organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-3-(3,5-Dimeth­­oxy­phen­yl)-1-(1-hy­dr­oxy­naphthalen-2-yl)prop-2-en-1-one

aJeonju Center, Korea Basic Science Center (KBSI), Jeonju 561-765, Republic of Korea, bDivision of Bioscience and Biotechnology, BMIC, Konkuk University, Seoul 143-701, Republic of Korea, and cDepartment of Applied Chemistry, Dongduk Women's University, Seoul 136-714, Republic of Korea
*Correspondence e-mail: dskoh@dongduk.ac.kr

(Received 5 November 2012; accepted 13 November 2012; online 24 November 2012)

In the title mol­ecule, C21H18O4, the C=C bond of the central enone group adopts a trans conformation. The dihedral angle formed by the naphthalene ring system and the benzene ring is 2.97 (11)°. The hy­droxy group is involved in an intra­molecular O—H⋯O hydrogen bond. In the crystal, weak C—H⋯O hydrogen bonds link the mol­ecules into chains along [001].

Related literature

For the synthesis and biological properties of chalcone derivatives, see: Sharma et al. (2012[Sharma, V., Singh, G., Kaur, H., Saxena, A. K. & Ishar, M. P. S. (2012). Bioorg. Med. Chem. Lett. 22, 6343-6346.]); Singh et al. (2012[Singh, P., Raj, R., Kumar, V., Mahajan, M. P., Bedi, P. M. S., Kaur, T. & Saxena, A. K. (2012). Eur. J. Med. Chem. 47, 594-600.]); Bandgar et al. (2010[Bandgar, B. P., Gawande, S. S., Bodade, R. G., Totre, J. V. & Khobragade, C. N. (2010). Bioorg. Med. Chem. 18, 1364-1370.]); Hans et al. (2010[Hans, R. H., Guantai, E. M., Lategan, C., Smith, P. J., Wanc, B., Franzblau, S. G., Gut, J., Rosenthal, P. J. & Chibale, K. (2010). Bioorg. Med. Chem. Lett. 20, 942-944.]); Hwang et al. (2011[Hwang, D., Hyun, J., Jo, G., Koh, D. & Lim, Y. (2011). Magn. Reson. Chem. 49, 41-45.]). For related structures, see: Fadzillah et al. (2012[Fadzillah, S. M. H., Ngaini, Z., Hussain, H., Razak, I. A. & Asik, S. I. J. (2012). Acta Cryst. E68, o2911-o2912.]); Jasinski et al. (2011[Jasinski, J. P., Butcher, R. J., Musthafa Khaleel, V., Sarojini, B. K. & Yathirajan, H. S. (2011). Acta Cryst. E67, o845.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C21H18O4

  • Mr = 334.35

  • Orthorhombic, P n a 21

  • a = 30.179 (3) Å

  • b = 3.9127 (3) Å

  • c = 13.7363 (12) Å

  • V = 1622.0 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 200 K

  • 0.24 × 0.22 × 0.17 mm

Data collection
  • Bruker SMART CCD diffractometer

  • 11095 measured reflections

  • 3479 independent reflections

  • 1828 reflections with I > 2σ(I)

  • Rint = 0.064

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.102

  • S = 0.94

  • 3479 reflections

  • 229 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4⋯O1 0.84 1.75 2.503 (3) 147
C7—H7C⋯O1i 0.98 2.59 3.157 (4) 117
C10—H10B⋯O2i 0.98 2.54 3.344 (4) 139
Symmetry code: (i) [-x+1, -y+3, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Chalcones are one of the secondary metabolites in plants and belong to a flavonoid class with a C6—C3—C6 skeleton and C3 skeleton which is an α,β-unsaturated carbonyl (enone) group. Because of their diverse biological activities including anticancer (Singh et al., 2012), anti-inflammatory (Bandgar et al., 2010), anti-tubercular (Hans et al., 2010), and antimicrobial (Sharma et al., 2012), various chlacones have been isolated from natural sources and syntheized. In continuation of our research to develop novel chalcone derivatives which show broad range of biological activities (Hwang et al., 2011) the title compound was synthesized and and its crystal structure was determined.

The molecular structure of the title compound is shown in Fig .1. The C2C3 bond of the central enone group adopts a trans configuration. The dihedral angle formed by the naphthalene ring system and the benzene ring is 2.97 (11)°. The C1O1 bond [1.242 (3) Å] is slightly longer than the standard value (Allen et al. 1987) as this group is involved in an intramolecular O—H···O hydrogen bond with the hydroxy group. In the crystal, weak C—H···O hydrogen bonds link the molecules into one-dimensional chains along [001] (Fig. 2). Examples of structures of substituted prop-2-en-1-one compounds have been published (Fadzillah et al., 2012; Jasinski et al., 2011).

Related literature top

For the synthesis and biological properties of chalcone derivatives, see: Sharma et al. (2012); Singh et al. (2012); Bandgar et al. (2010); Hans et al. (2010); Hwang et al. (2011). For related structures, see: Fadzillah et al. (2012); Jasinski et al. (2011). For standard bond lengths, see: Allen et al. (1987).

Experimental top

A solution of 1-hydroxy-2-acetonaphthone (186 mg, 1 mmol) and 3,5-dimethoxybenzaldehyde (166 mg, 1 mmol) was dissolved in 10 ml of ethanol and the temperature was adjusted to around 276-277K in an ice-bath. To the cooled reaction mixture was added 0.5 ml of 50% aqueous KOH solution, and the reaction mixture was stirred at room temperature for 24 h. This mixture was poured into iced water (20 ml) was acidified with 6 N HCl solution. The mixture was extracted with ethylacetate (3 × 20 ml) and the combined organic layers were dried under MgSO4. Filtration and evaporation of the filtrate gave a residue which was purified by flash chromatography to give the title compound (210 mg, 63%). Recrystallization of the title compound in ethanol gave orange colored crystals (mp: 422-424K).

Refinement top

H atoms were placed in calculated positions and refined as riding with C—H = 0.95-0.98Å, O—H = 0.84 Å and Uiso(H) = 1.2 Ueq(C) or Uiso(H) = 1.5Ueq(Cmethyl, O).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids drawn at the 50% probability level. The dashed line indicates a hydrogen bond.
[Figure 2] Fig. 2. Part of the crystal structure with weak intermolecular C—H···O hydrogen bonds shown as dashed lines.
(E)-3-(3,5-Dimethoxyphenyl)-1-(1-hydroxynaphthalen-2-yl)prop-2-en-1-one top
Crystal data top
C21H18O4F(000) = 704
Mr = 334.35Dx = 1.369 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 2578 reflections
a = 30.179 (3) Åθ = 2.7–27.8°
b = 3.9127 (3) ŵ = 0.09 mm1
c = 13.7363 (12) ÅT = 200 K
V = 1622.0 (2) Å3Block, orange
Z = 40.24 × 0.22 × 0.17 mm
Data collection top
Bruker SMART CCD
diffractometer
1828 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.064
Graphite monochromatorθmax = 28.3°, θmin = 1.4°
ϕ and ω scansh = 3240
11095 measured reflectionsk = 55
3479 independent reflectionsl = 1618
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H-atom parameters constrained
S = 0.94 w = 1/[σ2(Fo2) + (0.0276P)2]
where P = (Fo2 + 2Fc2)/3
3479 reflections(Δ/σ)max < 0.001
229 parametersΔρmax = 0.22 e Å3
1 restraintΔρmin = 0.23 e Å3
Crystal data top
C21H18O4V = 1622.0 (2) Å3
Mr = 334.35Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 30.179 (3) ŵ = 0.09 mm1
b = 3.9127 (3) ÅT = 200 K
c = 13.7363 (12) Å0.24 × 0.22 × 0.17 mm
Data collection top
Bruker SMART CCD
diffractometer
1828 reflections with I > 2σ(I)
11095 measured reflectionsRint = 0.064
3479 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0441 restraint
wR(F2) = 0.102H-atom parameters constrained
S = 0.94Δρmax = 0.22 e Å3
3479 reflectionsΔρmin = 0.23 e Å3
229 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.35700 (10)0.8619 (7)0.4892 (2)0.0348 (7)
O10.36736 (7)0.9296 (6)0.57454 (14)0.0485 (6)
C20.38738 (10)0.9586 (8)0.4096 (2)0.0362 (8)
H20.37910.90090.34490.043*
C30.42532 (10)1.1203 (7)0.4228 (2)0.0352 (7)
H30.43261.18090.48780.042*
C40.45715 (10)1.2153 (7)0.3474 (2)0.0312 (7)
C50.49588 (10)1.3745 (7)0.3726 (2)0.0340 (7)
H50.50111.43260.43880.041*
C60.52799 (10)1.4530 (7)0.3019 (2)0.0335 (8)
O20.56629 (7)1.5970 (6)0.33591 (14)0.0424 (6)
C70.59853 (11)1.7037 (8)0.2650 (2)0.0420 (9)
H7A0.61011.50290.23070.063*
H7B0.62291.82200.29790.063*
H7C0.58461.85870.21820.063*
C80.52006 (10)1.3789 (7)0.2050 (2)0.0334 (7)
H80.54141.43320.15650.040*
C90.48010 (10)1.2229 (7)0.1799 (2)0.0322 (7)
O30.47555 (7)1.1594 (5)0.08193 (15)0.0416 (5)
C100.43530 (10)1.0023 (8)0.0509 (2)0.0428 (8)
H10A0.43370.76960.07710.064*
H10B0.43450.99360.02040.064*
H10C0.41001.13570.07460.064*
C110.44877 (10)1.1405 (7)0.2483 (2)0.0343 (8)
H110.42181.03460.22930.041*
C120.31508 (10)0.6927 (7)0.4670 (2)0.0290 (7)
C130.28636 (10)0.6041 (8)0.5424 (2)0.0319 (7)
O40.29656 (7)0.6743 (6)0.63545 (14)0.0437 (6)
H40.32040.78430.63750.066*
C140.24525 (10)0.4418 (7)0.5241 (2)0.0311 (7)
C150.21607 (10)0.3500 (8)0.6006 (2)0.0377 (8)
H150.22410.39410.66630.045*
C160.17643 (10)0.1979 (8)0.5797 (2)0.0408 (8)
H160.15680.13920.63110.049*
C170.16454 (10)0.1281 (8)0.4837 (2)0.0398 (8)
H170.13680.02420.47020.048*
C180.19236 (11)0.2075 (8)0.4093 (2)0.0366 (8)
H180.18410.15330.34440.044*
C190.23315 (10)0.3683 (7)0.4268 (2)0.0293 (7)
C200.26243 (10)0.4564 (7)0.3506 (2)0.0360 (8)
H200.25450.40610.28520.043*
C210.30156 (10)0.6117 (8)0.3696 (2)0.0351 (8)
H210.32060.66860.31700.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0311 (19)0.0388 (19)0.0344 (19)0.0019 (15)0.0011 (14)0.0023 (16)
O10.0434 (15)0.0720 (17)0.0302 (13)0.0130 (12)0.0004 (10)0.0007 (12)
C20.0288 (19)0.049 (2)0.0312 (18)0.0061 (15)0.0035 (13)0.0010 (15)
C30.035 (2)0.0414 (19)0.0297 (16)0.0024 (16)0.0001 (15)0.0006 (16)
C40.0289 (18)0.0324 (18)0.0324 (18)0.0014 (14)0.0023 (14)0.0011 (14)
C50.0316 (19)0.0379 (19)0.0324 (17)0.0025 (15)0.0020 (14)0.0014 (15)
C60.0286 (19)0.0322 (18)0.0396 (19)0.0001 (14)0.0033 (14)0.0036 (15)
O20.0314 (13)0.0531 (14)0.0428 (14)0.0114 (11)0.0010 (11)0.0022 (11)
C70.031 (2)0.043 (2)0.052 (2)0.0077 (16)0.0043 (16)0.0082 (17)
C80.0286 (19)0.0368 (18)0.0348 (18)0.0012 (14)0.0022 (14)0.0004 (15)
C90.0363 (19)0.0325 (17)0.0279 (18)0.0032 (14)0.0055 (14)0.0035 (14)
O30.0376 (14)0.0555 (15)0.0316 (12)0.0060 (11)0.0007 (10)0.0017 (11)
C100.042 (2)0.049 (2)0.0380 (19)0.0040 (17)0.0094 (15)0.0001 (15)
C110.0290 (19)0.040 (2)0.0342 (18)0.0053 (15)0.0003 (14)0.0021 (15)
C120.0258 (18)0.0345 (18)0.0266 (16)0.0016 (14)0.0005 (13)0.0018 (14)
C130.0304 (19)0.0373 (18)0.0281 (17)0.0001 (14)0.0012 (14)0.0002 (15)
O40.0414 (16)0.0659 (16)0.0237 (12)0.0129 (12)0.0014 (10)0.0015 (11)
C140.0303 (19)0.0304 (16)0.0326 (18)0.0000 (14)0.0012 (13)0.0024 (14)
C150.036 (2)0.045 (2)0.0329 (19)0.0040 (15)0.0036 (14)0.0042 (15)
C160.035 (2)0.045 (2)0.042 (2)0.0020 (16)0.0060 (16)0.0032 (17)
C170.029 (2)0.0414 (19)0.049 (2)0.0073 (15)0.0001 (16)0.0013 (17)
C180.034 (2)0.038 (2)0.0383 (19)0.0013 (15)0.0026 (14)0.0020 (15)
C190.0282 (18)0.0269 (16)0.0329 (16)0.0012 (13)0.0003 (14)0.0009 (14)
C200.035 (2)0.0434 (19)0.0293 (17)0.0006 (15)0.0047 (14)0.0002 (15)
C210.0327 (19)0.045 (2)0.0279 (17)0.0018 (15)0.0016 (14)0.0014 (15)
Geometric parameters (Å, º) top
C1—O11.242 (3)C10—H10B0.9800
C1—C121.460 (4)C10—H10C0.9800
C1—C21.476 (4)C11—H110.9500
C2—C31.321 (4)C12—C131.395 (4)
C2—H20.9500C12—C211.433 (4)
C3—C41.460 (4)C13—O41.343 (3)
C3—H30.9500C13—C141.416 (4)
C4—C51.369 (4)O4—H40.8400
C4—C111.416 (4)C14—C191.414 (4)
C5—C61.406 (4)C14—C151.418 (4)
C5—H50.9500C15—C161.367 (4)
C6—O21.368 (3)C15—H150.9500
C6—C81.384 (4)C16—C171.394 (4)
O2—C71.438 (3)C16—H160.9500
C7—H7A0.9800C17—C181.359 (4)
C7—H7B0.9800C17—H170.9500
C7—H7C0.9800C18—C191.403 (4)
C8—C91.395 (4)C18—H180.9500
C8—H80.9500C19—C201.413 (4)
C9—C111.371 (4)C20—C211.354 (4)
C9—O31.375 (3)C20—H200.9500
O3—C101.427 (3)C21—H210.9500
C10—H10A0.9800
O1—C1—C12120.8 (3)H10A—C10—H10C109.5
O1—C1—C2119.2 (3)H10B—C10—H10C109.5
C12—C1—C2120.0 (3)C9—C11—C4119.2 (3)
C3—C2—C1124.1 (3)C9—C11—H11120.4
C3—C2—H2118.0C4—C11—H11120.4
C1—C2—H2118.0C13—C12—C21117.5 (3)
C2—C3—C4126.5 (3)C13—C12—C1119.7 (3)
C2—C3—H3116.7C21—C12—C1122.8 (3)
C4—C3—H3116.7O4—C13—C12120.9 (3)
C5—C4—C11119.3 (3)O4—C13—C14117.5 (2)
C5—C4—C3119.9 (3)C12—C13—C14121.6 (3)
C11—C4—C3120.8 (3)C13—O4—H4109.5
C4—C5—C6120.9 (3)C19—C14—C13119.0 (3)
C4—C5—H5119.6C19—C14—C15119.2 (3)
C6—C5—H5119.6C13—C14—C15121.7 (3)
O2—C6—C8124.1 (3)C16—C15—C14119.9 (3)
O2—C6—C5115.9 (3)C16—C15—H15120.0
C8—C6—C5120.0 (3)C14—C15—H15120.0
C6—O2—C7117.4 (2)C15—C16—C17120.6 (3)
O2—C7—H7A109.5C15—C16—H16119.7
O2—C7—H7B109.5C17—C16—H16119.7
H7A—C7—H7B109.5C18—C17—C16120.5 (3)
O2—C7—H7C109.5C18—C17—H17119.7
H7A—C7—H7C109.5C16—C17—H17119.7
H7B—C7—H7C109.5C17—C18—C19121.0 (3)
C6—C8—C9118.6 (3)C17—C18—H18119.5
C6—C8—H8120.7C19—C18—H18119.5
C9—C8—H8120.7C18—C19—C20122.0 (3)
C11—C9—O3124.0 (3)C18—C19—C14118.7 (3)
C11—C9—C8122.0 (3)C20—C19—C14119.3 (3)
O3—C9—C8114.0 (3)C21—C20—C19120.8 (3)
C9—O3—C10117.1 (2)C21—C20—H20119.6
O3—C10—H10A109.5C19—C20—H20119.6
O3—C10—H10B109.5C20—C21—C12121.9 (3)
H10A—C10—H10B109.5C20—C21—H21119.1
O3—C10—H10C109.5C12—C21—H21119.1
O1—C1—C2—C31.1 (5)C21—C12—C13—O4179.4 (3)
C12—C1—C2—C3178.1 (3)C1—C12—C13—O40.5 (4)
C1—C2—C3—C4178.4 (3)C21—C12—C13—C140.3 (4)
C2—C3—C4—C5178.1 (3)C1—C12—C13—C14179.6 (3)
C2—C3—C4—C111.0 (5)O4—C13—C14—C19179.1 (3)
C11—C4—C5—C62.3 (5)C12—C13—C14—C190.0 (4)
C3—C4—C5—C6176.8 (3)O4—C13—C14—C151.2 (4)
C4—C5—C6—O2177.0 (3)C12—C13—C14—C15179.7 (3)
C4—C5—C6—C82.0 (4)C19—C14—C15—C161.2 (5)
C8—C6—O2—C75.5 (4)C13—C14—C15—C16179.1 (3)
C5—C6—O2—C7175.6 (3)C14—C15—C16—C170.8 (5)
O2—C6—C8—C9178.2 (3)C15—C16—C17—C180.6 (5)
C5—C6—C8—C90.7 (4)C16—C17—C18—C191.5 (5)
C6—C8—C9—C110.3 (4)C17—C18—C19—C20179.3 (3)
C6—C8—C9—O3179.8 (3)C17—C18—C19—C141.0 (4)
C11—C9—O3—C100.9 (4)C13—C14—C19—C18180.0 (3)
C8—C9—O3—C10179.6 (2)C15—C14—C19—C180.3 (4)
O3—C9—C11—C4179.4 (3)C13—C14—C19—C200.4 (4)
C8—C9—C11—C40.1 (4)C15—C14—C19—C20179.3 (3)
C5—C4—C11—C91.3 (5)C18—C19—C20—C21179.9 (3)
C3—C4—C11—C9177.8 (3)C14—C19—C20—C210.4 (4)
O1—C1—C12—C130.4 (4)C19—C20—C21—C120.1 (4)
C2—C1—C12—C13179.6 (3)C13—C12—C21—C200.3 (4)
O1—C1—C12—C21179.5 (3)C1—C12—C21—C20179.6 (3)
C2—C1—C12—C210.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O10.841.752.503 (3)147
C7—H7C···O1i0.982.593.157 (4)117
C10—H10B···O2i0.982.543.344 (4)139
Symmetry code: (i) x+1, y+3, z1/2.

Experimental details

Crystal data
Chemical formulaC21H18O4
Mr334.35
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)200
a, b, c (Å)30.179 (3), 3.9127 (3), 13.7363 (12)
V3)1622.0 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.24 × 0.22 × 0.17
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
11095, 3479, 1828
Rint0.064
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.102, 0.94
No. of reflections3479
No. of parameters229
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.23

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O10.841.752.503 (3)147
C7—H7C···O1i0.982.593.157 (4)117.3
C10—H10B···O2i0.982.543.344 (4)138.9
Symmetry code: (i) x+1, y+3, z1/2.
 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBandgar, B. P., Gawande, S. S., Bodade, R. G., Totre, J. V. & Khobragade, C. N. (2010). Bioorg. Med. Chem. 18, 1364–1370.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFadzillah, S. M. H., Ngaini, Z., Hussain, H., Razak, I. A. & Asik, S. I. J. (2012). Acta Cryst. E68, o2911–o2912.  CSD CrossRef IUCr Journals Google Scholar
First citationHans, R. H., Guantai, E. M., Lategan, C., Smith, P. J., Wanc, B., Franzblau, S. G., Gut, J., Rosenthal, P. J. & Chibale, K. (2010). Bioorg. Med. Chem. Lett. 20, 942–944.  Web of Science CrossRef CAS PubMed Google Scholar
First citationHwang, D., Hyun, J., Jo, G., Koh, D. & Lim, Y. (2011). Magn. Reson. Chem. 49, 41–45.  Web of Science CrossRef CAS PubMed Google Scholar
First citationJasinski, J. P., Butcher, R. J., Musthafa Khaleel, V., Sarojini, B. K. & Yathirajan, H. S. (2011). Acta Cryst. E67, o845.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSharma, V., Singh, G., Kaur, H., Saxena, A. K. & Ishar, M. P. S. (2012). Bioorg. Med. Chem. Lett. 22, 6343–6346.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, P., Raj, R., Kumar, V., Mahajan, M. P., Bedi, P. M. S., Kaur, T. & Saxena, A. K. (2012). Eur. J. Med. Chem. 47, 594–600.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds