonded dimers across an inversion center (symmetry code: -x + 1, -y + 1, -z + 1) and sixfold phenyl embraces with an intermolecular P···P distance of 6.4586 (17) Å are arranged in one-dimensional chains (Fig. 2).

Related literature top

For the definition of sixfold phenyl embraces, see: Dance et al. (2000). For the synthesis and structure of silver(I) coordination compounds and their potential applications, see: Ferrari et al. (2007); Lobana et al. (2008); Isab et al. (2010); Nawaz et al. (2011). For relevant examples of discrete complexes, see: Aslanidis et al. (1997); Nomiya et al. (1998); Lobana et al. (2008); Zhang et al. (2008).

Experimental top

Triphenylphosphane (0.28 g, 1.00 mmol) was dissolved in 30 cm3 of mixed sovents of acetonitrile and methanol at 343–348 K and then AgBr (0.10 g, 0.50 mmol) was added. The mixture was stirred for 2 h during that time a greenish precipitate was formed. Acetylthiourea (0.13 g, 1.00 mmol) was added and the new reaction mixture was heated under reflux for 5 h where upon the precipitate gradually disappeared. The resulting clear solution was filtered off and left to evaporate at room temperature. The crystalline solids, which were deposited upon standing for several days, were filtered off and dried in vacuo. Analysis found: C 57.58, H 4.09, N 3.27, S 2.37%; calculated for C39H32AgBrN2OP2S: C 56.40, H 4.37, N 3.37, S 3.86%.

Refinement top

The H atoms bonded to C atoms were constrained with a riding model of 0.93 Å (aryl H), and Uiso(H) = 1.2Ueq(C); 0.96 Å(CH3) and Uiso(H) = 1.5Ueq(C). All H atom bonded to the N atom was located in a difference Fourier map and refined isotropically.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Part of the crystal structure showing intermolecular hydrogen (red dashed lines) bond and six fold phenyl embraces shown as purple dashed lines.
(1-Acetylthiourea-κS)bromidobis(triphenylphosphane-κP)silver(I) top
Crystal data top
[AgBr(C3H6N2OS)(C18H15P)2]Z = 2
Mr = 830.48F(000) = 840
Triclinic, P1Dx = 1.521 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.4684 (12) ÅCell parameters from 4019 reflections
b = 12.9898 (14) Åθ = 2.3–21.9°
c = 14.8354 (16) ŵ = 1.84 mm1
α = 71.091 (2)°T = 293 K
β = 80.955 (3)°Hexagon, colorless
γ = 72.261 (2)°0.23 × 0.11 × 0.02 mm
V = 1813.9 (3) Å3
Data collection top
Bruker SMART CCD
diffractometer
8788 independent reflections
Radiation source: fine-focus sealed tube6789 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
Frames, each covering 0.3 ° in ω scansθmax = 28.1°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 1313
Tmin = 0.793, Tmax = 0.957k = 1717
25247 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0377P)2 + 0.3327P]
where P = (Fo2 + 2Fc2)/3
8788 reflections(Δ/σ)max = 0.006
434 parametersΔρmax = 0.86 e Å3
0 restraintsΔρmin = 0.47 e Å3
Crystal data top
[AgBr(C3H6N2OS)(C18H15P)2]γ = 72.261 (2)°
Mr = 830.48V = 1813.9 (3) Å3
Triclinic, P1Z = 2
a = 10.4684 (12) ÅMo Kα radiation
b = 12.9898 (14) ŵ = 1.84 mm1
c = 14.8354 (16) ÅT = 293 K
α = 71.091 (2)°0.23 × 0.11 × 0.02 mm
β = 80.955 (3)°
Data collection top
Bruker SMART CCD
diffractometer
8788 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
6789 reflections with I > 2σ(I)
Tmin = 0.793, Tmax = 0.957Rint = 0.046
25247 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.099H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.86 e Å3
8788 reflectionsΔρmin = 0.47 e Å3
434 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2921 (3)0.4815 (3)0.4632 (2)0.0363 (8)
C20.1877 (4)0.3499 (3)0.4337 (3)0.0442 (9)
C30.0634 (4)0.3492 (4)0.3968 (3)0.0606 (12)
H3A0.03450.41730.34580.091*
H3B0.00620.34500.44730.091*
H3C0.08190.28490.37350.091*
C110.4784 (3)0.5721 (3)0.1742 (2)0.0351 (7)
C120.5091 (4)0.4991 (4)0.2650 (3)0.0578 (11)
H120.44360.46880.30530.069*
C130.6367 (5)0.4717 (4)0.2953 (3)0.0714 (14)
H130.65660.42380.35630.086*
C140.7332 (5)0.5144 (4)0.2361 (4)0.0726 (15)
H140.81830.49770.25720.087*
C150.7052 (4)0.5817 (4)0.1460 (4)0.0688 (14)
H150.77260.60800.10490.083*
C160.5786 (4)0.6112 (3)0.1150 (3)0.0498 (10)
H160.56080.65800.05340.060*
C210.2525 (3)0.5013 (3)0.1451 (2)0.0354 (8)
C220.3421 (4)0.3957 (3)0.1521 (3)0.0504 (10)
H220.43140.38270.16360.060*
C230.2986 (5)0.3098 (3)0.1421 (3)0.0618 (12)
H230.35900.23910.14740.074*
C240.1689 (5)0.3270 (3)0.1245 (3)0.0562 (11)
H240.14150.26900.11640.067*
C250.0787 (4)0.4309 (4)0.1189 (3)0.0542 (10)
H250.01020.44320.10700.065*
C260.1194 (4)0.5168 (3)0.1309 (3)0.0463 (9)
H260.05700.58580.12950.056*
C310.3048 (3)0.7054 (3)0.0206 (2)0.0328 (7)
C320.2915 (4)0.6632 (3)0.0513 (3)0.0430 (9)
H320.28320.59010.03610.052*
C330.2906 (4)0.7293 (4)0.1451 (3)0.0540 (10)
H330.27940.70110.19260.065*
C340.3062 (4)0.8366 (3)0.1691 (3)0.0537 (10)
H340.30680.88030.23260.064*
C350.3209 (4)0.8786 (3)0.0989 (3)0.0524 (10)
H350.33210.95080.11480.063*
C360.3189 (4)0.8133 (3)0.0038 (3)0.0433 (9)
H360.32710.84270.04370.052*
C410.0368 (3)0.9939 (3)0.3172 (2)0.0302 (7)
C420.0004 (4)1.1104 (3)0.3034 (3)0.0411 (8)
H420.04791.15530.25730.049*
C430.1053 (4)1.1592 (3)0.3575 (3)0.0457 (9)
H430.12931.23700.34750.055*
C440.1755 (4)1.0938 (3)0.4262 (3)0.0491 (10)
H440.24551.12680.46360.059*
C450.1417 (4)0.9795 (3)0.4393 (3)0.0487 (9)
H450.19050.93540.48480.058*
C460.0356 (3)0.9293 (3)0.3853 (2)0.0387 (8)
H460.01310.85170.39510.046*
C510.1781 (3)1.0222 (2)0.1304 (2)0.0301 (7)
C520.0624 (4)1.0633 (3)0.0812 (3)0.0438 (9)
H520.01631.04520.11090.053*
C530.0641 (4)1.1315 (3)0.0127 (3)0.0516 (10)
H530.01401.15890.04540.062*
C540.1780 (4)1.1589 (3)0.0578 (3)0.0515 (10)
H540.17821.20410.12090.062*
C550.2930 (4)1.1189 (3)0.0090 (3)0.0473 (9)
H550.37121.13770.03920.057*
C560.2931 (3)1.0513 (3)0.0842 (2)0.0363 (8)
H560.37151.02480.11650.044*
C610.3312 (3)0.9188 (3)0.2940 (2)0.0362 (8)
C620.3421 (4)0.9981 (4)0.3328 (3)0.0518 (10)
H620.26601.05440.34210.062*
C630.4655 (5)0.9950 (5)0.3584 (3)0.0730 (14)
H630.47201.04790.38600.088*
C640.5777 (5)0.9131 (5)0.3424 (3)0.0753 (16)
H640.66070.91160.35850.090*
C650.5697 (4)0.8343 (4)0.3034 (3)0.0675 (14)
H650.64680.77980.29230.081*
C660.4461 (4)0.8355 (3)0.2802 (3)0.0497 (10)
H660.43980.78020.25530.060*
N10.3869 (4)0.3971 (3)0.5087 (3)0.0552 (10)
N20.1933 (3)0.4553 (2)0.4313 (2)0.0374 (7)
O0.2771 (3)0.2643 (2)0.4627 (2)0.0635 (8)
P10.30183 (8)0.62370 (7)0.14657 (6)0.03201 (19)
P20.17669 (8)0.92148 (7)0.25006 (6)0.03023 (19)
Br0.05776 (3)0.67299 (3)0.31620 (3)0.04306 (11)
Ag0.17151 (3)0.73006 (2)0.258501 (19)0.03744 (9)
S0.28951 (9)0.61787 (8)0.43976 (7)0.0431 (2)
H1A0.450 (4)0.408 (3)0.529 (3)0.052*
H1B0.382 (4)0.331 (3)0.517 (3)0.052*
H20.128 (4)0.515 (3)0.404 (3)0.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0368 (18)0.046 (2)0.0252 (17)0.0178 (16)0.0045 (14)0.0012 (15)
C20.054 (2)0.042 (2)0.038 (2)0.0211 (19)0.0063 (17)0.0033 (17)
C30.067 (3)0.055 (3)0.068 (3)0.031 (2)0.023 (2)0.008 (2)
C110.0319 (17)0.0379 (19)0.038 (2)0.0045 (15)0.0027 (15)0.0193 (16)
C120.046 (2)0.077 (3)0.038 (2)0.004 (2)0.0008 (18)0.019 (2)
C130.060 (3)0.094 (4)0.049 (3)0.015 (3)0.020 (2)0.033 (3)
C140.050 (3)0.077 (3)0.108 (4)0.001 (2)0.040 (3)0.051 (3)
C150.039 (2)0.055 (3)0.112 (4)0.015 (2)0.012 (3)0.018 (3)
C160.038 (2)0.044 (2)0.065 (3)0.0131 (17)0.0085 (19)0.0074 (19)
C210.0371 (18)0.0353 (18)0.0341 (19)0.0126 (15)0.0032 (15)0.0106 (15)
C220.042 (2)0.039 (2)0.066 (3)0.0064 (17)0.0017 (19)0.0162 (19)
C230.073 (3)0.032 (2)0.076 (3)0.010 (2)0.005 (2)0.020 (2)
C240.072 (3)0.047 (2)0.060 (3)0.035 (2)0.017 (2)0.022 (2)
C250.051 (2)0.064 (3)0.061 (3)0.030 (2)0.004 (2)0.024 (2)
C260.040 (2)0.043 (2)0.059 (2)0.0098 (17)0.0002 (18)0.0212 (19)
C310.0282 (16)0.0327 (17)0.0338 (18)0.0023 (14)0.0004 (14)0.0112 (14)
C320.051 (2)0.039 (2)0.039 (2)0.0110 (17)0.0039 (17)0.0128 (17)
C330.057 (3)0.061 (3)0.047 (2)0.010 (2)0.0082 (19)0.023 (2)
C340.054 (2)0.053 (3)0.040 (2)0.006 (2)0.0013 (19)0.0033 (19)
C350.065 (3)0.037 (2)0.050 (2)0.0157 (19)0.000 (2)0.0058 (18)
C360.051 (2)0.037 (2)0.045 (2)0.0139 (17)0.0014 (17)0.0160 (17)
C410.0274 (16)0.0327 (17)0.0319 (17)0.0072 (13)0.0041 (13)0.0113 (14)
C420.044 (2)0.0351 (19)0.044 (2)0.0126 (16)0.0033 (17)0.0086 (16)
C430.050 (2)0.035 (2)0.053 (2)0.0031 (17)0.0079 (19)0.0191 (18)
C440.045 (2)0.064 (3)0.046 (2)0.011 (2)0.0046 (18)0.032 (2)
C450.048 (2)0.063 (3)0.041 (2)0.026 (2)0.0097 (18)0.0187 (19)
C460.046 (2)0.0371 (19)0.0350 (19)0.0133 (16)0.0032 (16)0.0136 (15)
C510.0344 (17)0.0227 (15)0.0321 (17)0.0071 (13)0.0026 (14)0.0071 (13)
C520.038 (2)0.049 (2)0.044 (2)0.0086 (17)0.0066 (16)0.0130 (18)
C530.053 (2)0.050 (2)0.047 (2)0.0028 (19)0.022 (2)0.0093 (19)
C540.073 (3)0.041 (2)0.035 (2)0.012 (2)0.008 (2)0.0046 (17)
C550.053 (2)0.042 (2)0.042 (2)0.0199 (18)0.0059 (18)0.0045 (17)
C560.0356 (18)0.0343 (18)0.039 (2)0.0118 (15)0.0044 (15)0.0078 (15)
C610.0359 (18)0.0413 (19)0.0273 (17)0.0137 (16)0.0052 (14)0.0003 (15)
C620.051 (2)0.064 (3)0.045 (2)0.022 (2)0.0082 (18)0.014 (2)
C630.079 (3)0.092 (4)0.061 (3)0.048 (3)0.023 (3)0.010 (3)
C640.056 (3)0.094 (4)0.067 (3)0.039 (3)0.033 (2)0.018 (3)
C650.040 (2)0.069 (3)0.070 (3)0.017 (2)0.014 (2)0.017 (2)
C660.038 (2)0.046 (2)0.053 (2)0.0088 (17)0.0085 (18)0.0016 (18)
N10.057 (2)0.046 (2)0.059 (2)0.0193 (18)0.0294 (18)0.0071 (17)
N20.0371 (16)0.0326 (16)0.0386 (17)0.0117 (13)0.0124 (13)0.0014 (13)
O0.069 (2)0.0395 (16)0.078 (2)0.0117 (15)0.0264 (17)0.0056 (15)
P10.0298 (4)0.0328 (5)0.0343 (5)0.0073 (4)0.0003 (4)0.0129 (4)
P20.0297 (4)0.0281 (4)0.0315 (5)0.0083 (3)0.0012 (3)0.0068 (3)
Br0.02998 (18)0.0510 (2)0.0468 (2)0.01327 (16)0.00403 (15)0.00963 (17)
Ag0.03723 (15)0.03262 (15)0.04341 (17)0.01155 (11)0.00531 (11)0.01416 (12)
S0.0478 (5)0.0414 (5)0.0426 (5)0.0164 (4)0.0160 (4)0.0054 (4)
Geometric parameters (Å, º) top
C1—N11.308 (4)C36—H360.9300
C1—N21.373 (4)C41—C461.377 (4)
C1—S1.683 (4)C41—C421.397 (4)
C2—O1.216 (4)C41—P21.825 (3)
C2—N21.377 (4)C42—C431.376 (5)
C2—C31.492 (5)C42—H420.9300
C3—H3A0.9600C43—C441.373 (5)
C3—H3B0.9600C43—H430.9300
C3—H3C0.9600C44—C451.372 (5)
C11—C161.369 (5)C44—H440.9300
C11—C121.393 (5)C45—C461.385 (5)
C11—P11.828 (3)C45—H450.9300
C12—C131.381 (6)C46—H460.9300
C12—H120.9300C51—C561.383 (4)
C13—C141.360 (7)C51—C521.385 (4)
C13—H130.9300C51—P21.833 (3)
C14—C151.358 (7)C52—C531.388 (5)
C14—H140.9300C52—H520.9300
C15—C161.372 (5)C53—C541.361 (6)
C15—H150.9300C53—H530.9300
C16—H160.9300C54—C551.375 (5)
C21—C261.385 (5)C54—H540.9300
C21—C221.388 (5)C55—C561.378 (5)
C21—P11.822 (3)C55—H550.9300
C22—C231.383 (5)C56—H560.9300
C22—H220.9300C61—C621.371 (5)
C23—C241.359 (6)C61—C661.390 (5)
C23—H230.9300C61—P21.823 (3)
C24—C251.377 (6)C62—C631.388 (6)
C24—H240.9300C62—H620.9300
C25—C261.379 (5)C63—C641.372 (7)
C25—H250.9300C63—H630.9300
C26—H260.9300C64—C651.357 (7)
C31—C361.377 (5)C64—H640.9300
C31—C321.390 (5)C65—C661.385 (5)
C31—P11.827 (3)C65—H650.9300
C32—C331.377 (5)C66—H660.9300
C32—H320.9300N1—H1A0.84 (4)
C33—C341.377 (6)N1—H1B0.84 (4)
C33—H330.9300N2—H20.89 (4)
C34—C351.369 (6)P1—Ag2.4807 (9)
C34—H340.9300P2—Ag2.4657 (9)
C35—C361.392 (5)Br—Ag2.6588 (5)
C35—H350.9300Ag—S2.8789 (10)
N1—C1—N2117.2 (3)C44—C43—H43119.8
N1—C1—S123.2 (3)C42—C43—H43119.8
N2—C1—S119.6 (3)C45—C44—C43119.6 (3)
O—C2—N2122.8 (3)C45—C44—H44120.2
O—C2—C3122.6 (4)C43—C44—H44120.2
N2—C2—C3114.5 (3)C44—C45—C46120.5 (4)
C2—C3—H3A109.5C44—C45—H45119.7
C2—C3—H3B109.5C46—C45—H45119.7
H3A—C3—H3B109.5C41—C46—C45120.3 (3)
C2—C3—H3C109.5C41—C46—H46119.8
H3A—C3—H3C109.5C45—C46—H46119.8
H3B—C3—H3C109.5C56—C51—C52118.6 (3)
C16—C11—C12118.6 (3)C56—C51—P2122.6 (2)
C16—C11—P1123.5 (3)C52—C51—P2118.6 (3)
C12—C11—P1117.5 (3)C51—C52—C53119.9 (3)
C13—C12—C11120.0 (4)C51—C52—H52120.1
C13—C12—H12120.0C53—C52—H52120.1
C11—C12—H12120.0C54—C53—C52121.1 (4)
C14—C13—C12120.1 (4)C54—C53—H53119.4
C14—C13—H13119.9C52—C53—H53119.4
C12—C13—H13119.9C53—C54—C55119.3 (4)
C15—C14—C13119.9 (4)C53—C54—H54120.4
C15—C14—H14120.0C55—C54—H54120.4
C13—C14—H14120.0C54—C55—C56120.4 (3)
C14—C15—C16120.8 (5)C54—C55—H55119.8
C14—C15—H15119.6C56—C55—H55119.8
C16—C15—H15119.6C55—C56—C51120.8 (3)
C11—C16—C15120.4 (4)C55—C56—H56119.6
C11—C16—H16119.8C51—C56—H56119.6
C15—C16—H16119.8C62—C61—C66118.9 (3)
C26—C21—C22118.5 (3)C62—C61—P2124.0 (3)
C26—C21—P1117.7 (3)C66—C61—P2116.9 (3)
C22—C21—P1123.6 (3)C61—C62—C63120.7 (4)
C23—C22—C21119.9 (4)C61—C62—H62119.7
C23—C22—H22120.0C63—C62—H62119.7
C21—C22—H22120.0C64—C63—C62119.3 (5)
C24—C23—C22121.2 (4)C64—C63—H63120.4
C24—C23—H23119.4C62—C63—H63120.4
C22—C23—H23119.4C65—C64—C63121.2 (4)
C23—C24—C25119.4 (4)C65—C64—H64119.4
C23—C24—H24120.3C63—C64—H64119.4
C25—C24—H24120.3C64—C65—C66119.6 (5)
C24—C25—C26120.3 (4)C64—C65—H65120.2
C24—C25—H25119.9C66—C65—H65120.2
C26—C25—H25119.9C65—C66—C61120.4 (4)
C25—C26—C21120.6 (4)C65—C66—H66119.8
C25—C26—H26119.7C61—C66—H66119.8
C21—C26—H26119.7C1—N1—H1A121 (3)
C36—C31—C32118.9 (3)C1—N1—H1B118 (3)
C36—C31—P1118.8 (3)H1A—N1—H1B121 (4)
C32—C31—P1122.3 (3)C1—N2—C2127.6 (3)
C33—C32—C31120.2 (3)C1—N2—H2114 (2)
C33—C32—H32119.9C2—N2—H2118 (2)
C31—C32—H32119.9C21—P1—C31102.81 (15)
C34—C33—C32120.7 (4)C21—P1—C11106.31 (15)
C34—C33—H33119.7C31—P1—C11104.27 (15)
C32—C33—H33119.7C21—P1—Ag117.41 (11)
C35—C34—C33119.7 (4)C31—P1—Ag115.68 (10)
C35—C34—H34120.2C11—P1—Ag109.20 (11)
C33—C34—H34120.2C61—P2—C41107.17 (15)
C34—C35—C36120.0 (4)C61—P2—C51101.85 (14)
C34—C35—H35120.0C41—P2—C51104.63 (14)
C36—C35—H35120.0C61—P2—Ag111.47 (12)
C31—C36—C35120.6 (3)C41—P2—Ag114.18 (10)
C31—C36—H36119.7C51—P2—Ag116.42 (10)
C35—C36—H36119.7P2—Ag—P1124.52 (3)
C46—C41—C42118.7 (3)P2—Ag—Br118.59 (2)
C46—C41—P2117.8 (2)P1—Ag—Br108.96 (2)
C42—C41—P2123.5 (3)P2—Ag—S96.12 (3)
C43—C42—C41120.4 (3)P1—Ag—S106.75 (3)
C43—C42—H42119.8Br—Ag—S95.21 (2)
C41—C42—H42119.8C1—S—Ag104.87 (12)
C44—C43—C42120.4 (3)
C16—C11—C12—C133.0 (6)C26—C21—P1—Ag53.9 (3)
P1—C11—C12—C13169.7 (3)C22—C21—P1—Ag129.8 (3)
C11—C12—C13—C141.0 (7)C36—C31—P1—C21170.3 (3)
C12—C13—C14—C151.9 (7)C32—C31—P1—C218.7 (3)
C13—C14—C15—C162.8 (7)C36—C31—P1—C1178.9 (3)
C12—C11—C16—C152.1 (6)C32—C31—P1—C11102.0 (3)
P1—C11—C16—C15170.1 (3)C36—C31—P1—Ag41.1 (3)
C14—C15—C16—C110.7 (7)C32—C31—P1—Ag138.0 (3)
C26—C21—C22—C232.0 (6)C16—C11—P1—C21120.5 (3)
P1—C21—C22—C23174.4 (3)C12—C11—P1—C2167.2 (3)
C21—C22—C23—C240.5 (7)C16—C11—P1—C3112.2 (3)
C22—C23—C24—C251.5 (7)C12—C11—P1—C31175.4 (3)
C23—C24—C25—C260.0 (6)C16—C11—P1—Ag112.0 (3)
C24—C25—C26—C212.5 (6)C12—C11—P1—Ag60.4 (3)
C22—C21—C26—C253.5 (6)C62—C61—P2—C4127.7 (3)
P1—C21—C26—C25173.1 (3)C66—C61—P2—C41157.2 (3)
C36—C31—C32—C330.9 (5)C62—C61—P2—C5181.9 (3)
P1—C31—C32—C33178.2 (3)C66—C61—P2—C5193.2 (3)
C31—C32—C33—C341.6 (6)C62—C61—P2—Ag153.3 (3)
C32—C33—C34—C350.9 (6)C66—C61—P2—Ag31.6 (3)
C33—C34—C35—C360.5 (6)C46—C41—P2—C61106.6 (3)
C32—C31—C36—C350.5 (5)C42—C41—P2—C6173.0 (3)
P1—C31—C36—C35179.6 (3)C46—C41—P2—C51145.7 (3)
C34—C35—C36—C311.2 (6)C42—C41—P2—C5134.6 (3)
C46—C41—C42—C430.5 (5)C46—C41—P2—Ag17.3 (3)
P2—C41—C42—C43179.2 (3)C42—C41—P2—Ag163.1 (2)
C41—C42—C43—C440.5 (6)C56—C51—P2—C6118.1 (3)
C42—C43—C44—C451.5 (6)C52—C51—P2—C61167.6 (3)
C43—C44—C45—C461.5 (6)C56—C51—P2—C41129.6 (3)
C42—C41—C46—C450.5 (5)C52—C51—P2—C4156.1 (3)
P2—C41—C46—C45179.2 (3)C56—C51—P2—Ag103.3 (3)
C44—C45—C46—C410.5 (6)C52—C51—P2—Ag70.9 (3)
C56—C51—C52—C530.3 (5)C61—P2—Ag—P175.65 (12)
P2—C51—C52—C53174.1 (3)C41—P2—Ag—P1162.73 (11)
C51—C52—C53—C540.1 (6)C51—P2—Ag—P140.57 (12)
C52—C53—C54—C550.5 (6)C61—P2—Ag—Br138.88 (12)
C53—C54—C55—C560.4 (6)C41—P2—Ag—Br17.26 (12)
C54—C55—C56—C510.0 (5)C51—P2—Ag—Br104.90 (11)
C52—C51—C56—C550.4 (5)C61—P2—Ag—S39.53 (12)
P2—C51—C56—C55173.8 (3)C41—P2—Ag—S82.09 (11)
C66—C61—C62—C630.3 (6)C51—P2—Ag—S155.75 (12)
P2—C61—C62—C63175.3 (3)C21—P1—Ag—P2164.49 (13)
C61—C62—C63—C641.5 (7)C31—P1—Ag—P242.71 (13)
C62—C63—C64—C651.0 (7)C11—P1—Ag—P274.48 (13)
C63—C64—C65—C660.7 (7)C21—P1—Ag—Br16.24 (13)
C64—C65—C66—C612.0 (6)C31—P1—Ag—Br105.53 (12)
C62—C61—C66—C651.5 (5)C11—P1—Ag—Br137.27 (12)
P2—C61—C66—C65173.9 (3)C21—P1—Ag—S85.51 (13)
N1—C1—N2—C26.3 (5)C31—P1—Ag—S152.72 (12)
S—C1—N2—C2171.7 (3)C11—P1—Ag—S35.52 (12)
O—C2—N2—C13.1 (6)N1—C1—S—Ag146.3 (3)
C3—C2—N2—C1177.6 (4)N2—C1—S—Ag31.6 (3)
C26—C21—P1—C3174.3 (3)P2—Ag—S—C1178.26 (12)
C22—C21—P1—C31102.0 (3)P1—Ag—S—C152.88 (13)
C26—C21—P1—C11176.4 (3)Br—Ag—S—C158.72 (12)
C22—C21—P1—C117.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Si0.84 (4)2.74 (4)3.524 (4)158 (3)
N1—H1B···O0.84 (4)1.99 (4)2.642 (5)135 (4)
N2—H2···Br0.89 (4)2.52 (4)3.402 (3)174 (3)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[AgBr(C3H6N2OS)(C18H15P)2]
Mr830.48
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)10.4684 (12), 12.9898 (14), 14.8354 (16)
α, β, γ (°)71.091 (2), 80.955 (3), 72.261 (2)
V3)1813.9 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.84
Crystal size (mm)0.23 × 0.11 × 0.02
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2003)
Tmin, Tmax0.793, 0.957
No. of measured, independent and
observed [I > 2σ(I)] reflections
25247, 8788, 6789
Rint0.046
(sin θ/λ)max1)0.662
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.099, 1.07
No. of reflections8788
No. of parameters434
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.86, 0.47

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), Mercury (Macrae, 2008), SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Si0.84 (4)2.74 (4)3.524 (4)158 (3)
N1—H1B···O0.84 (4)1.99 (4)2.642 (5)135 (4)
N2—H2···Br0.89 (4)2.52 (4)3.402 (3)174 (3)
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

Financial support from the Center of Excellence for Innovation in Chemistry (PERCH–CIC), Office of the Higher Education Commission, Ministry of Education, the Department of Chemistry and the Graduate School, Prince of Songkla University, is gratefully acknowledged.

References

First citationAslanidis, P., Karagiannidis, P., Akrivos, P. D., Krebs, B. & Lage, M. (1997). Inorg. Chem. 254, 277–284.  CAS Google Scholar
First citationBruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDance, I. & Scudder, M. (2000). J. Chem. Soc. Dalton Trans. pp. 1587–1594.  Web of Science CrossRef Google Scholar
First citationFerrari, M. B., Bisceglie, F., Cavalli, E., Pelosi, G., Tarasconi, P. & Verdolino, V. (2007). Inorg. Chim. Acta, 360, 3233–3240.  Web of Science CSD CrossRef Google Scholar
First citationIsab, A. A., Nawaz, S., Saleem, M., Altaf, M., Monim-ul-Mehboob, M., Ahmad, S. & Evans, H. S. (2010). Polyhedron, 29, 1251–1256.  Web of Science CSD CrossRef CAS Google Scholar
First citationLobana, T. S., Sultana, R. & Hundal, G. (2008). Polyhedron, 27, 1008–1016.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNawaz, S., Isab, A. A., Merz, K., Vasylyeva, V., Metzler-Nolte, N., Saleem, M. & Ahmad, S. (2011). Polyhedron, 30, 1502–1506.  Web of Science CSD CrossRef CAS Google Scholar
First citationNomiya, K., Tsuda, K. & Kasuga, N. C. (1998). J. Chem. Soc. Dalton Trans. pp. 1653–1659.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, Y.-Y., Wang, Y., Tao, X., Wang, N. & Shen, Y.-Z. (2008). Polyhedron, 27, 2501–2505.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 12| December 2012| Pages m1506-m1507
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds