metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,1′-Bis[bis­­(4-tert-butyl­phen­yl)meth­yl]ferrocene

aDepartment of Chemistry, Technical University of Kaiserslautern, 67663 Kaiserslautern, Germany
*Correspondence e-mail: sitzmann@chemie.uni-kl.de

(Received 21 September 2012; accepted 2 October 2012; online 3 November 2012)

The molecule of the title compound, [Fe(C26H31)2], is located on an inversion center. The two cyclopentadienyl rings exhibit a staggered conformation, which results from the bulky bis(4-tert-butylphenyl)methyl substituents situated on opposite sides of the molecule.

Related literature

For reports of the Gomberg radical, see: Gomberg (1900[Gomberg, M. (1900). J. Am. Chem. Soc. 22, 757-771.], 1901[Gomberg, M. (1901). J. Am. Chem. Soc. 23, 496-502.], 1902[Gomberg, M. (1902). J. Am. Chem. Soc. 24, 597-628.]). For solution behavior of the triphenyl­methyl radical, see: Lankamp et al. (1968[Lankamp, H., Nauta, W. T. & MacLean, C. (1968). Tetrahedron Lett. 9, 249-254.]); McBride (1974[McBride, J. M. (1974). Tetrahedron, 30, 2009-2022.]). For paramagnetic cyclopentadienyliron complexes, see: Sitzmann et al. (1996[Sitzmann, H., Dezember, T., Kaim, W., Baumann, F., Stalke, D., Kärcher, J., Dormann, E., Winter, H., Wachter, C. & Kelemen, M. (1996). Angew. Chem. Int. Ed. Engl. 35, 2872-2875.]); Sitzmann (2001[Sitzmann, H. (2001). Coord, Chem. Rev. 214, 287-327.]); Weismann et al. (2011[Weismann, D., Sun, Y., Lan, Y., Wolmershäuser, G., Powell, A. K. & Sitzmann, H. (2011). Chem. Eur. J. 17, 4700-4704.]). For cyclo­penta­dienyl radicals, see: Sitzmann et al. (1998[Sitzmann, H., Dezember, T. & Ruck, M. (1998). Angew. Chem. Int. Ed. Engl. 37, 3114-3116.], 2000[Sitzmann, H., Dezember, T., Schmitt, O., Weber, F., Wolmershäuser, G. & Ruck, M. (2000). Z. Anorg. Allg. Chem. 625, 2241-2244.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C26H31)2]

  • Mr = 742.87

  • Monoclinic, P 21 /n

  • a = 6.0893 (2) Å

  • b = 30.7616 (8) Å

  • c = 11.0983 (3) Å

  • β = 98.982 (3)°

  • V = 2053.40 (10) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 3.19 mm−1

  • T = 150 K

  • 0.18 × 0.13 × 0.09 mm

Data collection
  • Oxford Diffraction Xcalibur Sapphire3 Gemini ultra diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010)[Oxford Diffraction (2010). CrysAlis PRO, CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.] Tmin = 0.889, Tmax = 1.000

  • 12754 measured reflections

  • 3267 independent reflections

  • 2784 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.071

  • S = 1.01

  • 3267 reflections

  • 247 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.29 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO, CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO, CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Our interest in paramagnetic cyclopentadienyliron complexes (Sitzmann et al., 1996; Sitzmann, 2001; Weismann et al., 2011) and cyclopentadienyl radicals (Sitzmann et al., 1998; Sitzmann et al., 2000) stimulated experiments aimed at the generation of ferrocenyl derivatives of the Gomberg radical (Gomberg, 1900; Gomberg, 1901; Gomberg, 1902). The triphenylmethyl radical exists in solution in an equilibrium with its unsymmetrical dimer, where one para phenyl carbon atom forms a bond to the central methyl carbon of the second molecule (Lankamp et al., 1968; McBride, 1974). In order to prepare starting compounds for the synthesis of ferrocenyl diaryl radicals, diphenylfulvene was equipped with tert-butyl substituents in the para position to prevent such side reactions. Treatment with lithium aluminium hydride and metalation with n-butyllithium, followed by complexation with iron(II) chloride, gave the corresponding ferrocene with two bis(4-tert-butylphenyl)methyl substituents.

The iron center is bound to the cyclopentadienyl ring in the typical η5 manner. The distance between the two cyclopentadienyl ring planes is 3.315 Å, implying a Cpcent—Fe distance of 1.658 Å. The two Cp rings are arranged in a staggered conformation which results from the large di(4-tert-butylphenyl)methyl substituents arranging on opposite sides of the molecule.

Related literature top

For reports of the Gomberg radical, see: Gomberg (1900, 1901, 1902). For solution behavior of the triphenylmethyl radical, see: Lankamp et al. (1968); McBride (1974). For paramagnetic cyclopentadienyiron complexes, see: Sitzmann et al. (1996); Sitzmann (2001); Weismann et al. (2011). For cyclopentadienyl radicals, see: Sitzmann et al. (1998, 2000).

Experimental top

Synthesis of 5-(di(4-tert-butylphenyl)methyl)-1,3-cyclopentadien: To a stirred solution of 1,1'-bis-(4-tert-butylphenyl)-(2,4-cyclopentadien-ylidenemethylene) (2.04 g, 6.0 mmol) in THF (60 mL) was added lithium aluminium hydride (300 mg, 8.0 mmol). The reaction mixture was heated at 65 °C for 15 h until the orange suspension became colourless. The colourless suspension was slowly poured onto a mixture of diluted sulfuric acid (10%) and ice. After separation, the aqueous layer was extracted with toluene (3 x 100 mL) and the combined organic layers were washed with water (100 mL), dried over MgSO4 and taken to dryness in vacuo. This yielded a light yellow solid (1.88 g, 5.46 mmol, 91%).

Synthesis of (di(4-tert-butylphenyl))methyl-cyclopentadienyl lithium: To a stirred solution of 5-(di(4-tert-butylphenyl)methyl)-1,3-cyclopentadien (2.07 g, 6.0 mmol) in diethyl ether (100 mL) at 0 °C a solution (1.9 mol/l) of n-butyl lithium (4.0 mL, 6.4 mmol) in hexane was added dropwise. After stirring for ten minutes at 0 °C, the mixture was allowed to stir for 30 minutes at room temperature until the yellow solution turned to an orange suspension. The solvent was removed in vacuo and the residue was suspended in pentane (50 mL), filtered and washed with pentane (3 x 50 mL), yielding a colourless powder (1.77 g, 5.05 mmol, 84%).

Synthesis of 1,1'-bis[(di(4-tert-butylphenyl)methyl)cyclopentadienyl]iron: A mixture of (di(4-tert-butylphenyl))methyl-cyclopentadienyl lithium (1.77 g, 5.05 mmol) and anhydrous iron(II) chloride (659.1 mg, 5.20 mmol) in THF (250 mL) was stirred for 18 h at room temperature. The darkened solution was evaporated and the resulting residue extracted with pentane (5 x 100 mL). The yellow solution was taken to dryness and the yellow powder recrystallized from pentane. The product could be crystallized at low temperature yielding plate-like yellow crystals (1.16 g, 1.56 mmol, 62%).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2010); cell refinement: CrysAlis CCD (Oxford Diffraction, 2010); data reduction: CrysAlis RED (Oxford Diffraction, 2010); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. : View of the title compound showing thermal ellipsoids at 50% probability.
[Figure 2] Fig. 2. : View of the packing of the title compound.
1,1'-Bis[bis(4-tert-butylphenyl)methyl]ferrocene top
Crystal data top
[Fe(C26H31)2]F(000) = 800
Mr = 742.87Dx = 1.201 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ynCell parameters from 6229 reflections
a = 6.0893 (2) Åθ = 2.9–62.6°
b = 30.7616 (8) ŵ = 3.19 mm1
c = 11.0983 (3) ÅT = 150 K
β = 98.982 (3)°Plate, yellow
V = 2053.40 (10) Å30.18 × 0.13 × 0.09 mm
Z = 2
Data collection top
Oxford Diffraction Xcalibur Sapphire3 Gemini ultra
diffractometer
3267 independent reflections
Radiation source: Enhance Ultra (Cu) X-ray Source2784 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.028
Detector resolution: 16.1399 pixels mm-1θmax = 62.7°, θmin = 2.9°
ω scansh = 65
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 3135
Tmin = 0.889, Tmax = 1.000l = 1212
12754 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.071H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0434P)2]
where P = (Fo2 + 2Fc2)/3
3267 reflections(Δ/σ)max < 0.001
247 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
[Fe(C26H31)2]V = 2053.40 (10) Å3
Mr = 742.87Z = 2
Monoclinic, P21/nCu Kα radiation
a = 6.0893 (2) ŵ = 3.19 mm1
b = 30.7616 (8) ÅT = 150 K
c = 11.0983 (3) Å0.18 × 0.13 × 0.09 mm
β = 98.982 (3)°
Data collection top
Oxford Diffraction Xcalibur Sapphire3 Gemini ultra
diffractometer
3267 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
2784 reflections with I > 2σ(I)
Tmin = 0.889, Tmax = 1.000Rint = 0.028
12754 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.071H-atom parameters constrained
S = 1.01Δρmax = 0.17 e Å3
3267 reflectionsΔρmin = 0.29 e Å3
247 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. All hydrogen atoms were placed in calculated positions (C–H 0.96, 0.98 or 1.00 Å) and refined by using a riding model.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3111 (2)0.44424 (5)0.46953 (13)0.0208 (3)
C20.5266 (3)0.43796 (5)0.43750 (13)0.0236 (3)
H20.63240.41690.47170.028*
C30.5560 (3)0.46865 (5)0.34559 (14)0.0269 (4)
H30.68480.47160.30780.032*
C40.3609 (3)0.49414 (5)0.31997 (13)0.0265 (4)
H40.33550.51710.26240.032*
C50.2100 (3)0.47904 (5)0.39611 (13)0.0228 (3)
H50.06530.49030.39780.027*
C60.1928 (2)0.41733 (5)0.55424 (13)0.0207 (3)
H60.05800.43420.56710.025*
C70.1099 (2)0.37397 (5)0.49700 (13)0.0213 (3)
C80.0287 (3)0.34847 (5)0.55661 (14)0.0266 (4)
H80.06320.35790.63300.032*
C90.1173 (3)0.30991 (5)0.50777 (15)0.0289 (4)
H90.21320.29370.55060.035*
C100.0690 (2)0.29413 (5)0.39658 (14)0.0235 (3)
C110.0726 (3)0.31913 (5)0.33893 (14)0.0274 (4)
H110.11190.30920.26410.033*
C120.1593 (3)0.35845 (5)0.38752 (14)0.0268 (4)
H120.25420.37490.34460.032*
C130.1713 (3)0.25134 (5)0.34417 (15)0.0291 (4)
C140.1032 (3)0.21442 (6)0.43535 (18)0.0439 (5)
H14A0.05930.21270.45300.066*
H14B0.16310.18680.40020.066*
H14C0.16240.22020.51100.066*
C150.4254 (3)0.25543 (6)0.32226 (19)0.0446 (5)
H15A0.47740.26180.39960.067*
H15B0.49140.22810.28880.067*
H15C0.46990.27910.26440.067*
C160.0956 (3)0.23944 (6)0.22250 (16)0.0382 (4)
H16A0.13660.26280.16330.057*
H16B0.16790.21240.19120.057*
H16C0.06610.23550.23540.057*
C170.3308 (2)0.41091 (5)0.67958 (13)0.0211 (3)
C180.2846 (3)0.43382 (5)0.78101 (14)0.0240 (3)
H180.15780.45220.77340.029*
C190.4209 (3)0.43015 (5)0.89289 (13)0.0245 (4)
H190.38530.44620.96040.029*
C200.6087 (3)0.40365 (5)0.90922 (13)0.0226 (3)
C210.6488 (3)0.37976 (5)0.80823 (13)0.0244 (3)
H210.77320.36080.81620.029*
C220.5115 (3)0.38301 (5)0.69618 (14)0.0240 (3)
H220.54210.36580.62970.029*
C230.7610 (3)0.40157 (5)1.03284 (14)0.0260 (4)
C240.8546 (3)0.44714 (6)1.06587 (15)0.0358 (4)
H24A0.93560.45751.00170.054*
H24B0.95600.44591.14360.054*
H24C0.73210.46711.07330.054*
C250.6265 (3)0.38601 (6)1.13129 (14)0.0320 (4)
H25A0.50610.40661.13730.048*
H25B0.72450.38421.21010.048*
H25C0.56350.35731.10910.048*
C260.9574 (3)0.37061 (6)1.03084 (15)0.0335 (4)
H26A0.90170.34101.01300.050*
H26B1.05300.37111.11050.050*
H26C1.04320.37990.96770.050*
Fe10.50000.50000.50000.01935 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0256 (8)0.0166 (8)0.0194 (8)0.0032 (6)0.0008 (6)0.0040 (6)
C20.0272 (9)0.0183 (8)0.0250 (8)0.0019 (7)0.0036 (6)0.0059 (6)
C30.0333 (9)0.0273 (9)0.0213 (8)0.0084 (7)0.0079 (7)0.0092 (7)
C40.0352 (9)0.0256 (9)0.0169 (8)0.0089 (7)0.0016 (6)0.0000 (6)
C50.0235 (8)0.0213 (8)0.0215 (8)0.0021 (6)0.0028 (6)0.0027 (6)
C60.0225 (8)0.0182 (8)0.0214 (8)0.0021 (6)0.0031 (6)0.0005 (6)
C70.0212 (8)0.0201 (8)0.0215 (8)0.0025 (6)0.0002 (6)0.0018 (6)
C80.0308 (9)0.0257 (9)0.0245 (9)0.0020 (7)0.0082 (7)0.0023 (7)
C90.0291 (9)0.0254 (9)0.0332 (9)0.0050 (7)0.0079 (7)0.0009 (7)
C100.0227 (8)0.0192 (8)0.0270 (8)0.0026 (7)0.0014 (6)0.0005 (6)
C110.0334 (9)0.0253 (9)0.0235 (8)0.0021 (7)0.0044 (7)0.0035 (7)
C120.0334 (9)0.0239 (9)0.0235 (8)0.0062 (7)0.0056 (7)0.0000 (7)
C130.0302 (9)0.0210 (8)0.0347 (9)0.0017 (7)0.0007 (7)0.0029 (7)
C140.0592 (13)0.0221 (9)0.0485 (12)0.0034 (9)0.0023 (10)0.0008 (8)
C150.0308 (11)0.0397 (11)0.0609 (13)0.0070 (9)0.0006 (9)0.0137 (9)
C160.0429 (11)0.0280 (10)0.0424 (11)0.0061 (8)0.0023 (8)0.0117 (8)
C170.0246 (8)0.0182 (8)0.0209 (8)0.0047 (6)0.0044 (6)0.0000 (6)
C180.0271 (9)0.0206 (8)0.0253 (8)0.0008 (7)0.0073 (7)0.0002 (6)
C190.0327 (9)0.0218 (8)0.0198 (8)0.0009 (7)0.0066 (7)0.0024 (6)
C200.0281 (9)0.0196 (8)0.0207 (8)0.0035 (7)0.0058 (6)0.0015 (6)
C210.0269 (9)0.0221 (8)0.0237 (8)0.0029 (7)0.0028 (6)0.0005 (6)
C220.0315 (9)0.0197 (8)0.0210 (8)0.0011 (7)0.0048 (6)0.0024 (6)
C230.0298 (9)0.0276 (9)0.0199 (8)0.0025 (7)0.0018 (6)0.0003 (7)
C240.0411 (11)0.0337 (10)0.0308 (9)0.0081 (8)0.0006 (8)0.0033 (8)
C250.0383 (10)0.0363 (10)0.0212 (8)0.0017 (8)0.0038 (7)0.0010 (7)
C260.0343 (10)0.0394 (10)0.0254 (9)0.0020 (8)0.0001 (7)0.0023 (8)
Fe10.02376 (19)0.01684 (18)0.01674 (17)0.00199 (15)0.00099 (12)0.00149 (14)
Geometric parameters (Å, º) top
C1—C21.425 (2)C15—H15A0.9800
C1—C51.425 (2)C15—H15B0.9800
C1—C61.516 (2)C15—H15C0.9800
C1—Fe12.0634 (14)C16—H16A0.9800
C2—C31.421 (2)C16—H16B0.9800
C2—Fe12.0455 (15)C16—H16C0.9800
C2—H20.9500C17—C221.385 (2)
C3—C41.415 (2)C17—C181.394 (2)
C3—Fe12.0409 (15)C18—C191.386 (2)
C3—H30.9500C18—H180.9500
C4—C51.420 (2)C19—C201.393 (2)
C4—Fe12.0527 (15)C19—H190.9500
C4—H40.9500C20—C211.393 (2)
C5—Fe12.0560 (14)C20—C231.533 (2)
C5—H50.9500C21—C221.390 (2)
C6—C171.522 (2)C21—H210.9500
C6—C71.529 (2)C22—H220.9500
C6—H61.0000C23—C261.532 (2)
C7—C121.382 (2)C23—C241.536 (2)
C7—C81.393 (2)C23—C251.541 (2)
C8—C91.379 (2)C24—H24A0.9800
C8—H80.9500C24—H24B0.9800
C9—C101.399 (2)C24—H24C0.9800
C9—H90.9500C25—H25A0.9800
C10—C111.385 (2)C25—H25B0.9800
C10—C131.531 (2)C25—H25C0.9800
C11—C121.394 (2)C26—H26A0.9800
C11—H110.9500C26—H26B0.9800
C12—H120.9500C26—H26C0.9800
C13—C151.534 (2)Fe1—C3i2.0409 (15)
C13—C141.535 (2)Fe1—C2i2.0455 (15)
C13—C161.538 (2)Fe1—C4i2.0527 (15)
C14—H14A0.9800Fe1—C5i2.0560 (15)
C14—H14B0.9800Fe1—C1i2.0634 (15)
C14—H14C0.9800
C2—C1—C5106.94 (13)C17—C18—H18119.5
C2—C1—C6128.72 (13)C18—C19—C20121.92 (14)
C5—C1—C6124.05 (14)C18—C19—H19119.0
C2—C1—Fe169.04 (8)C20—C19—H19119.0
C5—C1—Fe169.48 (8)C19—C20—C21116.58 (14)
C6—C1—Fe1131.21 (10)C19—C20—C23120.70 (13)
C3—C2—C1108.24 (14)C21—C20—C23122.72 (14)
C3—C2—Fe169.47 (9)C22—C21—C20121.70 (15)
C1—C2—Fe170.38 (8)C22—C21—H21119.2
C3—C2—H2125.9C20—C21—H21119.2
C1—C2—H2125.9C17—C22—C21121.21 (14)
Fe1—C2—H2125.8C17—C22—H22119.4
C4—C3—C2108.45 (14)C21—C22—H22119.4
C4—C3—Fe170.23 (8)C26—C23—C20112.19 (13)
C2—C3—Fe169.82 (8)C26—C23—C24108.03 (14)
C4—C3—H3125.8C20—C23—C24109.01 (13)
C2—C3—H3125.8C26—C23—C25108.64 (13)
Fe1—C3—H3125.8C20—C23—C25109.48 (13)
C3—C4—C5107.45 (14)C24—C23—C25109.45 (13)
C3—C4—Fe169.33 (8)C23—C24—H24A109.5
C5—C4—Fe169.91 (8)C23—C24—H24B109.5
C3—C4—H4126.3H24A—C24—H24B109.5
C5—C4—H4126.3C23—C24—H24C109.5
Fe1—C4—H4126.1H24A—C24—H24C109.5
C4—C5—C1108.92 (14)H24B—C24—H24C109.5
C4—C5—Fe169.66 (8)C23—C25—H25A109.5
C1—C5—Fe170.03 (8)C23—C25—H25B109.5
C4—C5—H5125.5H25A—C25—H25B109.5
C1—C5—H5125.5C23—C25—H25C109.5
Fe1—C5—H5126.3H25A—C25—H25C109.5
C1—C6—C17112.94 (12)H25B—C25—H25C109.5
C1—C6—C7112.14 (12)C23—C26—H26A109.5
C17—C6—C7111.48 (12)C23—C26—H26B109.5
C1—C6—H6106.6H26A—C26—H26B109.5
C17—C6—H6106.6C23—C26—H26C109.5
C7—C6—H6106.6H26A—C26—H26C109.5
C12—C7—C8117.03 (14)H26B—C26—H26C109.5
C12—C7—C6124.30 (14)C3i—Fe1—C3180.00 (8)
C8—C7—C6118.65 (13)C3i—Fe1—C2i40.71 (6)
C9—C8—C7121.78 (15)C3—Fe1—C2i139.29 (6)
C9—C8—H8119.1C3i—Fe1—C2139.29 (6)
C7—C8—H8119.1C3—Fe1—C240.71 (6)
C8—C9—C10121.49 (15)C2i—Fe1—C2180.00 (3)
C8—C9—H9119.3C3i—Fe1—C4i40.43 (6)
C10—C9—H9119.3C3—Fe1—C4i139.57 (6)
C11—C10—C9116.52 (14)C2i—Fe1—C4i68.31 (6)
C11—C10—C13123.20 (14)C2—Fe1—C4i111.69 (6)
C9—C10—C13120.29 (14)C3i—Fe1—C4139.57 (6)
C10—C11—C12121.92 (15)C3—Fe1—C440.43 (6)
C10—C11—H11119.0C2i—Fe1—C4111.69 (6)
C12—C11—H11119.0C2—Fe1—C468.31 (6)
C7—C12—C11121.24 (15)C4i—Fe1—C4180.000 (1)
C7—C12—H12119.4C3i—Fe1—C5i67.80 (6)
C11—C12—H12119.4C3—Fe1—C5i112.20 (6)
C10—C13—C15109.28 (14)C2i—Fe1—C5i67.90 (6)
C10—C13—C14109.49 (13)C2—Fe1—C5i112.10 (6)
C15—C13—C14109.10 (15)C4i—Fe1—C5i40.43 (6)
C10—C13—C16112.22 (14)C4—Fe1—C5i139.57 (6)
C15—C13—C16108.29 (14)C3i—Fe1—C5112.20 (6)
C14—C13—C16108.40 (14)C3—Fe1—C567.80 (6)
C13—C14—H14A109.5C2i—Fe1—C5112.10 (6)
C13—C14—H14B109.5C2—Fe1—C567.90 (6)
H14A—C14—H14B109.5C4i—Fe1—C5139.57 (6)
C13—C14—H14C109.5C4—Fe1—C540.43 (6)
H14A—C14—H14C109.5C5i—Fe1—C5180.00 (8)
H14B—C14—H14C109.5C3i—Fe1—C1i68.37 (6)
C13—C15—H15A109.5C3—Fe1—C1i111.63 (6)
C13—C15—H15B109.5C2i—Fe1—C1i40.58 (6)
H15A—C15—H15B109.5C2—Fe1—C1i139.42 (6)
C13—C15—H15C109.5C4i—Fe1—C1i68.45 (6)
H15A—C15—H15C109.5C4—Fe1—C1i111.55 (6)
H15B—C15—H15C109.5C5i—Fe1—C1i40.49 (6)
C13—C16—H16A109.5C5—Fe1—C1i139.51 (6)
C13—C16—H16B109.5C3i—Fe1—C1111.63 (6)
H16A—C16—H16B109.5C3—Fe1—C168.37 (6)
C13—C16—H16C109.5C2i—Fe1—C1139.42 (6)
H16A—C16—H16C109.5C2—Fe1—C140.58 (6)
H16B—C16—H16C109.5C4i—Fe1—C1111.55 (6)
C22—C17—C18117.55 (14)C4—Fe1—C168.45 (6)
C22—C17—C6121.06 (13)C5i—Fe1—C1139.51 (6)
C18—C17—C6121.36 (14)C5—Fe1—C140.49 (6)
C19—C18—C17120.93 (15)C1i—Fe1—C1180.0
C19—C18—H18119.5
C5—C1—C2—C30.02 (16)C2—C3—Fe1—C5i98.56 (10)
C6—C1—C2—C3173.97 (14)C4—C3—Fe1—C537.93 (9)
Fe1—C1—C2—C359.37 (10)C2—C3—Fe1—C581.44 (10)
C5—C1—C2—Fe159.39 (10)C4—C3—Fe1—C1i98.28 (9)
C6—C1—C2—Fe1126.66 (15)C2—C3—Fe1—C1i142.36 (9)
C1—C2—C3—C40.11 (16)C4—C3—Fe1—C181.72 (9)
Fe1—C2—C3—C459.84 (10)C2—C3—Fe1—C137.64 (9)
C1—C2—C3—Fe159.94 (10)C3—C2—Fe1—C3i180.000 (1)
C2—C3—C4—C50.19 (17)C1—C2—Fe1—C3i60.78 (13)
Fe1—C3—C4—C559.77 (10)C1—C2—Fe1—C3119.22 (13)
C2—C3—C4—Fe159.58 (10)C3—C2—Fe1—C4i142.53 (9)
C3—C4—C5—C10.20 (17)C1—C2—Fe1—C4i98.24 (9)
Fe1—C4—C5—C159.20 (10)C3—C2—Fe1—C437.47 (9)
C3—C4—C5—Fe159.40 (10)C1—C2—Fe1—C481.76 (9)
C2—C1—C5—C40.14 (16)C3—C2—Fe1—C5i98.81 (10)
C6—C1—C5—C4174.44 (13)C1—C2—Fe1—C5i141.97 (9)
Fe1—C1—C5—C458.98 (10)C3—C2—Fe1—C581.19 (10)
C2—C1—C5—Fe159.11 (10)C1—C2—Fe1—C538.03 (9)
C6—C1—C5—Fe1126.59 (14)C3—C2—Fe1—C1i60.78 (13)
C2—C1—C6—C1753.1 (2)C1—C2—Fe1—C1i180.0
C5—C1—C6—C17133.93 (14)C3—C2—Fe1—C1119.22 (13)
Fe1—C1—C6—C1742.25 (19)C3—C4—Fe1—C3i180.000 (1)
C2—C1—C6—C773.92 (18)C5—C4—Fe1—C3i61.36 (13)
C5—C1—C6—C799.09 (17)C5—C4—Fe1—C3118.64 (13)
Fe1—C1—C6—C7169.23 (11)C3—C4—Fe1—C2i142.29 (9)
C1—C6—C7—C127.5 (2)C5—C4—Fe1—C2i99.07 (10)
C17—C6—C7—C12120.27 (16)C3—C4—Fe1—C237.71 (9)
C1—C6—C7—C8171.08 (13)C5—C4—Fe1—C280.93 (10)
C17—C6—C7—C861.17 (18)C3—C4—Fe1—C5i61.36 (13)
C12—C7—C8—C91.4 (2)C5—C4—Fe1—C5i180.0
C6—C7—C8—C9177.24 (14)C3—C4—Fe1—C5118.64 (13)
C7—C8—C9—C101.1 (3)C3—C4—Fe1—C1i98.48 (10)
C8—C9—C10—C110.3 (2)C5—C4—Fe1—C1i142.88 (9)
C8—C9—C10—C13179.54 (15)C3—C4—Fe1—C181.52 (10)
C9—C10—C11—C121.3 (2)C5—C4—Fe1—C137.12 (9)
C13—C10—C11—C12178.54 (15)C4—C5—Fe1—C3i142.07 (9)
C8—C7—C12—C110.4 (2)C1—C5—Fe1—C3i97.77 (10)
C6—C7—C12—C11178.15 (14)C4—C5—Fe1—C337.93 (9)
C10—C11—C12—C71.0 (3)C1—C5—Fe1—C382.23 (10)
C11—C10—C13—C15119.29 (17)C4—C5—Fe1—C2i97.95 (10)
C9—C10—C13—C1560.6 (2)C1—C5—Fe1—C2i141.88 (9)
C11—C10—C13—C14121.27 (17)C4—C5—Fe1—C282.05 (10)
C9—C10—C13—C1458.9 (2)C1—C5—Fe1—C238.12 (9)
C11—C10—C13—C160.8 (2)C4—C5—Fe1—C4i180.0
C9—C10—C13—C16179.29 (14)C1—C5—Fe1—C4i59.83 (13)
C1—C6—C17—C2273.47 (18)C1—C5—Fe1—C4120.17 (13)
C7—C6—C17—C2253.85 (19)C4—C5—Fe1—C1i59.83 (13)
C1—C6—C17—C18104.54 (16)C1—C5—Fe1—C1i180.0
C7—C6—C17—C18128.14 (15)C4—C5—Fe1—C1120.17 (13)
C22—C17—C18—C192.8 (2)C2—C1—Fe1—C3i142.24 (9)
C6—C17—C18—C19175.22 (14)C5—C1—Fe1—C3i99.29 (10)
C17—C18—C19—C200.1 (2)C6—C1—Fe1—C3i18.54 (16)
C18—C19—C20—C212.1 (2)C2—C1—Fe1—C337.76 (9)
C18—C19—C20—C23177.73 (14)C5—C1—Fe1—C380.71 (10)
C19—C20—C21—C221.5 (2)C6—C1—Fe1—C3161.46 (16)
C23—C20—C21—C22178.33 (14)C2—C1—Fe1—C2i180.0
C18—C17—C22—C213.5 (2)C5—C1—Fe1—C2i61.54 (12)
C6—C17—C22—C21174.62 (14)C6—C1—Fe1—C2i56.30 (17)
C20—C21—C22—C171.3 (2)C5—C1—Fe1—C2118.46 (12)
C19—C20—C23—C26179.90 (14)C6—C1—Fe1—C2123.70 (17)
C21—C20—C23—C260.1 (2)C2—C1—Fe1—C4i98.61 (9)
C19—C20—C23—C2460.29 (19)C5—C1—Fe1—C4i142.93 (9)
C21—C20—C23—C24119.54 (16)C6—C1—Fe1—C4i25.09 (16)
C19—C20—C23—C2559.40 (19)C2—C1—Fe1—C481.39 (9)
C21—C20—C23—C25120.76 (16)C5—C1—Fe1—C437.07 (9)
C4—C3—Fe1—C2i60.63 (13)C6—C1—Fe1—C4154.91 (16)
C2—C3—Fe1—C2i180.000 (1)C2—C1—Fe1—C5i61.54 (12)
C4—C3—Fe1—C2119.37 (13)C5—C1—Fe1—C5i180.0
C4—C3—Fe1—C4i180.000 (1)C6—C1—Fe1—C5i62.17 (18)
C2—C3—Fe1—C4i60.63 (13)C2—C1—Fe1—C5118.46 (12)
C2—C3—Fe1—C4119.37 (13)C6—C1—Fe1—C5117.83 (18)
C4—C3—Fe1—C5i142.07 (9)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Fe(C26H31)2]
Mr742.87
Crystal system, space groupMonoclinic, P21/n
Temperature (K)150
a, b, c (Å)6.0893 (2), 30.7616 (8), 11.0983 (3)
β (°) 98.982 (3)
V3)2053.40 (10)
Z2
Radiation typeCu Kα
µ (mm1)3.19
Crystal size (mm)0.18 × 0.13 × 0.09
Data collection
DiffractometerOxford Diffraction Xcalibur Sapphire3 Gemini ultra
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.889, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
12754, 3267, 2784
Rint0.028
(sin θ/λ)max1)0.576
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.071, 1.01
No. of reflections3267
No. of parameters247
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.29

Computer programs: CrysAlis CCD (Oxford Diffraction, 2010), CrysAlis RED (Oxford Diffraction, 2010), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2008), publCIF (Westrip, 2010).

 

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationGomberg, M. (1900). J. Am. Chem. Soc. 22, 757–771.  CrossRef Google Scholar
First citationGomberg, M. (1901). J. Am. Chem. Soc. 23, 496–502.  CrossRef Google Scholar
First citationGomberg, M. (1902). J. Am. Chem. Soc. 24, 597–628.  CrossRef Google Scholar
First citationLankamp, H., Nauta, W. T. & MacLean, C. (1968). Tetrahedron Lett. 9, 249–254.  CrossRef Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMcBride, J. M. (1974). Tetrahedron, 30, 2009–2022.  CrossRef CAS Web of Science Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO, CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSitzmann, H. (2001). Coord, Chem. Rev. 214, 287–327.  Google Scholar
First citationSitzmann, H., Dezember, T., Kaim, W., Baumann, F., Stalke, D., Kärcher, J., Dormann, E., Winter, H., Wachter, C. & Kelemen, M. (1996). Angew. Chem. Int. Ed. Engl. 35, 2872–2875.  CSD CrossRef CAS Web of Science Google Scholar
First citationSitzmann, H., Dezember, T. & Ruck, M. (1998). Angew. Chem. Int. Ed. Engl. 37, 3114–3116.  CrossRef CAS Google Scholar
First citationSitzmann, H., Dezember, T., Schmitt, O., Weber, F., Wolmershäuser, G. & Ruck, M. (2000). Z. Anorg. Allg. Chem. 625, 2241–2244.  CrossRef Google Scholar
First citationWeismann, D., Sun, Y., Lan, Y., Wolmershäuser, G., Powell, A. K. & Sitzmann, H. (2011). Chem. Eur. J. 17, 4700–4704.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds