organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 12| December 2012| Pages o3453-o3454

2,5-Bis[2-({bis­­[3-(di­methyl­aza­nium­yl)prop­yl]aza­nium­yl}meth­yl)phen­yl]-1,3,4-oxa­diazole hexa­kis­(perchlorate) sesquihydrate

aDepartment of Basic Sciences and Fundamentals, University of Urbino, I-61029 Urbino, Italy, and bDipartimento Energetica "Sergio Stecco", University of Firenze, Via S. Marta 3, I-50139 Firenze, Italy
*Correspondence e-mail: paolapaoli@unifi.it

(Received 26 September 2012; accepted 19 November 2012; online 24 November 2012)

In the title hydrated salt, C36H66N8O6+·6ClO4·1.5H2O, the asymmetric unit consists of a hexa­protonated [H6L]6+ cation, five perchlorate anions in general positions, two on twofold rotation axes (one of which is disordered), and two water mol­ecules of crystallization in general positions, one of them disordered around a twofold crystallographic axis. In the [H6L]6+ cation, two strong intra­molecular N—H⋯N hydrogen bonds occur, involving the N atoms of the oxadiazole ring as acceptors and the closest NH+ groups of each dipropyl­enetriamine unit. In the crystal, the [H6L]6+ cations form channels along the a-axis direction, in which the perchlorate counter-ions and the water mol­ecules are lodged. The crystal packing features a network of N—H⋯O and O—H⋯O hydrogen bonds involving the NH+ groups of the [H6L]6+ cation, the perchlorate anions and the water mol­ecules.

Related literature

For 2,5 bis­[2 (chloro­meth­yl)phen­yl][1,3,4]oxadiazole, see: Formica et al. (2012[Formica, M., Fusi, V., Giorgi, L. & Micheloni, M. (2012). Coord. Chem. Rev. 256, 170-192.]); Wang et al. (1998[Wang, S., Zheng, S. P., Meng, H. & Hua, W. T. (1998). Synth. Met. 93, 181-185.]). For systems able to recognise and signal metal cations and anions, see: Ambrosi et al. (2006[Ambrosi, G., Dapporto, P., Formica, M., Fusi, V., Giorgi, L., Guerri, A., Micheloni, M., Paoli, P., Pontellini, R. & Rossi, P. (2006). Inorg. Chem. 45, 304-314.], 2011[Ambrosi, G., Formica, M., Fusi, V., Giorgi, L., Macedi, E., Micheloni, M., Paoli, P., Pontellini, R. & Rossi, P. (2011). Chem. Eur. J. 17, 1670-1682.]); Ambrosi, Formica, Fusi, Giorgi, Macedi, Micheloni, Paoli et al. (2010[Ambrosi, G., Formica, M., Fusi, V., Giorgi, L., Macedi, E., Micheloni, M., Paoli, P., Pontellini, R. & Rossi, P. (2010). Inorg Chem. 48, 9940-9948.]); Ambrosi, Formica, Fusi, Giorgi, Macedi, Micheloni, Piersanti et al. (2010[Ambrosi, G., Formica, M., Fusi, V., Giorgi, L., Macedi, E., Micheloni, M., Piersanti, G. & Pontellini, R. (2010). Org. Biomol. Chem. 8, 1471-1478.]); Bencini et al. (1994[Bencini, A., Bianchi, A., Dapporto, P., Paoli, P., Burguete, M., Doménech, A., Garcia, E., Luis, S. & Ramirez, J. (1994). J. Chem. Soc. Perkin Trans. 2, pp. 569-577.]); Formica et al. (2008[Formica, M., Fusi, V., Paoli, P., Piersanti, P., Rossi, P., Zappia, G. & Orlando, P. (2008). New J. Chem. 32, 1204-1214.]); Terenzi et al. (2012[Terenzi, A., Fanelli, M., Ambrosi, G., Amatori, S., Fusi, V., Giorgi, L., Turco Liveri, V. & Barone, G. (2012). Dalton Trans. 41, 4389-4395.]).

[Scheme 1]

Experimental

Crystal data
  • C36H66N8O6+·6ClO4·1.5H2O

  • Mr = 1250.69

  • Monoclinic, C 2/c

  • a = 19.5601 (7) Å

  • b = 25.0825 (8) Å

  • c = 24.2277 (9) Å

  • β = 113.695 (5)°

  • V = 10884.4 (7) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 3.69 mm−1

  • T = 150 K

  • 0.10 × 0.08 × 0.03 mm

Data collection
  • Oxford XcaliburPX diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.728, Tmax = 0.895

  • 30246 measured reflections

  • 10465 independent reflections

  • 6531 reflections with I > 2σ(I)

  • Rint = 0.056

Refinement
  • R[F2 > 2σ(F2)] = 0.070

  • wR(F2) = 0.219

  • S = 1.06

  • 10465 reflections

  • 692 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.48 e Å−3

  • Δρmin = −0.86 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯N2 0.93 1.90 2.714 (5) 145
N6—H6⋯N1 0.93 2.04 2.779 (6) 136
N5—H5⋯O1W 0.93 1.85 2.747 (6) 160
N4—H4⋯O2W 0.93 1.95 2.83 (1) 156
N4—H4⋯O2Wi 0.93 2.30 2.97 (1) 129
O1W—H1WA⋯O23ii 0.84 (3) 2.05 (3) 2.852 (7) 160 (3)
O1W—H1WB⋯O21iii 0.83 (3) 2.06 (3) 2.876 (5) 169 (3)
N7—H7⋯O22 0.93 2.26 3.000 (6) 137
N7—H7⋯O73 0.93 2.28 2.94 (1) 127
N8—H8⋯O42 0.93 2.27 3.09 (1) 146
N8—H8⋯O41iv 0.93 2.36 3.10 (1) 137
Symmetry codes: (i) [-x+2, y, -z+{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (iv) [-x+1, y, -z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: PARST97 (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]).

Supporting information


Comment top

2,5-diphenyl[1,3,4]oxadiazole (PPD) is a well known fluorophore belonging to the class of the 1,3,4-oxadiazole derivatives. It has a high photoluminescence quantum yield and both thermal and chemical stabilities (Formica et al., 2012). Following our interest in systems able to recognize and signal metal cations and anions (Ambrosi et al. 2006; Ambrosi et al., 2011; Bencini et al., 1994; Formica et al., 2008) we developed a class of macrocyclic polyamines incorporating PPD in their macrocyclic skeleton able to sense Zn(II) at physiological pH 7.4 as well as to intercalate DNA (Ambrosi, Formica, Fusi, Giorgi, Macedi, Micheloni, Paoli et al., 2010; Ambrosi, Formica, Fusi, Giorgi, Macedi, Micheloni, Piersanti et al., 2010; Terenzi et al., 2012). Here we report the crystal structure of the hexaprotonated species of a new ligand L (2,5-bis[2-(N,N-bis(3-dimethylaminopropyl)aminomethyl)phenyl][1,3,4]oxadiazole) in which two dipropylenetriamine subunits are linked to PPD in an open-chain molecular framework. In the crystal, the are [H6L]6+ cations formed by the N–protonated ligand L, perchlorate anions and water molecules in 1:6:1.5 ratios. In particular, two perchlorate anions (Cl4 and Cl6 are the chlorine atoms) lye on binary crystallographic axes and one of them is disordered in two rotational orientations around a chlorine–oxygen bond (Cl6—O61). As a consequence their population parameters were fixed to 0.5. The same popoulation parameter was assigned to a crystallization water molecule (O2W is the oxygen atom), which is disordered around a twofold crystallographic axis. As for the [H6L]6+ cation, the oxadiazole mean plane slightly deviates from the mean plane defined by the phenyl rings (10.5 (2)°, Fig. 1) and, as expected, the propyl chains show all-trans conformations (Fig. 1). Two strong intramolecular H-bonds involve the oxadiazole nitrogen atoms N1 and N2 and the closest NH+ groups N6H6+and N3H3+, respectively (Table 1). In the crystal, the hexaprotonated cations form channels along the a axis that host the perchlorate counterions and the crystallization water molecules (Fig. 2). The latter are H-bonded to the terminal N4H4+ and N5H5+ groups of the cation (Table 1). Finally, the oxygen atoms of some perchlorate anions also are involved in a net of H-bond interactions with several NH+ groups of the [H6L]6+ cation and the water molecule (O1W is the oxygen atom). (Table 1, Fig. 3).

Related literature top

For 2,5 bis[2 (chloromethyl)phenyl][1,3,4]oxadiazole, see: Formica et al. (2012); Wang et al. (1998). For systems able to recognize and signal metal cations and anions, see: Ambrosi et al. (2006, 2011); Ambrosi, Formica, Fusi, Giorgi, Macedi, Micheloni, Paoli et al. (2010); Ambrosi, Formica, Fusi, Giorgi, Macedi, Micheloni, Piersanti et al. (2010); Bencini et al. (1994); Formica et al. (2008); Terenzi et al. (2012).

Experimental top

2,5 bis[2 (chloromethyl)phenyl][1,3,4]oxadiazole was prepared accordingly to literature (Wang et al., 1998). 2,5-bis[2-(N,N-bis(3-dimethylaminopropyl)aminomethyl)phenyl][1,3,4]oxadiazole (L): over a period of 2 h, a solution of N,N-bis(3-dimethylaminopropyl)amine (1.9 g, 10 mmol) in 100 cm3 of anhydrous THF was added to a suspension of 2,5[bis[2-(chloromethyl)phenyl][1,3,4]oxadiazole (1.6 g, 5 mmol) and triethylamine (2.5 g, 25 mmol) in 100 cm3 of refluxing anhydrous THF, under nitrogen. The reaction mixture was maintained at reflux for further 12 h. Subsequently, the mixture was cooled to room temperature and then the solvent removed under reduced pressure. The residue was dissolved in CHCl3 (50 cm3) and the insoluble part filtered off; the organic layer was concentrated and the product purified by chromatography on neutral alumina eluting with CHCl3:MeOH (10:0.1 v/v) obtaining L as a yellowish oil (2.6 g, 84%). Synthesis of L.6HClO4.1.5(H2O): the hexa-hydroperchlorate salt was obtained in quantitative yield by adding 70% HClO4 to an ethanolic solution containing L. Crystals of L.6HClO4.1.5(H2O) suitable for X-ray analysis were obtained by slow evaporation of a diluted aqueous solution containing L.6HClO4.

Refinement top

The H atoms of the water oxygen atom O1W were found in the Fourier map and included in the refinement with their positions restrained by using the DFIX and DANG instructions. The constraint U(H)=1.2Ueq(O) was used. For the water molecule whose oxygen atom is O2W, which is disordered around a twofold axis, a population parameter of 0.5 was used and its H atoms were not introduced in the refinement. The H atoms of [H6L]6+ were introduced in geometrically generated positions, riding, and the constraint U(H) = 1.2Ueq(C,N) (1.5 for methyl H atoms) was applied. Both the Cl6 and the O61 of a perchlorate unit lye on a twofold axis, as a consequence the other oxygen atoms of the anion (O62, O63 and O64) are disordered with fixed popoulation parameters of 0.5. The oxygen atoms bound to Cl6 were refined with isotropic temperature factors.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: PARST97 (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. Crystal structure of the title compound with labelling and displacement ellipsoids drawn at the 20% probability level. Only one orientation for the disordered perchlorate anion (Cl6 is the chlorine atom) and the water molecule (O2W is the oxygen atom) is shown. Symmetry code: i)-x + 1, y, -z + 1/2.
[Figure 2] Fig. 2. Crystal structure of the title compound with view along the a axis. Only one orientation for the disordered perchlorate anion (Cl6 is the chlorine atom) and the water molecule (O2W is the oxygen atom) is shown. Intramolecular NH+···NH bonds are depicted in turquoise.
[Figure 3] Fig. 3. Crystal structure of the title compound showing the H-bond network (dashed lines) involving the NH+ groupings, the water molecules and the perchlorate anions. Only one orientation for the disordered water molecule (O2W is the oxygen atom) is shown. Symmetry codes: i) -x + 1; y, -z + 1/2; iii)-x + 3/2,y - 1/2,-z + 1/2; iv)x - 1/2, y - 1/2, z.
2,5-Bis[2-({bis[3-(dimethylazaniumyl)propyl]azaniumyl}methyl)phenyl]- 1,3,4-oxadiazole hexakis(perchlorate) sesquihydrate top
Crystal data top
C36H66N8O6+·6ClO4·1.5H2OF(000) = 5240
Mr = 1250.69Dx = 1.526 Mg m3
Monoclinic, C2/cCu Kα radiation, λ = 1.54184 Å
Hall symbol: -C 2ycCell parameters from 7461 reflections
a = 19.5601 (7) Åθ = 4.1–72.6°
b = 25.0825 (8) ŵ = 3.69 mm1
c = 24.2277 (9) ÅT = 150 K
β = 113.695 (5)°Prismatic, colourless
V = 10884.4 (7) Å30.10 × 0.08 × 0.03 mm
Z = 8
Data collection top
Oxford XcaliburPX
diffractometer
10465 independent reflections
Radiation source: Enhance (Cu) X-ray Source6531 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.056
Detector resolution: 8.1241 pixels mm-1θmax = 72.7°, θmin = 4.1°
ω scansh = 2322
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 3028
Tmin = 0.728, Tmax = 0.895l = 2922
30246 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.070Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.219H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.1066P)2 + 23.0322P]
where P = (Fo2 + 2Fc2)/3
10465 reflections(Δ/σ)max < 0.001
692 parametersΔρmax = 1.48 e Å3
3 restraintsΔρmin = 0.86 e Å3
Crystal data top
C36H66N8O6+·6ClO4·1.5H2OV = 10884.4 (7) Å3
Mr = 1250.69Z = 8
Monoclinic, C2/cCu Kα radiation
a = 19.5601 (7) ŵ = 3.69 mm1
b = 25.0825 (8) ÅT = 150 K
c = 24.2277 (9) Å0.10 × 0.08 × 0.03 mm
β = 113.695 (5)°
Data collection top
Oxford XcaliburPX
diffractometer
10465 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
6531 reflections with I > 2σ(I)
Tmin = 0.728, Tmax = 0.895Rint = 0.056
30246 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0703 restraints
wR(F2) = 0.219H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.1066P)2 + 23.0322P]
where P = (Fo2 + 2Fc2)/3
10465 reflectionsΔρmax = 1.48 e Å3
692 parametersΔρmin = 0.86 e Å3
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.79278 (16)0.14810 (13)0.50045 (13)0.0335 (7)
N10.7899 (2)0.17588 (15)0.41311 (16)0.0332 (8)
N20.7645 (2)0.12311 (16)0.40659 (16)0.0345 (8)
N30.7397 (2)0.03182 (15)0.34130 (16)0.0332 (8)
H30.76560.06240.35990.040*
N40.9862 (2)0.0271 (2)0.34900 (19)0.0498 (11)
H40.96820.01580.30910.060*
N50.5784 (2)0.02129 (16)0.12725 (16)0.0337 (8)
H50.58480.05480.14510.040*
N60.85293 (19)0.25580 (15)0.36920 (15)0.0321 (8)
H60.84500.21970.37310.038*
N71.1101 (2)0.20308 (16)0.39186 (17)0.0356 (9)
H71.10380.21620.35420.043*
N80.6293 (2)0.26003 (19)0.17438 (19)0.0502 (11)
H80.60900.27840.19760.060*
C10.7668 (2)0.10832 (19)0.4587 (2)0.0336 (10)
C20.7505 (2)0.0563 (2)0.4773 (2)0.0356 (10)
C30.7733 (3)0.0468 (2)0.5391 (2)0.0400 (11)
H3A0.79570.07470.56700.048*
C40.7636 (3)0.0024 (2)0.5597 (2)0.0434 (12)
H4A0.78000.00850.60180.052*
C50.7299 (3)0.0430 (2)0.5193 (2)0.0472 (12)
H5A0.72320.07710.53340.057*
C60.7061 (3)0.0335 (2)0.4580 (2)0.0428 (12)
H6A0.68310.06170.43070.051*
C70.7147 (2)0.0154 (2)0.4350 (2)0.0362 (10)
C80.6825 (2)0.0227 (2)0.3679 (2)0.0382 (11)
H8A0.64800.05360.35750.046*
H8B0.65280.00930.34880.046*
C90.7970 (2)0.0116 (2)0.3574 (2)0.0378 (11)
H9A0.77360.04460.33550.045*
H9B0.81570.01910.40110.045*
C100.8619 (3)0.0038 (2)0.3417 (2)0.0379 (11)
H10A0.84490.00660.29740.045*
H10B0.88190.03900.35960.045*
C110.9218 (3)0.0377 (2)0.3657 (2)0.0391 (11)
H11A0.93990.03890.41020.047*
H11B0.90020.07300.34980.047*
C121.0350 (3)0.0172 (3)0.3898 (3)0.0658 (17)
H12A1.00460.04920.38570.099*
H12B1.07610.02540.37800.099*
H12C1.05520.00520.43190.099*
C131.0323 (4)0.0754 (3)0.3559 (4)0.0716 (19)
H13A1.07390.06720.34460.107*
H13B1.00160.10370.32970.107*
H13C1.05190.08730.39790.107*
C140.7033 (2)0.04488 (19)0.27488 (19)0.0349 (10)
H14A0.74280.05290.26050.042*
H14B0.67280.07750.26960.042*
C150.6538 (2)0.00103 (19)0.2357 (2)0.0352 (10)
H15A0.60700.00150.24200.042*
H15B0.67990.03370.24600.042*
C160.6368 (3)0.01537 (19)0.1703 (2)0.0369 (10)
H16A0.61890.05260.16260.044*
H16B0.68320.01280.16320.044*
C170.5015 (3)0.0028 (2)0.1154 (2)0.0443 (12)
H17A0.49600.00080.15370.067*
H17B0.46520.02880.08980.067*
H17C0.49260.03180.09490.067*
C180.5882 (3)0.0270 (2)0.0694 (2)0.0437 (12)
H18A0.63910.03910.07790.066*
H18B0.57960.00750.04880.066*
H18C0.55230.05310.04360.066*
C190.8059 (2)0.18881 (18)0.46899 (19)0.0313 (10)
C200.8367 (2)0.23840 (19)0.4998 (2)0.0333 (10)
C210.8611 (2)0.2408 (2)0.5631 (2)0.0381 (11)
H210.85790.21010.58490.046*
C220.8898 (3)0.2879 (2)0.5932 (2)0.0425 (12)
H220.90540.28960.63570.051*
C230.8960 (3)0.3325 (2)0.5619 (2)0.0418 (12)
H230.91560.36480.58270.050*
C240.8732 (3)0.3296 (2)0.5002 (2)0.0402 (11)
H240.87880.36010.47920.048*
C250.8426 (2)0.28395 (19)0.4679 (2)0.0327 (10)
C260.8118 (3)0.2870 (2)0.4003 (2)0.0367 (10)
H26A0.81080.32500.38880.044*
H26B0.75950.27430.38430.044*
C270.9356 (2)0.26593 (19)0.39840 (19)0.0328 (10)
H27A0.95410.25590.44150.039*
H27B0.94470.30450.39630.039*
C280.9796 (2)0.2354 (2)0.36957 (19)0.0349 (10)
H28A0.97440.25290.33140.042*
H28B0.96050.19850.36040.042*
C291.0611 (3)0.2350 (2)0.4138 (2)0.0374 (11)
H29A1.07970.27220.42120.045*
H29B1.06470.22010.45270.045*
C301.0909 (3)0.1453 (2)0.3851 (2)0.0449 (12)
H30A1.03810.14100.35820.067*
H30B1.09980.13010.42460.067*
H30C1.12200.12690.36790.067*
C311.1903 (3)0.2099 (3)0.4332 (3)0.0569 (15)
H31A1.20280.24790.43770.085*
H31B1.22180.19150.41630.085*
H31C1.19900.19470.47270.085*
C320.8204 (2)0.26915 (19)0.30314 (19)0.0330 (10)
H32A0.84930.25060.28350.040*
H32B0.82490.30800.29810.040*
C330.7386 (3)0.2530 (2)0.2723 (2)0.0386 (11)
H33A0.73300.21440.27820.046*
H33B0.70840.27310.28970.046*
C340.7122 (3)0.2653 (2)0.2056 (2)0.0441 (12)
H34A0.72710.30210.20050.053*
H34B0.73640.24050.18720.053*
C350.6006 (4)0.2856 (3)0.1148 (3)0.0702 (19)
H35A0.61840.32250.11890.105*
H35B0.54590.28540.09770.105*
H35C0.61820.26600.08810.105*
C360.6051 (3)0.2038 (3)0.1718 (2)0.0585 (16)
H36A0.62550.18860.21250.088*
H36B0.62330.18340.14600.088*
H36C0.55040.20220.15510.088*
O1W0.5627 (2)0.11798 (16)0.17412 (17)0.0506 (9)
H1WA0.5186 (13)0.125 (2)0.168 (2)0.061*
H1WB0.589 (2)0.123 (3)0.2102 (12)0.061*
O2W0.9681 (5)0.0252 (4)0.2408 (5)0.082 (3)*0.50
Cl10.97380 (6)0.11096 (5)0.48216 (5)0.0437 (3)
O111.0522 (2)0.1008 (2)0.50440 (19)0.0709 (13)
O120.9601 (3)0.1515 (2)0.5173 (2)0.0907 (17)
O130.9445 (2)0.12648 (19)0.42027 (17)0.0638 (12)
O140.9353 (3)0.0636 (2)0.4864 (2)0.0781 (14)
Cl21.14130 (7)0.34632 (5)0.33606 (6)0.0476 (3)
O211.1708 (3)0.36700 (18)0.29556 (19)0.0667 (12)
O221.1055 (3)0.29673 (17)0.3134 (2)0.0767 (14)
O231.0892 (3)0.3846 (2)0.3400 (2)0.0851 (16)
O241.2018 (3)0.3390 (2)0.3932 (2)0.0857 (15)
Cl30.80344 (7)0.09755 (5)0.20105 (5)0.0429 (3)
O310.7242 (3)0.0925 (2)0.1759 (3)0.0855 (16)
O320.8267 (3)0.1218 (2)0.25926 (18)0.0835 (16)
O330.8382 (3)0.04650 (17)0.2075 (2)0.0853 (17)
O340.8237 (2)0.13032 (15)0.16220 (16)0.0512 (9)
Cl40.50000.28569 (11)0.25000.0731 (6)
O410.4355 (4)0.2570 (4)0.2281 (3)0.165 (4)
O420.5038 (5)0.3126 (3)0.2020 (5)0.189 (4)
Cl50.41888 (7)0.14088 (5)0.02396 (6)0.0463 (3)
O510.3437 (3)0.1463 (3)0.0591 (4)0.180 (5)
O520.4489 (4)0.1046 (2)0.0536 (3)0.113 (2)
O530.4347 (4)0.1202 (3)0.0338 (2)0.1028 (19)
O540.4543 (3)0.19040 (17)0.02144 (18)0.0673 (12)
Cl60.50000.09905 (7)0.25000.0434 (4)
O610.50000.0423 (2)0.25000.0626 (15)*
O620.5722 (4)0.1244 (3)0.2816 (3)0.0475 (17)*0.50
O630.4696 (5)0.1094 (4)0.2973 (4)0.075 (3)*0.50
O640.4592 (7)0.1181 (5)0.1966 (5)0.091 (3)*0.50
Cl71.14682 (7)0.13151 (5)0.25946 (5)0.0441 (3)
O711.0715 (3)0.1145 (4)0.2315 (3)0.163 (4)
O721.1825 (4)0.0908 (2)0.2980 (3)0.110 (2)
O731.1453 (5)0.17912 (19)0.2873 (3)0.143 (3)
O741.1737 (2)0.13856 (15)0.21346 (16)0.0516 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0320 (16)0.0381 (18)0.0291 (15)0.0032 (13)0.0110 (12)0.0035 (13)
N10.0297 (18)0.035 (2)0.0334 (19)0.0025 (16)0.0106 (15)0.0022 (16)
N20.037 (2)0.034 (2)0.0306 (18)0.0044 (17)0.0115 (15)0.0022 (16)
N30.0320 (19)0.032 (2)0.0334 (19)0.0056 (16)0.0104 (15)0.0039 (16)
N40.045 (2)0.066 (3)0.042 (2)0.015 (2)0.0214 (19)0.008 (2)
N50.0316 (19)0.035 (2)0.0317 (19)0.0001 (16)0.0094 (15)0.0021 (16)
N60.0325 (19)0.031 (2)0.0316 (18)0.0017 (16)0.0120 (15)0.0049 (15)
N70.032 (2)0.037 (2)0.039 (2)0.0019 (17)0.0151 (16)0.0031 (17)
N80.040 (2)0.054 (3)0.045 (2)0.002 (2)0.0059 (19)0.002 (2)
C10.029 (2)0.035 (3)0.034 (2)0.0008 (19)0.0103 (18)0.0058 (19)
C20.024 (2)0.040 (3)0.041 (2)0.0010 (19)0.0108 (18)0.000 (2)
C30.032 (2)0.049 (3)0.038 (2)0.005 (2)0.0141 (19)0.001 (2)
C40.036 (3)0.055 (3)0.040 (3)0.002 (2)0.017 (2)0.007 (2)
C50.040 (3)0.047 (3)0.060 (3)0.002 (2)0.026 (2)0.009 (3)
C60.039 (3)0.037 (3)0.054 (3)0.005 (2)0.020 (2)0.005 (2)
C70.026 (2)0.044 (3)0.037 (2)0.003 (2)0.0104 (18)0.004 (2)
C80.030 (2)0.044 (3)0.042 (3)0.004 (2)0.0154 (19)0.005 (2)
C90.034 (2)0.036 (3)0.037 (2)0.002 (2)0.0080 (19)0.001 (2)
C100.036 (2)0.044 (3)0.035 (2)0.001 (2)0.0150 (19)0.001 (2)
C110.038 (2)0.038 (3)0.043 (3)0.001 (2)0.017 (2)0.001 (2)
C120.054 (3)0.057 (4)0.089 (5)0.008 (3)0.030 (3)0.008 (3)
C130.068 (4)0.049 (4)0.106 (5)0.011 (3)0.043 (4)0.019 (4)
C140.032 (2)0.035 (3)0.034 (2)0.003 (2)0.0097 (18)0.0017 (19)
C150.032 (2)0.032 (2)0.039 (2)0.0014 (19)0.0115 (19)0.005 (2)
C160.036 (2)0.030 (2)0.039 (2)0.007 (2)0.0094 (19)0.007 (2)
C170.032 (2)0.057 (3)0.041 (3)0.002 (2)0.012 (2)0.012 (2)
C180.043 (3)0.050 (3)0.038 (3)0.003 (2)0.016 (2)0.005 (2)
C190.027 (2)0.034 (3)0.034 (2)0.0027 (18)0.0125 (17)0.0071 (19)
C200.025 (2)0.036 (3)0.038 (2)0.0005 (18)0.0114 (18)0.010 (2)
C210.032 (2)0.047 (3)0.032 (2)0.001 (2)0.0091 (18)0.007 (2)
C220.032 (2)0.057 (3)0.034 (2)0.001 (2)0.0087 (19)0.017 (2)
C230.030 (2)0.044 (3)0.047 (3)0.001 (2)0.011 (2)0.017 (2)
C240.038 (3)0.040 (3)0.046 (3)0.002 (2)0.021 (2)0.005 (2)
C250.026 (2)0.034 (3)0.037 (2)0.0032 (19)0.0117 (18)0.0041 (19)
C260.036 (2)0.037 (3)0.039 (2)0.000 (2)0.017 (2)0.007 (2)
C270.032 (2)0.033 (2)0.031 (2)0.0028 (19)0.0102 (18)0.0024 (18)
C280.031 (2)0.042 (3)0.029 (2)0.002 (2)0.0085 (17)0.0052 (19)
C290.036 (2)0.042 (3)0.036 (2)0.001 (2)0.0152 (19)0.004 (2)
C300.050 (3)0.036 (3)0.054 (3)0.006 (2)0.027 (2)0.004 (2)
C310.035 (3)0.070 (4)0.059 (3)0.003 (3)0.012 (2)0.005 (3)
C320.036 (2)0.033 (3)0.030 (2)0.0010 (19)0.0126 (18)0.0032 (18)
C330.036 (2)0.041 (3)0.036 (2)0.004 (2)0.0113 (19)0.000 (2)
C340.038 (3)0.052 (3)0.040 (3)0.003 (2)0.012 (2)0.006 (2)
C350.068 (4)0.072 (5)0.045 (3)0.007 (3)0.003 (3)0.013 (3)
C360.049 (3)0.063 (4)0.045 (3)0.012 (3)0.000 (2)0.003 (3)
O1W0.047 (2)0.046 (2)0.060 (2)0.0051 (18)0.0228 (18)0.0028 (19)
Cl10.0394 (6)0.0536 (8)0.0401 (6)0.0062 (5)0.0179 (5)0.0096 (5)
O110.044 (2)0.107 (4)0.062 (3)0.021 (2)0.0223 (19)0.028 (2)
O120.074 (3)0.096 (4)0.076 (3)0.025 (3)0.004 (2)0.035 (3)
O130.056 (2)0.089 (3)0.048 (2)0.013 (2)0.0230 (18)0.026 (2)
O140.085 (3)0.074 (3)0.071 (3)0.022 (3)0.027 (2)0.020 (2)
Cl20.0554 (7)0.0435 (7)0.0517 (7)0.0006 (6)0.0295 (6)0.0031 (6)
O210.078 (3)0.064 (3)0.072 (3)0.004 (2)0.045 (2)0.011 (2)
O220.109 (4)0.046 (3)0.071 (3)0.025 (3)0.032 (3)0.001 (2)
O230.060 (3)0.093 (4)0.111 (4)0.005 (3)0.044 (3)0.037 (3)
O240.091 (4)0.083 (4)0.062 (3)0.001 (3)0.010 (2)0.008 (3)
Cl30.0525 (7)0.0393 (7)0.0397 (6)0.0092 (5)0.0214 (5)0.0057 (5)
O310.055 (3)0.083 (4)0.114 (4)0.017 (2)0.030 (3)0.023 (3)
O320.130 (4)0.078 (3)0.041 (2)0.028 (3)0.032 (2)0.000 (2)
O330.157 (5)0.045 (3)0.077 (3)0.048 (3)0.071 (3)0.023 (2)
O340.053 (2)0.055 (2)0.054 (2)0.0083 (18)0.0308 (18)0.0141 (18)
Cl40.0630 (14)0.0767 (17)0.0780 (15)0.0000.0266 (12)0.000
O410.129 (6)0.282 (11)0.123 (5)0.123 (7)0.091 (5)0.102 (6)
O420.147 (7)0.145 (7)0.283 (11)0.043 (6)0.096 (7)0.147 (8)
Cl50.0354 (6)0.0448 (7)0.0524 (7)0.0001 (5)0.0111 (5)0.0112 (6)
O510.035 (3)0.192 (8)0.273 (9)0.001 (4)0.019 (4)0.169 (7)
O520.206 (7)0.046 (3)0.086 (4)0.015 (4)0.058 (4)0.011 (3)
O530.133 (5)0.113 (5)0.074 (3)0.015 (4)0.054 (3)0.047 (3)
O540.087 (3)0.051 (3)0.058 (2)0.023 (2)0.024 (2)0.013 (2)
Cl60.0347 (8)0.0388 (9)0.0529 (10)0.0000.0138 (7)0.000
Cl70.0518 (7)0.0391 (7)0.0441 (6)0.0056 (5)0.0218 (5)0.0014 (5)
O710.065 (4)0.335 (12)0.090 (4)0.041 (5)0.032 (3)0.011 (6)
O720.152 (5)0.112 (5)0.095 (4)0.084 (4)0.079 (4)0.062 (3)
O730.336 (11)0.038 (3)0.147 (5)0.007 (4)0.195 (7)0.008 (3)
O740.071 (3)0.048 (2)0.047 (2)0.0028 (19)0.0356 (18)0.0017 (17)
Geometric parameters (Å, º) top
O1—C191.359 (5)C19—C201.451 (6)
O1—C11.365 (5)C20—C251.410 (7)
N1—C191.302 (5)C20—C211.411 (6)
N1—N21.400 (5)C21—C221.383 (7)
N2—C11.299 (6)C21—H210.9500
N3—C91.498 (6)C22—C231.384 (8)
N3—C141.511 (6)C22—H220.9500
N3—C81.517 (6)C23—C241.379 (7)
N3—H30.9300C23—H230.9500
N4—C131.479 (7)C24—C251.380 (7)
N4—C111.494 (6)C24—H240.9500
N4—C121.537 (8)C25—C261.502 (6)
N4—H40.9300C26—H26A0.9900
N5—C171.489 (6)C26—H26B0.9900
N5—C181.495 (6)C27—C281.515 (6)
N5—C161.510 (5)C27—H27A0.9900
N5—H50.9300C27—H27B0.9900
N6—C271.503 (5)C28—C291.524 (6)
N6—C321.503 (5)C28—H28A0.9900
N6—C261.522 (6)C28—H28B0.9900
N6—H60.9300C29—H29A0.9900
N7—C301.490 (6)C29—H29B0.9900
N7—C311.494 (6)C30—H30A0.9800
N7—C291.501 (6)C30—H30B0.9800
N7—H70.9300C30—H30C0.9800
N8—C351.469 (7)C31—H31A0.9800
N8—C361.481 (7)C31—H31B0.9800
N8—C341.495 (6)C31—H31C0.9800
N8—H80.9300C32—C331.524 (6)
C1—C21.458 (7)C32—H32A0.9900
C2—C31.399 (6)C32—H32B0.9900
C2—C71.421 (7)C33—C341.516 (6)
C3—C41.372 (7)C33—H33A0.9900
C3—H3A0.9500C33—H33B0.9900
C4—C51.383 (8)C34—H34A0.9900
C4—H4A0.9500C34—H34B0.9900
C5—C61.387 (7)C35—H35A0.9800
C5—H5A0.9500C35—H35B0.9800
C6—C71.385 (7)C35—H35C0.9800
C6—H6A0.9500C36—H36A0.9800
C7—C81.499 (6)C36—H36B0.9800
C8—H8A0.9900C36—H36C0.9800
C8—H8B0.9900O1W—H1WA0.836 (19)
C9—C101.516 (7)O1W—H1WB0.828 (19)
C9—H9A0.9900Cl1—O121.419 (5)
C9—H9B0.9900Cl1—O131.427 (4)
C10—C111.498 (7)Cl1—O111.429 (4)
C10—H10A0.9900Cl1—O141.431 (5)
C10—H10B0.9900Cl2—O211.421 (4)
C11—H11A0.9900Cl2—O221.425 (4)
C11—H11B0.9900Cl2—O241.427 (5)
C12—H12A0.9800Cl2—O231.430 (5)
C12—H12B0.9800Cl3—O341.421 (4)
C12—H12C0.9800Cl3—O311.425 (5)
C13—H13A0.9800Cl3—O331.429 (4)
C13—H13B0.9800Cl3—O321.432 (4)
C13—H13C0.9800Cl4—O411.361 (6)
C14—C151.519 (6)Cl4—O421.371 (8)
C14—H14A0.9900Cl5—O511.378 (5)
C14—H14B0.9900Cl5—O531.406 (5)
C15—C161.525 (6)Cl5—O541.411 (4)
C15—H15A0.9900Cl5—O521.423 (6)
C15—H15B0.9900Cl6—O641.308 (11)
C16—H16A0.9900Cl6—O611.423 (6)
C16—H16B0.9900Cl6—O621.455 (7)
C17—H17A0.9800Cl6—O631.512 (10)
C17—H17B0.9800Cl7—O721.370 (5)
C17—H17C0.9800Cl7—O731.377 (5)
C18—H18A0.9800Cl7—O711.417 (6)
C18—H18B0.9800Cl7—O741.421 (4)
C18—H18C0.9800
C19—O1—C1103.4 (3)O1—C19—C20119.2 (4)
C19—N1—N2106.2 (4)C25—C20—C21119.6 (4)
C1—N2—N1106.8 (4)C25—C20—C19121.4 (4)
C9—N3—C14114.8 (3)C21—C20—C19119.0 (4)
C9—N3—C8112.5 (4)C22—C21—C20119.9 (5)
C14—N3—C8111.8 (3)C22—C21—H21120.0
C9—N3—H3105.6C20—C21—H21120.0
C14—N3—H3105.6C21—C22—C23120.5 (4)
C8—N3—H3105.6C21—C22—H22119.8
C13—N4—C11111.5 (5)C23—C22—H22119.8
C13—N4—C12109.1 (5)C24—C23—C22119.3 (5)
C11—N4—C12109.1 (4)C24—C23—H23120.3
C13—N4—H4109.0C22—C23—H23120.3
C11—N4—H4109.0C23—C24—C25122.4 (5)
C12—N4—H4109.0C23—C24—H24118.8
C17—N5—C18110.4 (3)C25—C24—H24118.8
C17—N5—C16111.7 (4)C24—C25—C20118.3 (4)
C18—N5—C16111.1 (4)C24—C25—C26117.9 (4)
C17—N5—H5107.8C20—C25—C26123.6 (4)
C18—N5—H5107.8C25—C26—N6117.0 (4)
C16—N5—H5107.8C25—C26—H26A108.1
C27—N6—C32112.2 (3)N6—C26—H26A108.1
C27—N6—C26111.2 (3)C25—C26—H26B108.1
C32—N6—C26109.4 (3)N6—C26—H26B108.1
C27—N6—H6107.9H26A—C26—H26B107.3
C32—N6—H6107.9N6—C27—C28113.6 (3)
C26—N6—H6107.9N6—C27—H27A108.8
C30—N7—C31109.6 (4)C28—C27—H27A108.8
C30—N7—C29112.9 (4)N6—C27—H27B108.8
C31—N7—C29110.4 (4)C28—C27—H27B108.8
C30—N7—H7107.9H27A—C27—H27B107.7
C31—N7—H7107.9C27—C28—C29107.9 (4)
C29—N7—H7107.9C27—C28—H28A110.1
C35—N8—C36112.6 (5)C29—C28—H28A110.1
C35—N8—C34111.6 (5)C27—C28—H28B110.1
C36—N8—C34111.7 (4)C29—C28—H28B110.1
C35—N8—H8106.9H28A—C28—H28B108.4
C36—N8—H8106.9N7—C29—C28113.0 (4)
C34—N8—H8106.9N7—C29—H29A109.0
N2—C1—O1111.6 (4)C28—C29—H29A109.0
N2—C1—C2129.1 (4)N7—C29—H29B109.0
O1—C1—C2119.2 (4)C28—C29—H29B109.0
C3—C2—C7120.2 (5)H29A—C29—H29B107.8
C3—C2—C1117.9 (4)N7—C30—H30A109.5
C7—C2—C1121.9 (4)N7—C30—H30B109.5
C4—C3—C2120.8 (5)H30A—C30—H30B109.5
C4—C3—H3A119.6N7—C30—H30C109.5
C2—C3—H3A119.6H30A—C30—H30C109.5
C3—C4—C5120.0 (5)H30B—C30—H30C109.5
C3—C4—H4A120.0N7—C31—H31A109.5
C5—C4—H4A120.0N7—C31—H31B109.5
C4—C5—C6119.5 (5)H31A—C31—H31B109.5
C4—C5—H5A120.2N7—C31—H31C109.5
C6—C5—H5A120.2H31A—C31—H31C109.5
C7—C6—C5122.7 (5)H31B—C31—H31C109.5
C7—C6—H6A118.7N6—C32—C33112.0 (4)
C5—C6—H6A118.7N6—C32—H32A109.2
C6—C7—C2116.9 (4)C33—C32—H32A109.2
C6—C7—C8118.6 (4)N6—C32—H32B109.2
C2—C7—C8124.4 (5)C33—C32—H32B109.2
C7—C8—N3114.8 (4)H32A—C32—H32B107.9
C7—C8—H8A108.6C34—C33—C32108.0 (4)
N3—C8—H8A108.6C34—C33—H33A110.1
C7—C8—H8B108.6C32—C33—H33A110.1
N3—C8—H8B108.6C34—C33—H33B110.1
H8A—C8—H8B107.6C32—C33—H33B110.1
N3—C9—C10111.3 (4)H33A—C33—H33B108.4
N3—C9—H9A109.4N8—C34—C33110.9 (4)
C10—C9—H9A109.4N8—C34—H34A109.5
N3—C9—H9B109.4C33—C34—H34A109.5
C10—C9—H9B109.4N8—C34—H34B109.5
H9A—C9—H9B108.0C33—C34—H34B109.5
C11—C10—C9109.1 (4)H34A—C34—H34B108.0
C11—C10—H10A109.9N8—C35—H35A109.5
C9—C10—H10A109.9N8—C35—H35B109.5
C11—C10—H10B109.9H35A—C35—H35B109.5
C9—C10—H10B109.9N8—C35—H35C109.5
H10A—C10—H10B108.3H35A—C35—H35C109.5
N4—C11—C10112.6 (4)H35B—C35—H35C109.5
N4—C11—H11A109.1N8—C36—H36A109.5
C10—C11—H11A109.1N8—C36—H36B109.5
N4—C11—H11B109.1H36A—C36—H36B109.5
C10—C11—H11B109.1N8—C36—H36C109.5
H11A—C11—H11B107.8H36A—C36—H36C109.5
N4—C12—H12A109.5H36B—C36—H36C109.5
N4—C12—H12B109.5H1WA—O1W—H1WB108 (3)
H12A—C12—H12B109.5O12—Cl1—O13109.9 (3)
N4—C12—H12C109.5O12—Cl1—O11109.5 (3)
H12A—C12—H12C109.5O13—Cl1—O11111.2 (2)
H12B—C12—H12C109.5O12—Cl1—O14108.7 (4)
N4—C13—H13A109.5O13—Cl1—O14107.5 (3)
N4—C13—H13B109.5O11—Cl1—O14109.9 (3)
H13A—C13—H13B109.5O21—Cl2—O22109.0 (3)
N4—C13—H13C109.5O21—Cl2—O24108.0 (3)
H13A—C13—H13C109.5O22—Cl2—O24110.4 (3)
H13B—C13—H13C109.5O21—Cl2—O23107.4 (3)
N3—C14—C15114.7 (4)O22—Cl2—O23111.0 (3)
N3—C14—H14A108.6O24—Cl2—O23110.9 (3)
C15—C14—H14A108.6O34—Cl3—O31108.3 (3)
N3—C14—H14B108.6O34—Cl3—O33110.1 (2)
C15—C14—H14B108.6O31—Cl3—O33110.8 (3)
H14A—C14—H14B107.6O34—Cl3—O32110.1 (3)
C14—C15—C16107.3 (4)O31—Cl3—O32108.6 (3)
C14—C15—H15A110.3O33—Cl3—O32108.9 (3)
C16—C15—H15A110.3O41i—Cl4—O41116.1 (9)
C14—C15—H15B110.3O41i—Cl4—O42103.5 (4)
C16—C15—H15B110.3O41—Cl4—O42106.7 (6)
H15A—C15—H15B108.5O41i—Cl4—O42i106.7 (6)
N5—C16—C15111.2 (4)O41—Cl4—O42i103.5 (4)
N5—C16—H16A109.4O42—Cl4—O42i121.0 (10)
C15—C16—H16A109.4O51—Cl5—O53113.9 (4)
N5—C16—H16B109.4O51—Cl5—O54108.8 (4)
C15—C16—H16B109.4O53—Cl5—O54111.9 (3)
H16A—C16—H16B108.0O51—Cl5—O52107.8 (6)
N5—C17—H17A109.5O53—Cl5—O52107.2 (4)
N5—C17—H17B109.5O54—Cl5—O52106.8 (3)
H17A—C17—H17B109.5O64—Cl6—O61111.4 (5)
N5—C17—H17C109.5O64—Cl6—O62116.0 (5)
H17A—C17—H17C109.5O61—Cl6—O62115.9 (3)
H17B—C17—H17C109.5O64—Cl6—O63114.8 (6)
N5—C18—H18A109.5O61—Cl6—O6399.9 (4)
N5—C18—H18B109.5O62—Cl6—O6397.0 (5)
H18A—C18—H18B109.5O72—Cl7—O73114.7 (4)
N5—C18—H18C109.5O72—Cl7—O71104.3 (5)
H18A—C18—H18C109.5O73—Cl7—O71105.9 (6)
H18B—C18—H18C109.5O72—Cl7—O74112.3 (3)
N1—C19—O1112.0 (4)O73—Cl7—O74111.3 (3)
N1—C19—C20128.7 (4)O71—Cl7—O74107.6 (3)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···N20.931.902.714 (5)145
N6—H6···N10.932.042.779 (6)136
N5—H5···O1W0.931.852.747 (6)160
N4—H4···O2W0.931.952.83 (1)156
N4—H4···O2Wii0.932.302.97 (1)129
O1W—H1WA···O23iii0.84 (3)2.05 (3)2.852 (7)160 (3)
O1W—H1WB···O21iv0.83 (3)2.06 (3)2.876 (5)169 (3)
N7—H7···O220.932.263.000 (6)137
N7—H7···O730.932.282.94 (1)127
N8—H8···O420.932.273.09 (1)146
N8—H8···O41i0.932.363.10 (1)137
Symmetry codes: (i) x+1, y, z+1/2; (ii) x+2, y, z+1/2; (iii) x+3/2, y1/2, z+1/2; (iv) x1/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC36H66N8O6+·6ClO4·1.5H2O
Mr1250.69
Crystal system, space groupMonoclinic, C2/c
Temperature (K)150
a, b, c (Å)19.5601 (7), 25.0825 (8), 24.2277 (9)
β (°) 113.695 (5)
V3)10884.4 (7)
Z8
Radiation typeCu Kα
µ (mm1)3.69
Crystal size (mm)0.10 × 0.08 × 0.03
Data collection
DiffractometerOxford XcaliburPX
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.728, 0.895
No. of measured, independent and
observed [I > 2σ(I)] reflections
30246, 10465, 6531
Rint0.056
(sin θ/λ)max1)0.619
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.070, 0.219, 1.06
No. of reflections10465
No. of parameters692
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
w = 1/[σ2(Fo2) + (0.1066P)2 + 23.0322P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.48, 0.86

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 2012) and Mercury (Macrae et al., 2006), PARST97 (Nardelli, 1995).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···N20.9301.9022.714 (5)145.
N6—H6···N10.9302.0372.779 (6)136.
N5—H5···O1W0.9301.8542.747 (6)160.
N4—H4···O2W0.9301.952.83 (1)156.
N4—H4···O2Wi0.9302.302.97 (1)129.
O1W—H1WA···O23ii0.84 (3)2.05 (3)2.852 (7)160 (3)
O1W—H1WB···O21iii0.83 (3)2.06 (3)2.876 (5)169 (3)
N7—H7···O220.9302.2563.000 (6)137.
N7—H7···O730.9302.2832.94 (1)127.
N8—H8···O420.9302.2723.09 (1)146.
N8—H8···O41iv0.9302.3563.10 (1)137.
Symmetry codes: (i) x+2, y, z+1/2; (ii) x+3/2, y1/2, z+1/2; (iii) x1/2, y1/2, z; (iv) x+1, y, z+1/2.
 

Acknowledgements

The authors acknowledge the CRIST (Centro di Cristallografia Strutturale, University of Firenze) where the data collection was performed.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAmbrosi, G., Dapporto, P., Formica, M., Fusi, V., Giorgi, L., Guerri, A., Micheloni, M., Paoli, P., Pontellini, R. & Rossi, P. (2006). Inorg. Chem. 45, 304–314.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationAmbrosi, G., Formica, M., Fusi, V., Giorgi, L., Macedi, E., Micheloni, M., Paoli, P., Pontellini, R. & Rossi, P. (2010). Inorg Chem. 48, 9940-9948.  Web of Science CSD CrossRef Google Scholar
First citationAmbrosi, G., Formica, M., Fusi, V., Giorgi, L., Macedi, E., Micheloni, M., Paoli, P., Pontellini, R. & Rossi, P. (2011). Chem. Eur. J. 17, 1670–1682.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationAmbrosi, G., Formica, M., Fusi, V., Giorgi, L., Macedi, E., Micheloni, M., Piersanti, G. & Pontellini, R. (2010). Org. Biomol. Chem. 8, 1471–1478.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBencini, A., Bianchi, A., Dapporto, P., Paoli, P., Burguete, M., Doménech, A., Garcia, E., Luis, S. & Ramirez, J. (1994). J. Chem. Soc. Perkin Trans. 2, pp. 569–577.  CrossRef Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFormica, M., Fusi, V., Giorgi, L. & Micheloni, M. (2012). Coord. Chem. Rev. 256, 170–192.  Web of Science CrossRef CAS Google Scholar
First citationFormica, M., Fusi, V., Paoli, P., Piersanti, P., Rossi, P., Zappia, G. & Orlando, P. (2008). New J. Chem. 32, 1204-1214.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTerenzi, A., Fanelli, M., Ambrosi, G., Amatori, S., Fusi, V., Giorgi, L., Turco Liveri, V. & Barone, G. (2012). Dalton Trans. 41, 4389–4395.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWang, S., Zheng, S. P., Meng, H. & Hua, W. T. (1998). Synth. Met. 93, 181–185.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 12| December 2012| Pages o3453-o3454
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds