organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-[(E)-Meth­­oxy(phen­yl)methyl­­idene]-1,3,4-tri­phenyl-4,5-di­hydro-1H-1,2,4-triazole

aLudwig-Maximilians-Universität, Department Chemie und Biochemie, Butenandtstrasse 5-13, 81377 München, Germany
*Correspondence e-mail: pemay@cup.uni-muenchen.de

(Received 19 July 2012; accepted 5 November 2012; online 10 November 2012)

In the title compound, C28H23N3O, the 1,2,4-triazole ring deviates slightly from planarity adopting a N3TC2 conformation which is distorted towards an EC2 conformation. The plane around the ethyl­ene unit makes a dihedral angle of 17.32 (11)° with the mean plane [r.m.s. deviation = 0.036 (1) Å] of the 1,2,4-triazole fragment. The dihedral angles between the four phenyl rings and the 1,2,4-triazole ring are 31.01 (10), 49.01 (8), 78.55 (6) and 41.51 (9)°. In the crystal, mol­ecules are linked along [100] by weak C—H⋯O hydrogen bonds.

Related literature

For chemical background, see: Arduengo et al. (1991[Arduengo, A. J., Harlow, R. L. & Kline, M. (1991). J. Am. Chem. Soc. 113, 361-363.]); Enders et al. (2007[Enders, D., Niemeier, O. & Henseler, A. (2007). Chem. Rev. 107, 5606-5655.]); Biju et al. (2011[Biju, A. T., Kuhl, N. & Glorius, F. (2011). Acc. Chem. Res. 44, 1182-1195.]); Breslow (1958[Breslow, R. (1958). J. Am. Chem. Soc. 80, 3719-3726.]). For puckering analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For a related structure, see: Nair et al. (2008[Nair, V., Mathew, S. C., Vallalath, S., Pillai, A. N. & Suresh, E. (2008). Synthesis, pp. 551-554.]).

[Scheme 1]

Experimental

Crystal data
  • C28H23N3O

  • Mr = 417.49

  • Monoclinic, P 21 /c

  • a = 5.8831 (2) Å

  • b = 10.5560 (2) Å

  • c = 35.0548 (8) Å

  • β = 93.749 (1)°

  • V = 2172.31 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 200 K

  • 0.35 × 0.09 × 0.04 mm

Data collection
  • Nonius KappaCCD diffractometer

  • 12170 measured reflections

  • 3797 independent reflections

  • 2601 reflections with I > 2σ(I)

  • Rint = 0.058

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.116

  • S = 1.02

  • 3797 reflections

  • 290 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C20—H20⋯O1i 0.95 2.43 3.162 (3) 134
Symmetry code: (i) x-1, y, z.

Data collection: COLLECT (Nonius, 1998)[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]; cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Umpolung reactions of aldehydes catalyzed by N-heterocyclic carbenes [Arduengo et al. (1991)] belong to the most important organocatalytic CC bond-forming reactions [Enders et al. (2007), Biju et al. (2011)]. An acyl anion equivalent, the so called Breslow intermediate [Breslow (1958)] was proposed to be the key intermediate of these transformations.

To understand the structure of these intermediates, we report herein the crystal structure of the title compound.

In the title molecule (Fig. 1), the 1,2,4-triazole fragment is nearly planar, with a mean deviation of 0.036 (1) Å from the least-squares plane defined by the five constituent atoms.

The asymmetric unit contains one molecule of the title compound which is shown in Figure 1.

Puckering analysis [Cremer et al. (1975)] reveals that the 4,5-dihydro-1H-1,2,4-triazole ring adopts a N3TC2 conformation which is distorted towards a EC2 conformation. In a related structure [Nair et al. (2008)] of a compound which is different from the title compound only through the substituent connected by a double bond with the 4,5-dihydro-1H-1,2,4-triazole ring, the latter ring is planar and not puckered. The methoxy(phenyl)methylene group is bound to the 4,5-dihydro-1H-1,2,4-triazole ring in a distance of 1.358 (3) Å which indicates a double bond. However, the plane of the heterocycle and the plane around the methylene atom are not coplanar but enclose a dihedral angle of 17.32 (11)°. In the related structure, the corresponding dihedral angle is 42.5 (4)°. The plane of the phenyl ring bound to the methylene atom is not coplanar with the plane around the methylene atom as well (dihedral angle 34.14 (10)°). The dihedral angles between the four phenyl rings and the mean plane of the 1,2,4-triazole ring are 31.01 (10)° [the C3-C8 phenyl ring], 49.01 (8)° [the C9-C14 phenyl ring], 78.55 (6)° [the C15-C20 phenyl ring] and 41.51 (9)° [the C22-C27 phenyl ring]. In the crystal packing, molecules are connected by weak C–H···O hydrogen bonds (Table 1).

Related literature top

For chemical background, see: Arduengo et al. (1991); Enders et al. (2007); Biju et al. (2011); Breslow (1958). For puckering analysis, see: Cremer & Pople (1975). For a related structure, see: Nair et al. (2008).

For related literature, see: Nonius (1998).

Experimental top

To an oven dried Schlenk-flask charged with NaH (48 mg, 2.0 mmol), tBuOK (11 mg, 98 mol), and 5-(methoxy(phenyl)methyl)-1,3,4-triphenyl-4H-1,2,4-triazolium chloride (454 mg, 1.00 mmol) was added dry THF (15 ml) under nitrogen and the reaction mixture was allowed to stir for 4 h in the dark. The solvent was then removed under vacuum, and the residue was suspended in dry toluene (20 ml) and filtered through a celite pad under nitrogen. Then the solvent was evaporated to give 296 mg (0.709 mmol, 71%) of the title compound as 10:1 mixture of E:Z isomers. Crystals suitable for X-ray crystallography were grown by cooling down a saturated acetonitrile solution at -30 °C under argon for 48 h.

Refinement top

C-bound H atoms were positioned geometrically (C–H = 0.98 Å for aliphatic, 0.95 Å for aromatic H) and treated as riding on their parent atoms [Uiso(H) = 1.2Ueq(C, aromatic), Uiso(H) = 1.5Ueq(C, aliphatic)]. The methyl group was allowed to rotate along the C-O bond to best fit the experimental electron density.

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.
5-[(E)-Methoxy(phenyl)methylidene]-1,3,4-triphenyl-4,5-dihydro- 1H-1,2,4-triazole top
Crystal data top
C28H23N3OF(000) = 880
Mr = 417.49Dx = 1.277 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6637 reflections
a = 5.8831 (2) Åθ = 3.1–25.4°
b = 10.5560 (2) ŵ = 0.08 mm1
c = 35.0548 (8) ÅT = 200 K
β = 93.749 (1)°Rod, yellow
V = 2172.31 (10) Å30.35 × 0.09 × 0.04 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
2601 reflections with I > 2σ(I)
Radiation source: rotating anodeRint = 0.058
MONTEL, graded multilayered X-ray optics monochromatorθmax = 25.0°, θmin = 3.5°
Detector resolution: 9 pixels mm-1h = 66
CCD; rotation images scansk = 1212
12170 measured reflectionsl = 4141
3797 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0489P)2 + 0.5794P]
where P = (Fo2 + 2Fc2)/3
3797 reflections(Δ/σ)max < 0.001
290 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C28H23N3OV = 2172.31 (10) Å3
Mr = 417.49Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.8831 (2) ŵ = 0.08 mm1
b = 10.5560 (2) ÅT = 200 K
c = 35.0548 (8) Å0.35 × 0.09 × 0.04 mm
β = 93.749 (1)°
Data collection top
Nonius KappaCCD
diffractometer
2601 reflections with I > 2σ(I)
12170 measured reflectionsRint = 0.058
3797 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.116H-atom parameters constrained
S = 1.02Δρmax = 0.14 e Å3
3797 reflectionsΔρmin = 0.17 e Å3
290 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.1775 (2)1.09309 (12)0.07479 (4)0.0400 (4)
N11.0129 (3)0.87548 (14)0.15014 (4)0.0372 (4)
N20.8760 (3)0.91293 (15)0.17968 (5)0.0397 (4)
N30.9369 (3)1.07815 (14)0.14195 (4)0.0334 (4)
C10.8328 (3)1.03112 (18)0.17323 (5)0.0343 (5)
C21.0374 (3)0.97436 (17)0.12411 (5)0.0328 (5)
C31.1547 (3)0.76856 (18)0.15771 (5)0.0362 (5)
C41.3673 (4)0.7594 (2)0.14287 (6)0.0428 (5)
H41.42220.82660.12800.051*
C51.4982 (4)0.6526 (2)0.14986 (6)0.0513 (6)
H51.64220.64590.13920.062*
C61.4236 (4)0.5561 (2)0.17190 (7)0.0579 (7)
H61.51320.48190.17610.070*
C71.2164 (4)0.5677 (2)0.18806 (6)0.0539 (6)
H71.16650.50250.20420.065*
C81.0811 (4)0.67325 (18)0.18098 (6)0.0429 (5)
H80.93840.68020.19200.051*
C90.6887 (3)1.10815 (17)0.19698 (5)0.0347 (5)
C100.4797 (4)1.06009 (19)0.20649 (6)0.0397 (5)
H100.42990.97950.19720.048*
C110.3445 (4)1.1301 (2)0.22955 (6)0.0451 (5)
H110.20191.09710.23610.054*
C120.4148 (4)1.2471 (2)0.24312 (6)0.0481 (6)
H120.32141.29470.25890.058*
C130.6216 (4)1.2945 (2)0.23355 (6)0.0477 (6)
H130.67031.37510.24290.057*
C140.7589 (4)1.22654 (18)0.21059 (6)0.0415 (5)
H140.90091.26040.20410.050*
C150.8681 (3)1.19569 (17)0.12357 (5)0.0325 (5)
C161.0135 (4)1.29802 (18)0.12531 (6)0.0399 (5)
H161.16051.29110.13810.048*
C170.9442 (4)1.41053 (19)0.10842 (6)0.0464 (6)
H171.04381.48150.10940.056*
C180.7300 (4)1.4201 (2)0.09014 (6)0.0497 (6)
H180.68301.49760.07830.060*
C190.5839 (4)1.3179 (2)0.08887 (6)0.0493 (6)
H190.43581.32530.07650.059*
C200.6534 (4)1.20490 (19)0.10556 (6)0.0414 (5)
H200.55401.13390.10470.050*
C211.1253 (3)0.97381 (18)0.08928 (5)0.0355 (5)
C221.1836 (3)0.86455 (18)0.06625 (5)0.0368 (5)
C231.0535 (4)0.75417 (19)0.06459 (6)0.0450 (5)
H230.92330.74830.07920.054*
C241.1113 (4)0.6529 (2)0.04203 (6)0.0533 (6)
H241.02030.57850.04120.064*
C251.2999 (5)0.6594 (2)0.02071 (7)0.0588 (7)
H251.34000.58970.00540.071*
C261.4289 (4)0.7680 (2)0.02195 (7)0.0594 (7)
H261.55920.77310.00740.071*
C271.3718 (4)0.8695 (2)0.04401 (6)0.0499 (6)
H271.46190.94420.04410.060*
C281.0477 (4)1.1273 (2)0.04035 (6)0.0510 (6)
H28A1.10751.08250.01870.077*
H28B1.05901.21890.03630.077*
H28C0.88781.10400.04250.077*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0444 (9)0.0394 (8)0.0369 (8)0.0049 (7)0.0075 (6)0.0010 (6)
N10.0436 (10)0.0337 (9)0.0356 (9)0.0083 (8)0.0126 (8)0.0004 (7)
N20.0493 (11)0.0336 (10)0.0378 (10)0.0050 (8)0.0148 (8)0.0009 (7)
N30.0384 (10)0.0302 (8)0.0323 (9)0.0020 (7)0.0084 (7)0.0001 (7)
C10.0369 (12)0.0326 (11)0.0340 (11)0.0005 (9)0.0064 (9)0.0008 (9)
C20.0330 (11)0.0319 (10)0.0336 (11)0.0006 (9)0.0030 (9)0.0000 (9)
C30.0426 (13)0.0344 (11)0.0312 (11)0.0057 (10)0.0011 (9)0.0055 (9)
C40.0450 (14)0.0458 (13)0.0370 (12)0.0076 (11)0.0017 (10)0.0063 (10)
C50.0514 (15)0.0560 (15)0.0451 (13)0.0192 (12)0.0066 (11)0.0098 (11)
C60.0674 (18)0.0483 (15)0.0555 (15)0.0257 (13)0.0155 (13)0.0093 (12)
C70.0787 (19)0.0355 (12)0.0454 (14)0.0039 (12)0.0113 (13)0.0016 (10)
C80.0542 (14)0.0358 (11)0.0381 (12)0.0029 (10)0.0012 (10)0.0015 (9)
C90.0426 (13)0.0336 (11)0.0284 (10)0.0058 (9)0.0065 (9)0.0029 (8)
C100.0449 (13)0.0359 (11)0.0390 (12)0.0040 (10)0.0080 (10)0.0032 (9)
C110.0481 (14)0.0484 (13)0.0398 (12)0.0090 (11)0.0116 (10)0.0072 (10)
C120.0619 (16)0.0417 (13)0.0427 (12)0.0172 (12)0.0189 (11)0.0016 (10)
C130.0670 (16)0.0351 (12)0.0419 (13)0.0070 (11)0.0117 (11)0.0023 (9)
C140.0497 (13)0.0352 (11)0.0404 (12)0.0020 (10)0.0094 (10)0.0003 (9)
C150.0382 (12)0.0308 (10)0.0294 (11)0.0030 (9)0.0080 (9)0.0002 (8)
C160.0429 (13)0.0392 (12)0.0375 (12)0.0044 (10)0.0018 (10)0.0011 (9)
C170.0629 (16)0.0356 (12)0.0409 (12)0.0064 (11)0.0061 (11)0.0013 (10)
C180.0699 (17)0.0383 (12)0.0420 (13)0.0154 (12)0.0118 (12)0.0055 (10)
C190.0459 (14)0.0576 (15)0.0445 (14)0.0124 (12)0.0032 (10)0.0075 (11)
C200.0387 (13)0.0453 (12)0.0405 (12)0.0000 (10)0.0044 (10)0.0036 (10)
C210.0358 (12)0.0368 (11)0.0342 (11)0.0008 (9)0.0061 (9)0.0026 (9)
C220.0378 (12)0.0417 (12)0.0311 (11)0.0042 (10)0.0040 (9)0.0001 (9)
C230.0575 (15)0.0437 (12)0.0345 (12)0.0014 (11)0.0092 (10)0.0017 (10)
C240.0801 (18)0.0407 (13)0.0395 (13)0.0006 (12)0.0069 (13)0.0013 (10)
C250.0808 (19)0.0521 (15)0.0442 (14)0.0205 (14)0.0095 (13)0.0076 (11)
C260.0567 (16)0.0711 (17)0.0526 (15)0.0123 (14)0.0199 (12)0.0093 (13)
C270.0448 (14)0.0585 (14)0.0475 (13)0.0009 (11)0.0119 (11)0.0046 (11)
C280.0662 (16)0.0509 (13)0.0359 (12)0.0018 (12)0.0034 (11)0.0062 (10)
Geometric parameters (Å, º) top
O1—C211.399 (2)C13—C141.378 (3)
O1—C281.432 (2)C13—H130.9500
N1—C21.400 (2)C14—H140.9500
N1—N21.410 (2)C15—C161.377 (3)
N1—C31.418 (2)C15—C201.378 (3)
N2—C11.290 (2)C16—C171.377 (3)
N3—C11.383 (2)C16—H160.9500
N3—C21.411 (2)C17—C181.380 (3)
N3—C151.444 (2)C17—H170.9500
C1—C91.471 (3)C18—C191.378 (3)
C2—C211.357 (3)C18—H180.9500
C3—C81.383 (3)C19—C201.379 (3)
C3—C41.389 (3)C19—H190.9500
C4—C51.379 (3)C20—H200.9500
C4—H40.9500C21—C221.461 (3)
C5—C61.368 (3)C22—C231.393 (3)
C5—H50.9500C22—C271.396 (3)
C6—C71.383 (3)C23—C241.385 (3)
C6—H60.9500C23—H230.9500
C7—C81.382 (3)C24—C251.379 (3)
C7—H70.9500C24—H240.9500
C8—H80.9500C25—C261.374 (3)
C9—C141.391 (3)C25—H250.9500
C9—C101.391 (3)C26—C271.375 (3)
C10—C111.384 (3)C26—H260.9500
C10—H100.9500C27—H270.9500
C11—C121.377 (3)C28—H28A0.9800
C11—H110.9500C28—H28B0.9800
C12—C131.377 (3)C28—H28C0.9800
C12—H120.9500
C21—O1—C28114.57 (15)C13—C14—H14120.1
C2—N1—N2110.97 (14)C9—C14—H14120.2
C2—N1—C3129.13 (16)C16—C15—C20120.87 (18)
N2—N1—C3116.30 (15)C16—C15—N3119.97 (17)
C1—N2—N1104.95 (15)C20—C15—N3119.13 (17)
C1—N3—C2107.04 (15)C15—C16—C17119.50 (19)
C1—N3—C15122.47 (15)C15—C16—H16120.3
C2—N3—C15125.66 (15)C17—C16—H16120.3
N2—C1—N3113.19 (17)C16—C17—C18119.9 (2)
N2—C1—C9123.34 (17)C16—C17—H17120.1
N3—C1—C9123.48 (16)C18—C17—H17120.1
C21—C2—N1130.15 (17)C19—C18—C17120.4 (2)
C21—C2—N3126.72 (17)C19—C18—H18119.8
N1—C2—N3103.07 (15)C17—C18—H18119.8
C8—C3—C4119.67 (19)C18—C19—C20119.8 (2)
C8—C3—N1119.11 (18)C18—C19—H19120.1
C4—C3—N1121.21 (18)C20—C19—H19120.1
C5—C4—C3119.8 (2)C15—C20—C19119.5 (2)
C5—C4—H4120.1C15—C20—H20120.2
C3—C4—H4120.1C19—C20—H20120.2
C6—C5—C4120.9 (2)C2—C21—O1115.37 (16)
C6—C5—H5119.6C2—C21—C22128.13 (17)
C4—C5—H5119.6O1—C21—C22116.40 (16)
C5—C6—C7119.3 (2)C23—C22—C27117.48 (19)
C5—C6—H6120.3C23—C22—C21122.35 (18)
C7—C6—H6120.3C27—C22—C21120.15 (18)
C8—C7—C6120.7 (2)C24—C23—C22121.0 (2)
C8—C7—H7119.6C24—C23—H23119.5
C6—C7—H7119.6C22—C23—H23119.5
C7—C8—C3119.6 (2)C25—C24—C23120.5 (2)
C7—C8—H8120.2C25—C24—H24119.8
C3—C8—H8120.2C23—C24—H24119.8
C14—C9—C10119.54 (18)C26—C25—C24119.1 (2)
C14—C9—C1121.43 (19)C26—C25—H25120.4
C10—C9—C1119.02 (17)C24—C25—H25120.4
C11—C10—C9119.74 (19)C25—C26—C27120.8 (2)
C11—C10—H10120.1C25—C26—H26119.6
C9—C10—H10120.1C27—C26—H26119.6
C12—C11—C10120.6 (2)C26—C27—C22121.1 (2)
C12—C11—H11119.7C26—C27—H27119.4
C10—C11—H11119.7C22—C27—H27119.4
C13—C12—C11119.5 (2)O1—C28—H28A109.5
C13—C12—H12120.3O1—C28—H28B109.5
C11—C12—H12120.3H28A—C28—H28B109.5
C12—C13—C14120.9 (2)O1—C28—H28C109.5
C12—C13—H13119.5H28A—C28—H28C109.5
C14—C13—H13119.5H28B—C28—H28C109.5
C13—C14—C9119.7 (2)
C2—N1—N2—C14.0 (2)C10—C11—C12—C130.0 (3)
C3—N1—N2—C1156.58 (17)C11—C12—C13—C140.1 (3)
N1—N2—C1—N31.9 (2)C12—C13—C14—C90.3 (3)
N1—N2—C1—C9178.51 (17)C10—C9—C14—C130.5 (3)
C2—N3—C1—N27.0 (2)C1—C9—C14—C13178.36 (18)
C15—N3—C1—N2163.63 (17)C1—N3—C15—C16112.9 (2)
C2—N3—C1—C9173.41 (17)C2—N3—C15—C1695.0 (2)
C15—N3—C1—C916.8 (3)C1—N3—C15—C2064.9 (2)
N2—N1—C2—C21169.4 (2)C2—N3—C15—C2087.3 (2)
C3—N1—C2—C2133.2 (3)C20—C15—C16—C170.8 (3)
N2—N1—C2—N37.94 (19)N3—C15—C16—C17178.53 (18)
C3—N1—C2—N3149.47 (18)C15—C16—C17—C180.4 (3)
C1—N3—C2—C21168.75 (19)C16—C17—C18—C190.5 (3)
C15—N3—C2—C2113.1 (3)C17—C18—C19—C200.8 (3)
C1—N3—C2—N18.70 (19)C16—C15—C20—C190.4 (3)
C15—N3—C2—N1164.34 (16)N3—C15—C20—C19178.17 (18)
C2—N1—C3—C8171.14 (18)C18—C19—C20—C150.4 (3)
N2—N1—C3—C832.4 (2)N1—C2—C21—O1164.52 (18)
C2—N1—C3—C410.3 (3)N3—C2—C21—O118.7 (3)
N2—N1—C3—C4146.16 (18)N1—C2—C21—C2211.7 (3)
C8—C3—C4—C53.3 (3)N3—C2—C21—C22165.01 (19)
N1—C3—C4—C5178.13 (17)C28—O1—C21—C2116.42 (19)
C3—C4—C5—C61.3 (3)C28—O1—C21—C2266.9 (2)
C4—C5—C6—C71.5 (3)C2—C21—C22—C2337.1 (3)
C5—C6—C7—C82.4 (3)O1—C21—C22—C23146.70 (18)
C6—C7—C8—C30.5 (3)C2—C21—C22—C27144.7 (2)
C4—C3—C8—C72.4 (3)O1—C21—C22—C2731.5 (3)
N1—C3—C8—C7178.99 (17)C27—C22—C23—C240.8 (3)
N2—C1—C9—C14131.4 (2)C21—C22—C23—C24179.02 (19)
N3—C1—C9—C1448.1 (3)C22—C23—C24—C250.1 (3)
N2—C1—C9—C1047.4 (3)C23—C24—C25—C260.4 (3)
N3—C1—C9—C10133.1 (2)C24—C25—C26—C270.1 (4)
C14—C9—C10—C110.4 (3)C25—C26—C27—C221.0 (4)
C1—C9—C10—C11178.48 (18)C23—C22—C27—C261.3 (3)
C9—C10—C11—C120.1 (3)C21—C22—C27—C26179.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C20—H20···O1i0.952.433.162 (3)134
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formulaC28H23N3O
Mr417.49
Crystal system, space groupMonoclinic, P21/c
Temperature (K)200
a, b, c (Å)5.8831 (2), 10.5560 (2), 35.0548 (8)
β (°) 93.749 (1)
V3)2172.31 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.35 × 0.09 × 0.04
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
12170, 3797, 2601
Rint0.058
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.116, 1.02
No. of reflections3797
No. of parameters290
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.17

Computer programs: COLLECT (Nonius, 1998), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C20—H20···O1i0.952.433.162 (3)134.2
Symmetry code: (i) x1, y, z.
 

Acknowledgements

The authors thank Professor Peter Klüfers for generous allocation of diffractometer time.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationArduengo, A. J., Harlow, R. L. & Kline, M. (1991). J. Am. Chem. Soc. 113, 361-363.  CSD CrossRef CAS Web of Science Google Scholar
First citationBiju, A. T., Kuhl, N. & Glorius, F. (2011). Acc. Chem. Res. 44, 1182–1195.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBreslow, R. (1958). J. Am. Chem. Soc. 80, 3719–3726.  CrossRef CAS Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationEnders, D., Niemeier, O. & Henseler, A. (2007). Chem. Rev. 107, 5606–5655.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationNair, V., Mathew, S. C., Vallalath, S., Pillai, A. N. & Suresh, E. (2008). Synthesis, pp. 551–554.  Web of Science CSD CrossRef Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds