organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(2-Chloro­phen­yl)-1-(4-chloro­phen­yl)formamido 3-(2-nitro­phenyl)­propano­ate

aDepartment of Laboratory Center for Medical Sciences, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, Gansu Province, People's Republic of China, bJiuquan Institute for Food and Drug Control, Jiuquan 735000, Gansu Province, People's Republic of China, and cInstitute of Medicinal Chemistry, School of Pharmacy, Lanzhou University, Lanzhou 730000, Gansu Province, People's Republic of China
*Correspondence e-mail: fanlinlan1020@163.com

(Received 14 November 2012; accepted 27 November 2012; online 30 November 2012)

In the title hydroxamic acid derivative, C22H16Cl2N2O5, the nitro-substituted benzene ring forms dihedral angles of 26.95 (15) and 87.06 (15)°, with the 4-chloro- and 2-chloro-substituted benzene rings, respectively. The dihedral angle between the chloro-substituted benzene rings is 68.19 (13)°. The O atoms of the nitro group were refined as disordered over two sets of sites with equal occupancies. In the crystal, weak C—H⋯O(=C) hydrogen bonds link mol­ecules along [100].

Related literature

For applications of hydroxamic acid derivatives, see: Noh et al. (2009[Noh, E. J., Lim, D. S., Jeong, G. & Lee, J. S. (2009). Biochem. Biophys. Res. Commun. 378, 326-331.]); Zeng et al. (2003[Zeng, W., Zeng, G. Y. & Qin, S. Y. (2003). Chin. J. Org. Chem. 23, 1213-1218.]). For the synthesis, see: Ayyangark et al. (1986[Ayyangark, N. R., Hrailme, C., Kalkotf, U. R. & Srinivasan, K. V. (1986). Synth. Commun. pp. 938-941.]). For related structures, see: Zhang et al. (2012[Zhang, H., Qu, D. & Ma, J. (2012). Acta Cryst. E68, o2904.]); Ma et al. (2012[Ma, J., Ma, Y. & He, D. (2012). Acta Cryst. E68, o3067.]).

[Scheme 1]

Experimental

Crystal data
  • C22H16Cl2N2O5

  • Mr = 459.27

  • Triclinic, [P \overline 1]

  • a = 9.1574 (8) Å

  • b = 10.1976 (6) Å

  • c = 12.1736 (8) Å

  • α = 91.847 (5)°

  • β = 108.327 (8)°

  • γ = 100.285 (6)°

  • V = 1057.06 (13) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.34 mm−1

  • T = 293 K

  • 0.32 × 0.28 × 0.25 mm

Data collection
  • Agilent SuperNova (Dual, Cu at zero, Eos) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Aglient Technologies Ltd, Yarnton, England.]) Tmin = 0.843, Tmax = 1.000

  • 7898 measured reflections

  • 4785 independent reflections

  • 3434 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.139

  • S = 1.04

  • 4785 reflections

  • 298 parameters

  • 24 restraints

  • H-atom parameters constrained

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.45 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11⋯O1i 0.93 2.52 3.354 (4) 150
C13—H13⋯O3ii 0.93 2.48 3.223 (4) 137
Symmetry codes: (i) x+1, y, z; (ii) -x, -y, -z.

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Aglient Technologies Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Hydroxamic acid derivatives have received considerable attention in recent years as the result of the discovery of their role in the biochemical toxicology of many drugs and other chemicals (Noh et al., 2009; Zeng et al., 2003). We have performed the crystal structure determination of the title hydroxamic acid derivative.

The molecular structure of the title compound is shown in Fig. 1. The nitro-substituted benzene ring (C17-C22) forms dihedral angles of 26.95 (15) and 87.06 (15)°, with the p-chloro (C1-C6) and o-chloro-substituted (C8-C13) benzene rings, respectively. The dihedral angle between the two chloro-substituted benzene rings is 68.19 (13) °. Closely related structures appear in the literature (Zhang et al., 2012; Ma et al., 2012). In the crystal, weak C—H···O(C) hydrogen bonds links molecules along [100] (Fig. 2).

Related literature top

For applications of hydroxamic acid derivatives, see: Noh et al. (2009); Zeng et al. (2003). For the synthesis, see: Ayyangark et al. (1986). For related structures, see: Zhang et al. (2012); Ma et al. (2012).

Experimental top

The title compound (I) was prepared according to the method described by Ayyangark et al. (1986). Crystals of (I) suitable for single-crystal X-ray analysis were grown by slow evaporation of a solution of (I) in dichloromethane-methanol (1:3 v/v).

Refinement top

Hydrogen atoms were placed in calculated positions with C—H = 0.93 and 0.97Å and included in a riding-model approximation with Uiso(H) = 1.2Ueq(C). The O atoms of the nitro group were refined as disorderd over two sets of sites (O4A,O5A/O4B,O5B) with equal occupancies. No geometric constraints were applied to the N—O distances or O—N—O angles as this had a negative effect on the refinment. The O atoms were restrained to be isotropic in nature, using ISOR 0.01 0.02 O4B O5A O5A O4A in SHELXL (Sheldrick, 2008).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 30% probability displacement dllipsoids. H atoms are shown as small spheres of arbitrary radius. The disorder is not shown.
[Figure 2] Fig. 2. Part of the crystal structure with hydrogen bonds shown as dashed lines. The disorder is not shown.
N-(2-Chlorophenyl)-1-(4-chlorophenyl)formamido 3-(2-nitrophenyl)propanoate top
Crystal data top
C22H16Cl2N2O5Z = 2
Mr = 459.27F(000) = 472
Triclinic, P1Dx = 1.443 Mg m3
a = 9.1574 (8) ÅMo Kα radiation, λ = 0.7107 Å
b = 10.1976 (6) ÅCell parameters from 2906 reflections
c = 12.1736 (8) Åθ = 3.0–28.5°
α = 91.847 (5)°µ = 0.34 mm1
β = 108.327 (8)°T = 293 K
γ = 100.285 (6)°Block, colourless
V = 1057.06 (13) Å30.32 × 0.28 × 0.25 mm
Data collection top
Agilent SuperNova (Dual, Cu at zero, Eos)
diffractometer
4785 independent reflections
Radiation source: SuperNova (Mo) X-ray Source3434 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.018
Detector resolution: 16.0733 pixels mm-1θmax = 28.6°, θmin = 3.0°
ω scansh = 1212
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 1113
Tmin = 0.843, Tmax = 1.000l = 1215
7898 measured reflections
Refinement top
Refinement on F224 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.055 w = 1/[σ2(Fo2) + (0.0447P)2 + 0.5564P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.139(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.48 e Å3
4785 reflectionsΔρmin = 0.45 e Å3
298 parameters
Crystal data top
C22H16Cl2N2O5γ = 100.285 (6)°
Mr = 459.27V = 1057.06 (13) Å3
Triclinic, P1Z = 2
a = 9.1574 (8) ÅMo Kα radiation
b = 10.1976 (6) ŵ = 0.34 mm1
c = 12.1736 (8) ÅT = 293 K
α = 91.847 (5)°0.32 × 0.28 × 0.25 mm
β = 108.327 (8)°
Data collection top
Agilent SuperNova (Dual, Cu at zero, Eos)
diffractometer
4785 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
3434 reflections with I > 2σ(I)
Tmin = 0.843, Tmax = 1.000Rint = 0.018
7898 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05524 restraints
wR(F2) = 0.139H-atom parameters constrained
S = 1.04Δρmax = 0.48 e Å3
4785 reflectionsΔρmin = 0.45 e Å3
298 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.30250 (8)0.14141 (7)0.49104 (6)0.0635 (2)
Cl20.24622 (12)0.53403 (8)0.43213 (9)0.0942 (3)
O20.03359 (18)0.18128 (15)0.24969 (15)0.0496 (4)
O10.1073 (2)0.01016 (18)0.33664 (18)0.0641 (5)
O30.1782 (3)0.0981 (2)0.09403 (19)0.0827 (7)
N10.0768 (2)0.05360 (18)0.25036 (18)0.0455 (5)
C90.3548 (3)0.1106 (2)0.3701 (2)0.0473 (5)
C80.2407 (3)0.0716 (2)0.2637 (2)0.0436 (5)
C70.0030 (3)0.0337 (2)0.3102 (2)0.0468 (5)
C60.0626 (3)0.1603 (2)0.3349 (2)0.0456 (5)
C30.1726 (3)0.3910 (2)0.3938 (3)0.0583 (7)
C140.0991 (3)0.1893 (3)0.1623 (2)0.0532 (6)
C130.2822 (3)0.0474 (3)0.1654 (3)0.0576 (7)
H130.20580.02460.09270.069*
C40.1748 (3)0.3425 (2)0.2910 (3)0.0600 (7)
H40.21270.38740.24140.072*
C170.3174 (3)0.4808 (3)0.1221 (2)0.0558 (7)
C10.0565 (3)0.2147 (3)0.4362 (2)0.0565 (6)
H10.01480.17280.48490.068*
C50.1203 (3)0.2260 (2)0.2610 (2)0.0538 (6)
H50.12230.19190.19150.065*
C180.2762 (3)0.6005 (3)0.0793 (2)0.0594 (7)
C150.1275 (3)0.3281 (2)0.1738 (2)0.0545 (6)
H15A0.04450.39040.15830.065*
H15B0.12230.35010.25320.065*
N20.1934 (4)0.6103 (4)0.0050 (3)0.0862 (8)
C110.5514 (4)0.0928 (3)0.2855 (4)0.0758 (9)
H110.65650.09780.29300.091*
C120.4391 (4)0.0577 (3)0.1778 (3)0.0731 (9)
H120.46890.04090.11320.088*
C100.5115 (3)0.1204 (3)0.3813 (3)0.0634 (7)
H100.58870.14550.45330.076*
C20.1111 (3)0.3299 (3)0.4659 (3)0.0642 (7)
H20.10640.36600.53420.077*
C160.2842 (3)0.3464 (3)0.0924 (3)0.0670 (8)
H16A0.28360.34030.01290.080*
H16B0.36670.27560.09860.080*
C200.3816 (4)0.7203 (4)0.1959 (3)0.0823 (10)
H200.40260.79980.22100.099*
C220.3929 (4)0.4867 (3)0.2037 (3)0.0744 (8)
H220.42290.40840.23500.089*
C210.4252 (4)0.6038 (4)0.2402 (3)0.0854 (10)
H210.47680.60380.29490.102*
C190.3082 (4)0.7198 (3)0.1157 (3)0.0744 (9)
H190.27900.79870.08500.089*
O4B0.2146 (9)0.5291 (11)0.0774 (8)0.137 (4)0.50
O5A0.2098 (13)0.6859 (11)0.0663 (10)0.171 (4)0.50
O4A0.1345 (10)0.5136 (9)0.0205 (7)0.114 (3)0.50
O5B0.0987 (8)0.7288 (7)0.0029 (5)0.0943 (17)0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0684 (4)0.0682 (4)0.0530 (4)0.0221 (3)0.0142 (3)0.0018 (3)
Cl20.1052 (7)0.0560 (4)0.1179 (8)0.0351 (4)0.0201 (6)0.0158 (5)
O20.0434 (9)0.0434 (8)0.0577 (10)0.0202 (7)0.0046 (7)0.0009 (7)
O10.0492 (10)0.0645 (11)0.0909 (14)0.0216 (9)0.0346 (10)0.0043 (10)
O30.0803 (14)0.0757 (13)0.0724 (14)0.0383 (11)0.0127 (11)0.0204 (11)
N10.0394 (10)0.0423 (10)0.0578 (12)0.0189 (8)0.0140 (9)0.0052 (9)
C90.0416 (12)0.0391 (11)0.0630 (15)0.0134 (9)0.0159 (11)0.0125 (11)
C80.0388 (12)0.0397 (11)0.0571 (14)0.0161 (9)0.0171 (10)0.0110 (10)
C70.0368 (12)0.0475 (12)0.0557 (14)0.0117 (10)0.0133 (10)0.0034 (11)
C60.0340 (11)0.0407 (11)0.0608 (15)0.0053 (9)0.0154 (10)0.0026 (10)
C30.0549 (15)0.0398 (12)0.0733 (19)0.0091 (11)0.0117 (13)0.0022 (12)
C140.0477 (14)0.0620 (15)0.0497 (14)0.0255 (12)0.0079 (11)0.0009 (12)
C130.0608 (16)0.0535 (14)0.0696 (18)0.0201 (12)0.0311 (14)0.0147 (13)
C40.0606 (16)0.0457 (13)0.080 (2)0.0152 (12)0.0298 (14)0.0048 (13)
C170.0432 (13)0.0602 (15)0.0573 (15)0.0255 (12)0.0009 (11)0.0024 (12)
C10.0568 (15)0.0526 (14)0.0655 (17)0.0093 (12)0.0289 (13)0.0018 (12)
C50.0560 (15)0.0455 (13)0.0635 (16)0.0116 (11)0.0243 (12)0.0003 (11)
C180.0480 (14)0.0698 (17)0.0559 (16)0.0250 (13)0.0032 (12)0.0071 (13)
C150.0506 (14)0.0529 (14)0.0571 (15)0.0240 (11)0.0064 (11)0.0015 (12)
N20.088 (2)0.106 (2)0.071 (2)0.037 (2)0.0235 (16)0.026 (2)
C110.0516 (17)0.0695 (18)0.122 (3)0.0229 (14)0.0430 (19)0.0298 (19)
C120.086 (2)0.0659 (18)0.098 (3)0.0309 (16)0.063 (2)0.0240 (17)
C100.0421 (14)0.0575 (15)0.089 (2)0.0134 (12)0.0159 (14)0.0201 (15)
C20.0716 (18)0.0520 (15)0.0662 (18)0.0074 (13)0.0209 (15)0.0079 (13)
C160.0606 (17)0.0610 (16)0.0701 (18)0.0311 (13)0.0015 (14)0.0003 (14)
C200.070 (2)0.080 (2)0.089 (2)0.0403 (18)0.0030 (18)0.0141 (19)
C220.0614 (18)0.084 (2)0.084 (2)0.0323 (16)0.0222 (16)0.0157 (17)
C210.070 (2)0.111 (3)0.083 (2)0.045 (2)0.0217 (18)0.001 (2)
C190.0672 (19)0.0629 (17)0.082 (2)0.0270 (15)0.0005 (16)0.0067 (16)
O4B0.106 (6)0.178 (8)0.124 (7)0.001 (5)0.055 (5)0.074 (6)
O5A0.222 (9)0.153 (7)0.193 (8)0.065 (7)0.119 (7)0.114 (7)
O4A0.140 (7)0.131 (5)0.124 (6)0.071 (5)0.087 (5)0.062 (5)
O5B0.111 (5)0.096 (4)0.082 (4)0.012 (3)0.042 (3)0.027 (3)
Geometric parameters (Å, º) top
Cl1—C91.721 (3)C5—H50.9300
Cl2—C31.731 (3)C18—N21.451 (4)
O2—N11.426 (2)C18—C191.391 (4)
O2—C141.357 (3)C15—H15A0.9700
O1—C71.211 (3)C15—H15B0.9700
O3—C141.189 (3)C15—C161.513 (3)
N1—C81.436 (3)N2—O4B1.135 (8)
N1—C71.385 (3)N2—O5A1.087 (8)
C9—C81.377 (3)N2—O4A1.241 (8)
C9—C101.383 (3)N2—O5B1.350 (7)
C8—C131.392 (4)C11—H110.9300
C7—C61.492 (3)C11—C121.377 (5)
C6—C11.381 (4)C11—C101.363 (4)
C6—C51.387 (3)C12—H120.9300
C3—C41.365 (4)C10—H100.9300
C3—C21.370 (4)C2—H20.9300
C14—C151.494 (3)C16—H16A0.9700
C13—H130.9300C16—H16B0.9700
C13—C121.380 (4)C20—H200.9300
C4—H40.9300C20—C211.367 (5)
C4—C51.385 (3)C20—C191.348 (5)
C17—C181.380 (4)C22—H220.9300
C17—C161.512 (3)C22—C211.373 (4)
C17—C221.383 (4)C21—H210.9300
C1—H10.9300C19—H190.9300
C1—C21.372 (4)
C14—O2—N1114.19 (17)H15A—C15—H15B107.7
O2—N1—C8109.22 (16)C16—C15—H15A108.9
C7—N1—O2112.21 (17)C16—C15—H15B108.9
C7—N1—C8123.88 (18)O4B—N2—C18123.7 (6)
C8—C9—Cl1120.05 (18)O4B—N2—O5B119.1 (6)
C8—C9—C10120.3 (3)O5A—N2—C18119.8 (6)
C10—C9—Cl1119.6 (2)O5A—N2—O4B91.5 (9)
C9—C8—N1121.6 (2)O5A—N2—O4A121.4 (7)
C9—C8—C13120.4 (2)O5A—N2—O5B50.8 (6)
C13—C8—N1118.0 (2)O4A—N2—C18116.9 (4)
O1—C7—N1121.4 (2)O4A—N2—O5B112.4 (6)
O1—C7—C6122.4 (2)O5B—N2—C18116.9 (4)
N1—C7—C6116.12 (19)C12—C11—H11119.4
C1—C6—C7117.4 (2)C10—C11—H11119.4
C1—C6—C5119.0 (2)C10—C11—C12121.3 (3)
C5—C6—C7123.5 (2)C13—C12—H12119.9
C4—C3—Cl2119.1 (2)C11—C12—C13120.2 (3)
C4—C3—C2121.3 (2)C11—C12—H12119.9
C2—C3—Cl2119.6 (2)C9—C10—H10120.4
O2—C14—C15107.5 (2)C11—C10—C9119.1 (3)
O3—C14—O2124.2 (2)C11—C10—H10120.4
O3—C14—C15128.2 (2)C3—C2—C1119.2 (3)
C8—C13—H13120.6C3—C2—H2120.4
C12—C13—C8118.7 (3)C1—C2—H2120.4
C12—C13—H13120.6C17—C16—C15110.6 (2)
C3—C4—H4120.2C17—C16—H16A109.5
C3—C4—C5119.5 (2)C17—C16—H16B109.5
C5—C4—H4120.2C15—C16—H16A109.5
C18—C17—C16127.2 (3)C15—C16—H16B109.5
C18—C17—C22115.7 (3)H16A—C16—H16B108.1
C22—C17—C16117.1 (3)C21—C20—H20120.0
C6—C1—H1119.5C19—C20—H20120.0
C2—C1—C6120.9 (2)C19—C20—C21120.0 (3)
C2—C1—H1119.5C17—C22—H22118.8
C6—C5—H5120.0C21—C22—C17122.4 (3)
C4—C5—C6119.9 (3)C21—C22—H22118.8
C4—C5—H5120.0C20—C21—C22119.9 (3)
C17—C18—N2121.9 (3)C20—C21—H21120.0
C17—C18—C19122.4 (3)C22—C21—H21120.0
C19—C18—N2115.7 (3)C18—C19—H19120.2
C14—C15—H15A108.9C20—C19—C18119.6 (3)
C14—C15—H15B108.9C20—C19—H19120.2
C14—C15—C16113.4 (2)
Cl1—C9—C8—N11.0 (3)C14—C15—C16—C17170.5 (3)
Cl1—C9—C8—C13179.59 (17)C4—C3—C2—C12.6 (4)
Cl1—C9—C10—C11178.5 (2)C17—C18—N2—O4B36.3 (8)
Cl2—C3—C4—C5178.2 (2)C17—C18—N2—O5A151.0 (9)
Cl2—C3—C2—C1178.4 (2)C17—C18—N2—O4A13.5 (7)
O2—N1—C8—C978.1 (2)C17—C18—N2—O5B150.8 (4)
O2—N1—C8—C13102.5 (2)C17—C18—C19—C200.2 (4)
O2—N1—C7—O113.8 (3)C17—C22—C21—C200.4 (5)
O2—N1—C7—C6168.96 (18)C1—C6—C5—C41.8 (4)
O2—C14—C15—C16171.8 (2)C5—C6—C1—C22.1 (4)
O1—C7—C6—C134.9 (3)C18—C17—C16—C1589.3 (3)
O1—C7—C6—C5143.9 (3)C18—C17—C22—C210.0 (4)
O3—C14—C15—C165.3 (5)N2—C18—C19—C20178.5 (3)
N1—O2—C14—O32.9 (4)C12—C11—C10—C91.1 (4)
N1—O2—C14—C15179.87 (19)C10—C9—C8—N1176.6 (2)
N1—C8—C13—C12176.8 (2)C10—C9—C8—C132.7 (3)
N1—C7—C6—C1147.9 (2)C10—C11—C12—C131.2 (4)
N1—C7—C6—C533.3 (3)C2—C3—C4—C52.9 (4)
C9—C8—C13—C122.6 (3)C16—C17—C18—N20.9 (4)
C8—N1—C7—O1148.4 (2)C16—C17—C18—C19177.7 (2)
C8—N1—C7—C634.3 (3)C16—C17—C22—C21178.1 (3)
C8—C9—C10—C110.8 (4)C22—C17—C18—N2178.7 (3)
C8—C13—C12—C110.7 (4)C22—C17—C18—C190.1 (4)
C7—N1—C8—C957.7 (3)C22—C17—C16—C1588.4 (3)
C7—N1—C8—C13121.7 (2)C21—C20—C19—C180.5 (5)
C7—C6—C1—C2179.0 (2)C19—C18—N2—O4B145.0 (8)
C7—C6—C5—C4179.4 (2)C19—C18—N2—O5A30.3 (10)
C6—C1—C2—C30.1 (4)C19—C18—N2—O4A165.2 (6)
C3—C4—C5—C60.6 (4)C19—C18—N2—O5B27.9 (5)
C14—O2—N1—C8132.4 (2)C19—C20—C21—C220.6 (5)
C14—O2—N1—C786.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···O1i0.932.523.354 (4)150
C13—H13···O3ii0.932.483.223 (4)137
Symmetry codes: (i) x+1, y, z; (ii) x, y, z.

Experimental details

Crystal data
Chemical formulaC22H16Cl2N2O5
Mr459.27
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.1574 (8), 10.1976 (6), 12.1736 (8)
α, β, γ (°)91.847 (5), 108.327 (8), 100.285 (6)
V3)1057.06 (13)
Z2
Radiation typeMo Kα
µ (mm1)0.34
Crystal size (mm)0.32 × 0.28 × 0.25
Data collection
DiffractometerAgilent SuperNova (Dual, Cu at zero, Eos)
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.843, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
7898, 4785, 3434
Rint0.018
(sin θ/λ)max1)0.674
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.139, 1.04
No. of reflections4785
No. of parameters298
No. of restraints24
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.48, 0.45

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···O1i0.932.523.354 (4)150
C13—H13···O3ii0.932.483.223 (4)137
Symmetry codes: (i) x+1, y, z; (ii) x, y, z.
 

Acknowledgements

This work was supported by the Natural Science Fund Projects of Gansu Province (0710RJZA124).

References

First citationAgilent (2011). CrysAlis PRO. Aglient Technologies Ltd, Yarnton, England.  Google Scholar
First citationAyyangark, N. R., Hrailme, C., Kalkotf, U. R. & Srinivasan, K. V. (1986). Synth. Commun. pp. 938–941.  Google Scholar
First citationMa, J., Ma, Y. & He, D. (2012). Acta Cryst. E68, o3067.  CSD CrossRef IUCr Journals Google Scholar
First citationNoh, E. J., Lim, D. S., Jeong, G. & Lee, J. S. (2009). Biochem. Biophys. Res. Commun. 378, 326–331.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZeng, W., Zeng, G. Y. & Qin, S. Y. (2003). Chin. J. Org. Chem. 23, 1213–1218.  CAS Google Scholar
First citationZhang, H., Qu, D. & Ma, J. (2012). Acta Cryst. E68, o2904.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds