organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,4,6-Tri­nitro­phenyl benzoate

aDepartamento de Química, Facultad de Ciencias, Universidad del Valle, Apartado 25360, Santiago de Cali, Colombia, bWestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland, and cInstituto de Química de São Carlos, IFSC, Universidade de São Paulo, USP, São Carlos, SP, Brazil
*Correspondence e-mail: rodimo26@yahoo.es

(Received 17 November 2012; accepted 25 November 2012; online 30 November 2012)

In the title mol­ecule, C13H7N3O8, the phenyl and benzene rings are rotated from the mean plane of the central ester group by 18.41 (9) and 81.80 (5)°, respectively. The dihedral angle between the rings is 80.12 (14)°. In the crystal, mol­ecules are linked by weak C—H⋯O inter­actions, forming helical chains along [010].

Related literature

For theoretical and spectroscopic properties of nitro­phenyl esters, see: Ibrahim et al. (2011[Ibrahim, M. F., Senior, S. A., El-atawy, M. A., El-Sadany, S. K. & Hamed, E. A. (2011). J. Mol. Struct. 1006, 303-311.]); Kirkien-Konasievicz & Maccoll (1964[Kirkien-Konasievicz, A. & Maccoll, A. (1964). J. Chem. Soc. pp. 1267-1274.]). For the structures of similar esters, see: Moreno-Fuquen et al. (2012a[Moreno-Fuquen, R., Mosquera, F., Ellena, J. & Tenorio, J. C. (2012a). Acta Cryst. E68, o2187.],b[Moreno-Fuquen, R., Mosquera, F., Ellena, J., Tenorio, J. C. & Corrêa, R. S. (2012b). Acta Cryst. E68, o3107.]); Shibakami & Sekiya (1995[Shibakami, M. & Sekiya, A. (1995). Acta Cryst. C51, 326-330.]); Gowda et al. (2007[Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2007). Acta Cryst. E63, o3756.]). For structural properties of nitro­phenyl compounds, see: Domenicano et al. (1990[Domenicano, A., Schultz, G., Hargittai, I., Colapietro, M., Portalone, G., George, P. & Bock, C. (1990). Struct. Chem. 1, 107-122.]); Glidewell et al. (2005[Glidewell, C., Low, J. N., Skakle, J. M. S., Wardell, S. M. S. V. & Wardell, J. L. (2005). Acta Cryst. B61, 227-237.]). For hydrogen-bonding information, see: Nardelli (1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • C13H7N3O8

  • Mr = 333.22

  • Orthorhombic, P 21 21 21

  • a = 7.5818 (3) Å

  • b = 8.3714 (2) Å

  • c = 21.0625 (10) Å

  • V = 1336.84 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.14 mm−1

  • T = 123 K

  • 0.31 × 0.21 × 0.12 mm

Data collection
  • Oxford Diffraction Xcalibur E diffractometer

  • 5179 measured reflections

  • 2758 independent reflections

  • 2563 reflections with I > 2σ(I)'

  • Rint = 0.019

  • Standard reflections: 0

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.073

  • S = 1.05

  • 2758 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O8i 0.95 2.44 3.388 (2) 177
Symmetry code: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

In our research group, we have recently investigated the synthesis, crystalline properties and main structural features of nitro aryl benzoates, in particular, the derivatives of picric acid (trinitrophenol - TNP). These types of compounds have been synthetically obtained and studied at a spectroscopic and theoretical level (Ibrahim et al., 2011) but there are no prior entries in Cambridge Structural Database (Version 5.33, Allen, 2002) of such related esters. Consequently, there is an absence of structural information about these esters. In order to fulfill this absence, we present the structure determination of the title compound, as part of a group of nitro aryl benzoates such as 2,4,6-trinitrophenyl-3-methylbenzoate (TNP3MeBA) and 2,4,6-trinitrophenyl-4-methylbenzoate (TNP4MeBA), the structures of which are already published (Moreno-Fuquen et al., 2012a,b).

The molecular structure of (I) is shown in Fig. 1, with a numbering scheme similar to that for TNP3MeBA and TNP4MeBA in order to simplify structural comparisons. In (I) the bond lengths and bond angles agree closely with those for its homologous esters TNP3MeBA (Moreno-Fuquen et al., 2012a) and TNP4MeBA (Moreno-Fuquen et al., 2012b). However, if these structural parameters are strictly checked in other phenyl benzoates having no nitro substituent over the structure (Shibakami & Sekiya, 1995, Gowda et al., 2007), it should be noticed that the phenolic C1—O7 bond length is significantly shortened [1.3695 (19) Å] and the benzoic C7—O7 bond length is significantly elongated [1.3876 (17) Å]. These changes in the bond parameters in (I) seem to be a feature of this kind of nitro phenyl benzoates , as they were found also in TNP3MeBA and TNP4MeBA, and are probably related with the presence of nitro substituents in the structure. Such effects have been well described by other authors (Kirkien-Konasievicz & Maccoll, 1964; Domenicano et al., 1990; Ibrahim et al., 2011) in a large varied number of other organic structures and can be rationalized in terms of inductive, resonance, reactivity and steric effects produced by nitro groups over aromatic rings. The benzene rings of (I) form a dihedral angle of 80.12 (14)°, compared with values of 87.48 (5)° and 69.02 (5)°, in TNP3MeBA and TNP4MeBA respectively. The central ester moiety forms an angle of 18.41 (9)° with the phenyl ring to which it is attached. This value is similar to the corresponding angle in the homologous ester TNP3MeBA 19.42 (7)°. The nitro groups form dihedral angles with the adjacent benzene ring of 29.55 (8)°, 13.94 (9)° and 8.84 (7)° for O1—N1—O2, O3—N2—O4 and O5—N3—O6, respectively. It was noted that for TNP4MeBA those same dihedral angles present almost identical values 30.57 (11)°, 14.75 (16)° and 7.37 (17)° and for TNP3MeBA the differences appear to increase 43.15 (10)°, 7.72 (14)° and 13.56 (18)°. The molecules are packed forming weak interactions C—H···O in one-dimensional helical chains which propagate along [010] (see Fig. 2). The C3 atom of the phenyl ring at (x,y,z) acts as a hydrogen-bond donor to carbonyl atom O8 at (-x,+y-1/2,-z+1/2) (see Table 1; Nardelli, 1995). This molecular interaction, involving the same atoms and given akin supramolecular behavior, is also found in TNP3MeBA and TNP4MeBA. For (I), the interaction is defined by distance D..A [3.388 (2) Å] and the angle D-H..A [176°], shown in Table 1, which compared with its analogous values in TNP4MeBA [3.4286 (19) Å, 175°] and TNP3MeBA [3.4276 (19) Å, 176°] reveal an extraordinary similarity at structural level among these group of compounds; very uncommon if it is taken into account that small changes in the molecular structures of a group of molecules usually lead to large changes in molecular aggregation of the structures (Glidewell et al., 2005).

Related literature top

For theoretical and spectroscopic properties of nitrophenyl esters, see: Ibrahim et al. (2011); Kirkien-Konasievicz & Maccoll (1964). For the structures of similar esters, see: Moreno-Fuquen et al. (2012a,b); Shibakami & Sekiya (1995); Gowda et al. (2007). For structural properties of nitrophenyl compounds, see: Domenicano et al. (1990); Glidewell et al. (2005). For hydrogen-bonding information, see: Nardelli (1995). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental top

The reagents and solvents for the synthesis were obtained from the Aldrich Chemical Co., and were used without additional purification. The title molecule was synthesized using equimolar quantities of benzoyl chloride (0.235 g, 1.673 mmol) and picric acid (0.383g). The reagents were dissolved in acetonitrile and the solution was taken to reflux for about an hour. A pale yellow solid was obtained after leaving the solvent to evaporate. The solid was washed with distilled water and cold methanol to eliminate impurities. Crystals of good quality and suitable for single-crystal X-ray diffraction were grown from acetonitrile. IR spectra were recorded on a FT—IR SHIMADZU IR-Affinity-1 spectrophotometer. Pale Yellow crystals; yield 72%; m.p 435 K. IR (KBr) 3082.38 cm-1, 3025.48 cm-1 (aromatic C—H); 1759.15 cm-1 (ester C=O); 1618.34 cm-1, 1611.59 cm-1 (C=C); 1544.08 cm-1, 1342.51 cm-1 (–NO2); 1224.85 cm-1 (C(=O)—O).

Refinement top

All H-atoms were positioned at geometrically idealized positions with C—H distance of 0.93 Å and Uiso(H) = 1.2 times Ueq of the C-atoms to which they were bonded.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The molecular structure and atom numbering scheme for the title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. Part of the crystal structure of (I), showing the formation of helical chains along [010]. Symmetry code: (i) -x,+y-1/2,-z+1/2.
2,4,6-Trinitrophenyl benzoate top
Crystal data top
C13H7N3O8Dx = 1.656 Mg m3
Mr = 333.22Melting point: 435(1) K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 5179 reflections
a = 7.5818 (3) Åθ = 2.9–27.0°
b = 8.3714 (2) ŵ = 0.14 mm1
c = 21.0625 (10) ÅT = 123 K
V = 1336.84 (9) Å3Block, pale-yellow
Z = 40.31 × 0.21 × 0.12 mm
F(000) = 680
Data collection top
Oxford Diffraction Xcalibur E
diffractometer
2563 reflections with I > 2σ(I)'
Radiation source: fine-focus sealed tubeRint = 0.019
Graphite monochromatorθmax = 27.0°, θmin = 2.9°
ω scansh = 98
5179 measured reflectionsk = 1010
2758 independent reflectionsl = 2623
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.073H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0354P)2 + 0.1599P]
where P = (Fo2 + 2Fc2)/3
2758 reflections(Δ/σ)max < 0.001
217 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C13H7N3O8V = 1336.84 (9) Å3
Mr = 333.22Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.5818 (3) ŵ = 0.14 mm1
b = 8.3714 (2) ÅT = 123 K
c = 21.0625 (10) Å0.31 × 0.21 × 0.12 mm
Data collection top
Oxford Diffraction Xcalibur E
diffractometer
2563 reflections with I > 2σ(I)'
5179 measured reflectionsRint = 0.019
2758 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.073H-atom parameters constrained
S = 1.05Δρmax = 0.17 e Å3
2758 reflectionsΔρmin = 0.21 e Å3
217 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.11331 (19)0.69680 (17)0.15456 (6)0.0370 (3)
O20.03793 (16)0.51649 (14)0.20396 (6)0.0265 (3)
O30.10783 (19)0.58818 (19)0.43018 (7)0.0423 (4)
O40.07057 (19)0.74602 (16)0.48041 (6)0.0344 (3)
O50.6229 (2)0.8632 (2)0.38383 (7)0.0479 (4)
O60.65305 (16)0.87515 (14)0.28252 (6)0.0275 (3)
O70.42129 (15)0.73147 (12)0.21060 (5)0.0182 (2)
O80.35960 (15)0.99125 (13)0.19172 (5)0.0205 (3)
N10.07053 (19)0.62411 (16)0.20235 (6)0.0207 (3)
N20.01984 (19)0.67714 (17)0.43257 (7)0.0246 (3)
N30.56820 (19)0.84505 (16)0.33002 (7)0.0219 (3)
C10.3206 (2)0.73479 (17)0.26457 (8)0.0159 (3)
C20.1511 (2)0.67083 (17)0.26317 (8)0.0170 (3)
C30.0513 (2)0.64857 (17)0.31728 (8)0.0186 (3)
H30.06190.60020.31550.022*
C40.1230 (2)0.69963 (18)0.37407 (8)0.0192 (3)
C50.2881 (2)0.76870 (18)0.37826 (8)0.0194 (3)
H50.33280.80510.41780.023*
C60.3864 (2)0.78346 (17)0.32340 (8)0.0177 (3)
C70.4341 (2)0.87175 (17)0.17581 (7)0.0168 (3)
C80.5485 (2)0.84810 (18)0.12011 (7)0.0170 (3)
C90.6668 (2)0.7207 (2)0.11679 (8)0.0237 (4)
H90.67430.64610.15060.028*
C100.7730 (2)0.7040 (2)0.06380 (9)0.0309 (4)
H100.85300.61700.06100.037*
C110.7630 (2)0.8137 (2)0.01489 (9)0.0268 (4)
H110.83730.80200.02110.032*
C120.6461 (2)0.94018 (19)0.01778 (8)0.0206 (3)
H120.64031.01500.01610.025*
C130.5369 (2)0.95746 (18)0.07042 (7)0.0178 (3)
H130.45501.04320.07250.021*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0388 (8)0.0502 (8)0.0220 (7)0.0188 (7)0.0061 (6)0.0083 (6)
O20.0218 (6)0.0228 (5)0.0347 (7)0.0062 (5)0.0041 (6)0.0043 (5)
O30.0269 (7)0.0656 (9)0.0345 (8)0.0114 (8)0.0099 (6)0.0052 (7)
O40.0417 (8)0.0419 (7)0.0197 (6)0.0053 (7)0.0050 (6)0.0049 (6)
O50.0378 (8)0.0807 (11)0.0254 (8)0.0282 (9)0.0114 (7)0.0050 (7)
O60.0211 (6)0.0316 (6)0.0299 (7)0.0083 (6)0.0011 (6)0.0042 (6)
O70.0190 (6)0.0165 (5)0.0190 (6)0.0007 (5)0.0043 (5)0.0018 (4)
O80.0201 (6)0.0188 (5)0.0227 (6)0.0028 (5)0.0031 (5)0.0011 (5)
N10.0169 (7)0.0223 (6)0.0230 (7)0.0011 (6)0.0003 (6)0.0027 (6)
N20.0214 (7)0.0292 (7)0.0233 (8)0.0068 (7)0.0044 (7)0.0035 (6)
N30.0204 (7)0.0217 (6)0.0236 (8)0.0044 (6)0.0037 (6)0.0032 (6)
C10.0179 (8)0.0120 (6)0.0178 (8)0.0017 (6)0.0023 (6)0.0019 (6)
C20.0171 (8)0.0143 (6)0.0195 (8)0.0010 (7)0.0012 (7)0.0010 (6)
C30.0154 (7)0.0162 (7)0.0241 (8)0.0011 (7)0.0022 (7)0.0015 (6)
C40.0189 (8)0.0177 (7)0.0211 (9)0.0037 (7)0.0040 (7)0.0026 (6)
C50.0231 (8)0.0160 (7)0.0190 (8)0.0027 (7)0.0027 (7)0.0001 (6)
C60.0151 (8)0.0147 (6)0.0232 (8)0.0011 (6)0.0026 (7)0.0020 (6)
C70.0138 (7)0.0176 (7)0.0188 (8)0.0026 (7)0.0030 (6)0.0016 (6)
C80.0145 (7)0.0188 (7)0.0176 (8)0.0036 (7)0.0002 (7)0.0005 (6)
C90.0211 (8)0.0263 (8)0.0237 (9)0.0051 (8)0.0011 (7)0.0033 (7)
C100.0266 (9)0.0330 (9)0.0329 (10)0.0116 (9)0.0076 (9)0.0032 (8)
C110.0220 (9)0.0338 (9)0.0244 (9)0.0038 (8)0.0078 (8)0.0007 (7)
C120.0205 (9)0.0236 (7)0.0176 (8)0.0039 (7)0.0006 (7)0.0008 (6)
C130.0153 (8)0.0177 (7)0.0203 (8)0.0007 (7)0.0014 (7)0.0011 (6)
Geometric parameters (Å, º) top
O1—N11.2201 (18)C3—H30.9500
O2—N11.2203 (17)C4—C51.382 (2)
O3—N21.222 (2)C5—C61.381 (2)
O4—N21.2231 (18)C5—H50.9500
O5—N31.2166 (19)C7—C81.473 (2)
O6—N31.2158 (17)C8—C131.393 (2)
O7—C11.3695 (19)C8—C91.395 (2)
O7—C71.3876 (17)C9—C101.383 (2)
O8—C71.1965 (18)C9—H90.9500
N1—C21.472 (2)C10—C111.382 (3)
N2—C41.471 (2)C10—H100.9500
N3—C61.478 (2)C11—C121.382 (2)
C1—C21.393 (2)C11—H110.9500
C1—C61.396 (2)C12—C131.391 (2)
C2—C31.381 (2)C12—H120.9500
C3—C41.382 (2)C13—H130.9500
C1—O7—C7117.39 (11)C5—C6—C1121.58 (14)
O1—N1—O2124.77 (14)C5—C6—N3117.12 (14)
O1—N1—C2118.37 (13)C1—C6—N3121.22 (15)
O2—N1—C2116.84 (13)O8—C7—O7121.79 (14)
O3—N2—O4124.76 (16)O8—C7—C8127.85 (14)
O3—N2—C4117.67 (15)O7—C7—C8110.37 (12)
O4—N2—C4117.55 (14)C13—C8—C9120.35 (15)
O6—N3—O5124.07 (15)C13—C8—C7118.21 (14)
O6—N3—C6119.22 (14)C9—C8—C7121.43 (14)
O5—N3—C6116.70 (14)C10—C9—C8119.47 (16)
O7—C1—C2119.27 (14)C10—C9—H9120.3
O7—C1—C6122.92 (14)C8—C9—H9120.3
C2—C1—C6117.42 (14)C11—C10—C9120.15 (16)
C3—C2—C1122.70 (15)C11—C10—H10119.9
C3—C2—N1117.07 (14)C9—C10—H10119.9
C1—C2—N1120.24 (14)C10—C11—C12120.75 (16)
C2—C3—C4117.22 (15)C10—C11—H11119.6
C2—C3—H3121.4C12—C11—H11119.6
C4—C3—H3121.4C11—C12—C13119.75 (16)
C3—C4—C5122.76 (16)C11—C12—H12120.1
C3—C4—N2118.45 (14)C13—C12—H12120.1
C5—C4—N2118.79 (15)C12—C13—C8119.52 (15)
C6—C5—C4118.24 (15)C12—C13—H13120.2
C6—C5—H5120.9C8—C13—H13120.2
C4—C5—H5120.9
C7—O7—C1—C2101.44 (16)O7—C1—C6—C5172.62 (13)
C7—O7—C1—C685.90 (18)C2—C1—C6—C50.2 (2)
O7—C1—C2—C3170.39 (13)O7—C1—C6—N34.1 (2)
C6—C1—C2—C32.7 (2)C2—C1—C6—N3176.85 (13)
O7—C1—C2—N19.8 (2)O6—N3—C6—C5172.63 (14)
C6—C1—C2—N1177.14 (13)O5—N3—C6—C57.0 (2)
O1—N1—C2—C3149.89 (15)O6—N3—C6—C110.5 (2)
O2—N1—C2—C328.6 (2)O5—N3—C6—C1169.84 (16)
O1—N1—C2—C129.9 (2)C1—O7—C7—O80.5 (2)
O2—N1—C2—C1151.56 (14)C1—O7—C7—C8179.19 (13)
C1—C2—C3—C43.0 (2)O8—C7—C8—C1318.8 (3)
N1—C2—C3—C4176.85 (13)O7—C7—C8—C13161.59 (14)
C2—C3—C4—C50.8 (2)O8—C7—C8—C9160.83 (17)
C2—C3—C4—N2179.85 (13)O7—C7—C8—C918.8 (2)
O3—N2—C4—C313.6 (2)C13—C8—C9—C100.2 (3)
O4—N2—C4—C3168.01 (14)C7—C8—C9—C10179.38 (16)
O3—N2—C4—C5165.48 (15)C8—C9—C10—C110.6 (3)
O4—N2—C4—C512.9 (2)C9—C10—C11—C120.7 (3)
C3—C4—C5—C61.6 (2)C10—C11—C12—C130.1 (3)
N2—C4—C5—C6177.51 (14)C11—C12—C13—C80.9 (2)
C4—C5—C6—C11.9 (2)C9—C8—C13—C121.0 (2)
C4—C5—C6—N3174.95 (13)C7—C8—C13—C12178.63 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O8i0.952.443.388 (2)177
Symmetry code: (i) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC13H7N3O8
Mr333.22
Crystal system, space groupOrthorhombic, P212121
Temperature (K)123
a, b, c (Å)7.5818 (3), 8.3714 (2), 21.0625 (10)
V3)1336.84 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.14
Crystal size (mm)0.31 × 0.21 × 0.12
Data collection
DiffractometerOxford Diffraction Xcalibur E
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)'] reflections
5179, 2758, 2563
Rint0.019
(sin θ/λ)max1)0.638
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.073, 1.05
No. of reflections2758
No. of parameters217
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.21

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006), WinGX (Farrugia, 2012).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O8i0.952.443.388 (2)176.5
Symmetry code: (i) x, y1/2, z+1/2.
 

Acknowledgements

RMF is grateful to the Spanish Research Council (CSIC) for the use of a free-of-charge licence to the Cambridge Structural Database and also thanks the Universidad del Valle, Colombia, for partial financial support.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDomenicano, A., Schultz, G., Hargittai, I., Colapietro, M., Portalone, G., George, P. & Bock, C. (1990). Struct. Chem. 1, 107–122.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGlidewell, C., Low, J. N., Skakle, J. M. S., Wardell, S. M. S. V. & Wardell, J. L. (2005). Acta Cryst. B61, 227–237.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2007). Acta Cryst. E63, o3756.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationIbrahim, M. F., Senior, S. A., El-atawy, M. A., El-Sadany, S. K. & Hamed, E. A. (2011). J. Mol. Struct. 1006, 303–311.  Web of Science CrossRef CAS Google Scholar
First citationKirkien-Konasievicz, A. & Maccoll, A. (1964). J. Chem. Soc. pp. 1267–1274.  Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMoreno-Fuquen, R., Mosquera, F., Ellena, J. & Tenorio, J. C. (2012a). Acta Cryst. E68, o2187.  CSD CrossRef IUCr Journals Google Scholar
First citationMoreno-Fuquen, R., Mosquera, F., Ellena, J., Tenorio, J. C. & Corrêa, R. S. (2012b). Acta Cryst. E68, o3107.  CSD CrossRef IUCr Journals Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShibakami, M. & Sekiya, A. (1995). Acta Cryst. C51, 326–330.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds