organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-[(3,5-Di­methyl-1H-pyrazol-1-yl)carbon­yl]-5-methyl­indolizine-3-carbo­nitrile

aDepartment of Applied Chemistry, Nanjing Normal University, Nanjing 210097, People's Republic of China, and bKey Laboratory of Applied Photochemistry, Nanjing Normal University, Nanjing 210097, People's Republic of China
*Correspondence e-mail: guweijin2010@163.com

(Received 5 November 2012; accepted 13 November 2012; online 24 November 2012)

In the title mol­ecule, C16H14N4O, the indolizine ring system is essentially planar, with a maximum deviation of 0.013 (3) Å, and forms a dihedral angle of 7.52 (12)° with the pyrazole ring. In the crystal, weak C—H⋯O hydrogen bonds and ππ stacking inter­actions, with a centroid–centroid distance of 3.6378 (16) Å, link mol­ecules along [001].

Related literature

For biological applications of indolizines and pyrazoles, see: Tukulula et al. (2010[Tukulula, M., Klein, R. & Kaye, P. T. (2010). Synth. Commun. 40, 2018-2028.]); James et al. (2008[James, D. A., Koya, K., Li, H., Liang, G. Q., Xia, Z. Q., Ying, W. W., Wu, Y. M. & Sun, L. J. (2008). Bioorg. Med. Chem. Lett. 18, 1784-1787.]); Teklu et al. (2005[Teklu, S., Gundersen, L. L., Larsen, T., Malterud, K. E. & Rise, F. (2005). Bioorg. Med. Chem. 13, 3127-3139.]); McDonald et al. (2006[McDonald, E., Workman, P. & Jones, K. (2006). Curr. Top. Med. Chem. 6, 1091-1107.]); Jagerovic et al. (2002[Jagerovic, N., Cano, C., Elguero, J. & Goya, P. (2002). Bioorg. Med. Chem. 10, 817-827.]). For background and the synthesis of related hetrocycles, see: Gu et al. (2011[Gu, W.-J., Zhuang, J., Jiang, Y.-L. & Wang, B.-X. (2011). Acta Cryst. E67, o123.]); Shen et al. (2006[Shen, Y.-M., Wang, B.-X., Feng, Y.-Y., Shen, Z.-Y., Shen, J., Li, C. & Hu, H.-W. (2006). Chem. J. Chin. Univ. 27, 651-653.], 2008[Shen, Z.-Y., Wang, B.-X., Shen, J. & Hu, H.-W. (2008). Chem. J. Chin. Univ. 29, 916-918.]); Wang, et al. (2000[Wang, B.-X., Hu, J.-X., Zhang, X.-C., Hu, Y.-F. & Hu, H.-W. (2000). J. Heterocycl. Chem. 37, 1533-1537.]).

[Scheme 1]

Experimental

Crystal data
  • C16H14N4O

  • Mr = 278.31

  • Monoclinic, P 21 /c

  • a = 8.5911 (18) Å

  • b = 23.3760 (15) Å

  • c = 7.5816 (12) Å

  • β = 114.775 (3)°

  • V = 1382.4 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 291 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.974, Tmax = 0.983

  • 7822 measured reflections

  • 2361 independent reflections

  • 1728 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.135

  • S = 1.05

  • 2361 reflections

  • 194 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10B⋯O1i 0.96 2.56 3.435 (4) 151
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Indolizines and pyrazoles are important classes of bio-active drug targets in the pharmaceutical industry, as they are the core structure of numerous biologically active compounds (Tukulula et al., 2010; James et al., 2008; Teklu et al., 2005; McDonald et al., 2006; Jagerovic et al., 2002). In our continuing studies on the synthesis and properties of heterocycles (Gu et al., 2011; Shen et al., 2008; Shen et al., 2006; Wang, et al., 2000) we have prepared (Fig. 1) and determined the crystal structure of the title compound.

The molecular structure of the title compound is shown in Fig. 2. The indolizine ring system is essentially planar with a maximum deviation for atom C3 of 0.013 (3)Å. The dihedral angle formed by the indolizine ring system and the pyrazole ring is 7.52 (12)°. In the crystal, weak C—H···O hydrogen bonds and ππ stacking interactions, with Cg1···Cg2i = 3.6378 (16)Å, link molecules along [001] (Fig. 3). Cg1 and Cg2 are the centroids of the N1/C5-C8 and N1/C1-C5 rings (symmetry code (i): x, 1/2-y, -1/2+z).

Related literature top

For biological applications of indolizines and pyrazoles, see: Tukulula et al. (2010); James et al. (2008); Teklu et al. (2005); McDonald et al. (2006); Jagerovic et al. (2002). For background and the synthesis of related hetrocycles, see: Gu et al. (2011); Shen et al. (2006, 2008); Wang, et al. (2000).

Experimental top

Methyl-3-cyano-5-methylindolizine-1-carboxylate was prepared through 1,3-dipolar cycloaddition according to a procedure described in the literature (Wang, et al., 2000). A suspension of N-cyano-2-methylpyridinium bromide (C5H4N+CH3CN.Br-) (10 mmol), ethyl acrylate (40 mmol), Et3N (20 ml) and CrO3 (20 mmol) in DMF (40 ml) was stirred at 363K for 4 h (monitored by TLC). The mixture was cooled to room temperature and poured into 5% aqueous HCl (150 mL). The brown powder was collected by filtration and washed with ethanol (25 mL). After drying the solid was collected 1.28 g (60%).

Methyl-3-cyano-5-methylindolizine-1-carboxylate (5 mmol) was dissolved in 6 ml of ethanol and 20 ml 80% N2H4.H2O (30 mmol) was added dropwise. The solution was refluxed for 6 h and cooled to yield the product, 0.87 g (81%) as 3-cyano-5-methylindolizine-1-carbohydrazide.

3-cyano-5-methylindolizine-1-carbohydrazide (1 mmol) was dissolved in 2 ml acetic acid, then acetylacetone (2 mmol, dissolved in 2ml ethanol) was added. After stirring for 2 h, the mixture was purified by chromatography [silica gel, 20% ethyl acetate in petroleum ether (60 C90)] to yield colorless block crystals of the title compound, 0.22 g (79%). 1H-NMR (CDCl3, 400 MHz): 2.33 (s, 3H, –CH3), 2.65 (s, 3H, –CH3), 3.06 (s, 3H, –CH3), 6.06 (s, 1H, pyrazole =CH), 6.80 (d, 1H, indolizine =CH), 7.33 (t, 1H, indolizine =CH), 8.52 (d, 1H, indolizine =CH), 8.59 (s, 1H, indolizine =CH).

Refinement top

H atoms were placed in calculated positions and allowed to ride, with C—H = 0.93 and 0.96Å and Uiso(H) = 1.2Ueq(C) or 1.2Ueq(Cmethyl). The distance for C8—C9 was restrained with the command DFIX 1.4 0.01 C8 C9 in SHELXL (Sheldrick, 2008).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The reaction scheme.
[Figure 2] Fig. 2. The molecular structure of title compound. Displacement ellipsoids at the 50% probability level.
[Figure 3] Fig. 3. Part of the crystal structure with weak hydrogen bonds shown as dashed lines.
1-[(3,5-Dimethyl-1H-pyrazol-1-yl)carbonyl]-5-methylindolizine- 3-carbonitrile top
Crystal data top
C16H14N4OF(000) = 584
Mr = 278.31Dx = 1.337 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1864 reflections
a = 8.5911 (18) Åθ = 2.1–23.1°
b = 23.3760 (15) ŵ = 0.09 mm1
c = 7.5816 (12) ÅT = 291 K
β = 114.775 (3)°Block, colorless
V = 1382.4 (4) Å30.30 × 0.25 × 0.20 mm
Z = 4
Data collection top
Bruker SMART APEX
diffractometer
2361 independent reflections
Radiation source: sealed tube1728 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ϕ and ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1010
Tmin = 0.974, Tmax = 0.983k = 2727
7822 measured reflectionsl = 87
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.135 w = 1/[σ2(Fo2) + (0.0667P)2 + 0.2279P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2361 reflectionsΔρmax = 0.19 e Å3
194 parametersΔρmin = 0.15 e Å3
1 restraintExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: none
Crystal data top
C16H14N4OV = 1382.4 (4) Å3
Mr = 278.31Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.5911 (18) ŵ = 0.09 mm1
b = 23.3760 (15) ÅT = 291 K
c = 7.5816 (12) Å0.30 × 0.25 × 0.20 mm
β = 114.775 (3)°
Data collection top
Bruker SMART APEX
diffractometer
2361 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1728 reflections with I > 2σ(I)
Tmin = 0.974, Tmax = 0.983Rint = 0.037
7822 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0481 restraint
wR(F2) = 0.135H-atom parameters constrained
S = 1.05Δρmax = 0.19 e Å3
2361 reflectionsΔρmin = 0.15 e Å3
194 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4078 (3)0.16105 (9)0.6276 (3)0.0539 (6)
C20.5673 (3)0.16955 (11)0.7688 (3)0.0674 (7)
H20.63420.13800.82920.081*
C30.6350 (3)0.22472 (11)0.8269 (4)0.0706 (7)
H30.74580.22910.92270.085*
C40.5393 (3)0.27142 (10)0.7437 (3)0.0610 (6)
H40.58350.30790.78340.073*
C50.3740 (3)0.26454 (9)0.5980 (3)0.0494 (5)
C60.2428 (2)0.30329 (9)0.4823 (3)0.0473 (5)
C70.1052 (3)0.27046 (9)0.3576 (3)0.0502 (5)
H70.00230.28490.26550.060*
C80.1454 (2)0.21350 (7)0.3920 (3)0.0495 (5)
C90.0408 (3)0.16786 (8)0.2894 (3)0.0572 (6)
C100.3329 (3)0.10310 (10)0.5630 (4)0.0698 (7)
H10A0.41010.07460.64400.105*
H10B0.31500.09710.43050.105*
H10C0.22530.10030.57270.105*
C110.2680 (3)0.36492 (10)0.5125 (3)0.0553 (6)
C120.1506 (3)0.46295 (9)0.3983 (3)0.0514 (5)
C130.0074 (3)0.48077 (9)0.2476 (3)0.0565 (6)
H130.02560.51860.21400.068*
C140.0831 (3)0.43187 (9)0.1502 (3)0.0524 (5)
C150.2500 (3)0.42892 (10)0.0234 (4)0.0673 (7)
H15A0.23090.43290.13890.101*
H15B0.32320.45920.01780.101*
H15C0.30350.39270.02560.101*
C160.2889 (3)0.49760 (11)0.5473 (4)0.0703 (7)
H16A0.26300.53750.52220.105*
H16B0.39630.48940.54180.105*
H16C0.29660.48820.67400.105*
N10.3117 (2)0.20945 (7)0.5412 (2)0.0481 (5)
N20.0540 (3)0.13371 (9)0.1932 (3)0.0792 (7)
N30.1439 (2)0.40334 (7)0.3880 (3)0.0505 (5)
N40.0015 (2)0.38486 (7)0.2341 (3)0.0543 (5)
O10.3936 (2)0.38496 (7)0.6446 (3)0.0837 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0572 (14)0.0536 (13)0.0514 (13)0.0122 (10)0.0232 (12)0.0077 (10)
C20.0593 (15)0.0719 (17)0.0605 (16)0.0190 (12)0.0147 (14)0.0098 (12)
C30.0499 (14)0.0874 (19)0.0578 (16)0.0108 (13)0.0061 (12)0.0002 (13)
C40.0555 (14)0.0631 (14)0.0525 (14)0.0036 (11)0.0108 (12)0.0049 (11)
C50.0492 (13)0.0542 (13)0.0434 (13)0.0025 (10)0.0179 (11)0.0012 (9)
C60.0466 (12)0.0495 (12)0.0415 (12)0.0015 (9)0.0141 (10)0.0008 (9)
C70.0452 (12)0.0535 (13)0.0452 (12)0.0017 (9)0.0125 (10)0.0023 (10)
C80.0473 (12)0.0498 (13)0.0480 (13)0.0019 (9)0.0165 (11)0.0023 (9)
C90.0535 (14)0.0513 (13)0.0578 (15)0.0016 (11)0.0145 (12)0.0037 (11)
C100.0733 (16)0.0571 (15)0.0756 (18)0.0125 (12)0.0280 (14)0.0122 (12)
C110.0493 (13)0.0569 (14)0.0483 (13)0.0009 (10)0.0092 (12)0.0052 (10)
C120.0494 (13)0.0480 (12)0.0565 (13)0.0065 (10)0.0220 (11)0.0069 (10)
C130.0534 (13)0.0433 (12)0.0677 (15)0.0006 (10)0.0205 (12)0.0015 (10)
C140.0503 (12)0.0483 (12)0.0548 (14)0.0005 (10)0.0183 (11)0.0023 (10)
C150.0541 (14)0.0627 (15)0.0688 (16)0.0000 (11)0.0096 (13)0.0040 (12)
C160.0640 (15)0.0585 (15)0.0795 (18)0.0122 (11)0.0213 (14)0.0131 (12)
N10.0475 (10)0.0517 (10)0.0441 (11)0.0068 (8)0.0181 (9)0.0030 (8)
N20.0789 (15)0.0564 (13)0.0822 (16)0.0097 (11)0.0141 (13)0.0027 (11)
N30.0496 (10)0.0445 (10)0.0497 (11)0.0015 (8)0.0134 (9)0.0016 (8)
N40.0490 (10)0.0487 (10)0.0510 (11)0.0034 (8)0.0071 (9)0.0007 (8)
O10.0668 (11)0.0636 (10)0.0771 (12)0.0006 (9)0.0126 (10)0.0156 (9)
Geometric parameters (Å, º) top
C1—C21.354 (3)C10—H10B0.9600
C1—N11.392 (3)C10—H10C0.9600
C1—C101.492 (3)C11—O11.217 (3)
C2—C31.407 (3)C11—N31.411 (3)
C2—H20.9300C12—C131.347 (3)
C3—C41.353 (3)C12—N31.395 (3)
C3—H30.9300C12—C161.490 (3)
C4—C51.396 (3)C13—C141.405 (3)
C4—H40.9300C13—H130.9300
C5—N11.392 (3)C14—N41.315 (3)
C5—C61.426 (3)C14—C151.487 (3)
C6—C71.394 (3)C15—H15A0.9600
C6—C111.460 (3)C15—H15B0.9600
C7—C81.373 (3)C15—H15C0.9600
C7—H70.9300C16—H16A0.9600
C8—C91.4017 (10)C16—H16B0.9600
C8—N11.405 (3)C16—H16C0.9600
C9—N21.156 (2)N3—N41.374 (2)
C10—H10A0.9600
C2—C1—N1117.2 (2)O1—C11—N3117.8 (2)
C2—C1—C10123.2 (2)O1—C11—C6122.1 (2)
N1—C1—C10119.6 (2)N3—C11—C6120.15 (19)
C1—C2—C3122.0 (2)C13—C12—N3105.07 (18)
C1—C2—H2119.0C13—C12—C16129.0 (2)
C3—C2—H2119.0N3—C12—C16125.9 (2)
C4—C3—C2120.2 (2)C12—C13—C14107.56 (19)
C4—C3—H3119.9C12—C13—H13126.2
C2—C3—H3119.9C14—C13—H13126.2
C3—C4—C5119.6 (2)N4—C14—C13111.09 (19)
C3—C4—H4120.2N4—C14—C15120.68 (19)
C5—C4—H4120.2C13—C14—C15128.2 (2)
N1—C5—C4118.9 (2)C14—C15—H15A109.5
N1—C5—C6107.16 (18)C14—C15—H15B109.5
C4—C5—C6133.9 (2)H15A—C15—H15B109.5
C7—C6—C5107.14 (19)C14—C15—H15C109.5
C7—C6—C11132.6 (2)H15A—C15—H15C109.5
C5—C6—C11120.22 (19)H15B—C15—H15C109.5
C8—C7—C6109.30 (19)C12—C16—H16A109.5
C8—C7—H7125.3C12—C16—H16B109.5
C6—C7—H7125.3H16A—C16—H16B109.5
C7—C8—C9125.51 (19)C12—C16—H16C109.5
C7—C8—N1107.97 (16)H16A—C16—H16C109.5
C9—C8—N1126.47 (18)H16B—C16—H16C109.5
N2—C9—C8174.1 (2)C1—N1—C5122.08 (18)
C1—C10—H10A109.5C1—N1—C8129.49 (17)
C1—C10—H10B109.5C5—N1—C8108.43 (16)
H10A—C10—H10B109.5N4—N3—C12111.28 (17)
C1—C10—H10C109.5N4—N3—C11122.09 (16)
H10A—C10—H10C109.5C12—N3—C11126.62 (18)
H10B—C10—H10C109.5C14—N4—N3105.00 (16)
N1—C1—C2—C30.1 (3)C10—C1—N1—C5178.91 (19)
C10—C1—C2—C3179.9 (2)C2—C1—N1—C8179.34 (19)
C1—C2—C3—C41.1 (4)C10—C1—N1—C80.7 (3)
C2—C3—C4—C50.9 (4)C4—C5—N1—C11.2 (3)
C3—C4—C5—N10.2 (3)C6—C5—N1—C1179.24 (16)
C3—C4—C5—C6179.6 (2)C4—C5—N1—C8179.07 (17)
N1—C5—C6—C70.5 (2)C6—C5—N1—C80.5 (2)
C4—C5—C6—C7178.9 (2)C7—C8—N1—C1179.42 (18)
N1—C5—C6—C11178.04 (17)C9—C8—N1—C13.2 (3)
C4—C5—C6—C112.5 (3)C7—C8—N1—C50.2 (2)
C5—C6—C7—C80.4 (2)C9—C8—N1—C5177.15 (19)
C11—C6—C7—C8177.9 (2)C13—C12—N3—N40.3 (2)
C6—C7—C8—C9177.50 (19)C16—C12—N3—N4179.45 (18)
C6—C7—C8—N10.1 (2)C13—C12—N3—C11178.35 (18)
C7—C6—C11—O1172.3 (2)C16—C12—N3—C111.9 (3)
C5—C6—C11—O15.8 (3)O1—C11—N3—N4179.5 (2)
C7—C6—C11—N36.9 (3)C6—C11—N3—N41.2 (3)
C5—C6—C11—N3175.01 (17)O1—C11—N3—C121.0 (3)
N3—C12—C13—C140.3 (2)C6—C11—N3—C12179.75 (18)
C16—C12—C13—C14179.5 (2)C13—C14—N4—N30.0 (2)
C12—C13—C14—N40.2 (3)C15—C14—N4—N3179.36 (18)
C12—C13—C14—C15179.1 (2)C12—N3—N4—C140.2 (2)
C2—C1—N1—C51.0 (3)C11—N3—N4—C14178.54 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10B···O1i0.962.563.435 (4)151
Symmetry code: (i) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC16H14N4O
Mr278.31
Crystal system, space groupMonoclinic, P21/c
Temperature (K)291
a, b, c (Å)8.5911 (18), 23.3760 (15), 7.5816 (12)
β (°) 114.775 (3)
V3)1382.4 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.974, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
7822, 2361, 1728
Rint0.037
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.135, 1.05
No. of reflections2361
No. of parameters194
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.15

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10B···O1i0.962.563.435 (4)151
Symmetry code: (i) x, y+1/2, z1/2.
 

Acknowledgements

We thank the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) for financial support.

References

First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGu, W.-J., Zhuang, J., Jiang, Y.-L. & Wang, B.-X. (2011). Acta Cryst. E67, o123.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJagerovic, N., Cano, C., Elguero, J. & Goya, P. (2002). Bioorg. Med. Chem. 10, 817–827.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJames, D. A., Koya, K., Li, H., Liang, G. Q., Xia, Z. Q., Ying, W. W., Wu, Y. M. & Sun, L. J. (2008). Bioorg. Med. Chem. Lett. 18, 1784–1787.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMcDonald, E., Workman, P. & Jones, K. (2006). Curr. Top. Med. Chem. 6, 1091–1107.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShen, Y.-M., Wang, B.-X., Feng, Y.-Y., Shen, Z.-Y., Shen, J., Li, C. & Hu, H.-W. (2006). Chem. J. Chin. Univ. 27, 651–653.  CAS Google Scholar
First citationShen, Z.-Y., Wang, B.-X., Shen, J. & Hu, H.-W. (2008). Chem. J. Chin. Univ. 29, 916–918.  CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTeklu, S., Gundersen, L. L., Larsen, T., Malterud, K. E. & Rise, F. (2005). Bioorg. Med. Chem. 13, 3127–3139.  Web of Science CrossRef PubMed CAS Google Scholar
First citationTukulula, M., Klein, R. & Kaye, P. T. (2010). Synth. Commun. 40, 2018–2028.  Web of Science CrossRef CAS Google Scholar
First citationWang, B.-X., Hu, J.-X., Zhang, X.-C., Hu, Y.-F. & Hu, H.-W. (2000). J. Heterocycl. Chem. 37, 1533-1537.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds