organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Ethyl­sulfinyl-2-(3-fluoro­phen­yl)-5,6-methyl­enedi­­oxy-1-benzo­furan

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong, Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 25 October 2012; accepted 30 October 2012; online 14 November 2012)

In the title compound, C17H13FO4S, the 3-fluoro­phenyl ring makes a dihedral angle of 6.14 (5)° with the mean plane [r.m.s. deviation = 0.008 (1) Å] of the benzofuran fragment. In the crystal, mol­ecules are linked by weak C—H⋯F, C—H⋯O and C—H⋯π inter­actions, forming a three--dimensional network. The crystal structure also exhibits slipped ππ inter­actions between the 3-fluoro­phenyl rings of neighbouring mol­ecules [centroid–centroid distance = 3.769 (2) Å and slippage = 1.684 (2) Å].

Related literature

For background information on and the crystal structures of related benzofuran compounds, see: Choi et al. (2010[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010). Acta Cryst. E66, o1296.]); Seo et al. (2011[Seo, P. J., Choi, H. D., Son, B. W. & Lee, U. (2011). Acta Cryst. E67, o3504.]).

[Scheme 1]

Experimental

Crystal data
  • C17H13FO4S

  • Mr = 332.33

  • Monoclinic, P 21 /c

  • a = 8.8516 (2) Å

  • b = 21.8221 (4) Å

  • c = 7.7228 (2) Å

  • β = 102.949 (1)°

  • V = 1453.80 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 173 K

  • 0.39 × 0.29 × 0.26 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.908, Tmax = 0.937

  • 14376 measured reflections

  • 3600 independent reflections

  • 3131 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.101

  • S = 1.02

  • 3600 reflections

  • 209 parameters

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C2–C7 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9A⋯O4i 0.99 2.45 3.314 (2) 145
C9—H9B⋯O2ii 0.99 2.59 3.519 (3) 156
C16—H16A⋯O4iii 0.99 2.29 3.2689 (19) 169
C6—H6⋯F1iv 0.95 2.37 3.2532 (18) 154
C17—H17BCg1v 0.98 2.74 3.642 (3) 153
Symmetry codes: (i) [x+1, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iv) x+1, y, z+1; (v) x, y, z-1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As a part of our ongoing study of 5,6-methylenedioxy-1-benzofuran derivatives containing [3-ethylsulfinyl-2-(4-fluorophenyl)] (Choi et al., 2010) and [2-(4-fluorophenyl)-3-isopropylsulfinyl] (Seo et al., 2011) substituents, we report herein the crystal structure of the title compound.

In the title molecule (Fig. 1), the benzofuran unit is essentially planar, with a mean deviation of 0.008 (1) Å from the least-squares plane defined by the nine constituent atoms. The dihedral angle between the 3-fluorophenyl ring and the mean plane of the benzofuran fragment is 6.14 (5)°. In the crystal structure (Figs. 2 & 3), molecules are connected by weak C—H···F, C—H···O and C—H···π interactions (Table 1, Cg1 is the centroid of the C2–C7 benzene ring). The crystal packing (Fig. 3) also exhibits slipped ππ interactions between the 3-fluorophenyl rings of neighbouring molecules, with a Cg2···Cg2vi distance of 3.769 (2) Å and an interplanar distance of 3.372 (2) Å resulting in a slippage of 1.684 (2) Å (Cg2 is the centroid of the C10–C15 3-fluorophenyl ring).

Related literature top

For background information on and the crystal structures of related benzofuran compounds, see: Choi et al. (2010); Seo et al. (2011).

Experimental top

3-Chloroperoxybenzoic acid (77%, 224 mg, 1.0 mmol) was added in small portions to a stirred solution of 3-ethylsulfanyl-2-(3-fluorophenyl)-5,6-methylenedioxy-1-benzofuran (284 mg, 0.9 mmol) in dichloromethane (40 mL) at 273 K. After being stirred at room temperature for 4h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (hexane–ethyl acetate, 1:1 v/v) to afford the title compound as a colorless solid [yield 73%, m.p. 408–409 K; Rf = 0.61 (hexane–ethyl acetate, 1:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in acetone at room temperature.

Refinement top

All H atoms were geometrically positioned and refined using a riding model, with C—H = 0.95 Å for aryl, 0.99 Å for methylene and 0.95 Å for methyl H atoms, respectively. Uiso(H) = 1.2Ueq(C) for aryl and methylene, and 1.5Ueq(C) for methyl H atoms. The positions of methyl hydrogens were optimized rotationally.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the C—H···F and C—H···O interactions (dotted lines) in the crystal structure of the title compound. H atoms not participating in hydrogen-bonding were omitted for clarity. [Symmetry codes: (i) x + 1, - y + 3/2, z + 1/2; (ii) x, - y + 3/2, z + 1/2; (iii) x, - y + 3/2, z - 1/2; (iv) x + 1, y, z + 1 (vii) x - 1, - y + 3/2, z - 1/2; (viii) x, - y + 3/2, z + 1/2; (ix) x, - y + 3/2, z + 1/2; (x) x - 1, y, z - 1.]
[Figure 3] Fig. 3. A view of the C—H···π and ππ interactions (dotted lines) in the crystal structure of the title compound. H atoms not participating in hydrogen-bonding were omitted for clarity. [Symmetry codes: (v) x, y, z - 1; (vi) - x, - y + 1, - z + 1; (xi) x, y, z + 1.]
3-Ethylsulfinyl-2-(3-fluorophenyl)-5,6-methylenedioxy-1-benzofuran top
Crystal data top
C17H13FO4SF(000) = 688
Mr = 332.33Dx = 1.518 Mg m3
Monoclinic, P21/cMelting point: 408 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 8.8516 (2) ÅCell parameters from 6139 reflections
b = 21.8221 (4) Åθ = 2.9–28.2°
c = 7.7228 (2) ŵ = 0.25 mm1
β = 102.949 (1)°T = 173 K
V = 1453.80 (6) Å3Block, colourless
Z = 40.39 × 0.29 × 0.26 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
3600 independent reflections
Radiation source: rotating anode3131 reflections with I > 2σ(I)
Graphite multilayer monochromatorRint = 0.025
Detector resolution: 10.0 pixels mm-1θmax = 28.3°, θmin = 1.9°
ϕ and ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 2927
Tmin = 0.908, Tmax = 0.937l = 1010
14376 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: difference Fourier map
wR(F2) = 0.101H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0488P)2 + 0.7371P]
where P = (Fo2 + 2Fc2)/3
3600 reflections(Δ/σ)max = 0.001
209 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
C17H13FO4SV = 1453.80 (6) Å3
Mr = 332.33Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.8516 (2) ŵ = 0.25 mm1
b = 21.8221 (4) ÅT = 173 K
c = 7.7228 (2) Å0.39 × 0.29 × 0.26 mm
β = 102.949 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
3600 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3131 reflections with I > 2σ(I)
Tmin = 0.908, Tmax = 0.937Rint = 0.025
14376 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.101H-atom parameters constrained
S = 1.02Δρmax = 0.45 e Å3
3600 reflectionsΔρmin = 0.35 e Å3
209 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.20748 (4)0.653717 (15)0.40724 (5)0.02313 (11)
F10.09845 (13)0.46852 (5)0.11643 (15)0.0452 (3)
O10.44774 (12)0.52350 (4)0.70767 (14)0.0247 (2)
O20.76433 (15)0.73096 (6)0.93233 (18)0.0424 (3)
O30.86160 (15)0.64201 (6)1.07899 (18)0.0431 (3)
O40.18119 (13)0.70803 (5)0.51487 (16)0.0341 (3)
C10.33826 (16)0.60530 (6)0.55117 (19)0.0215 (3)
C20.47112 (16)0.62662 (6)0.68258 (18)0.0222 (3)
C30.54231 (17)0.68385 (7)0.7276 (2)0.0252 (3)
H30.50370.72070.66830.030*
C40.67160 (18)0.68235 (7)0.8635 (2)0.0271 (3)
C50.72968 (17)0.62887 (7)0.9530 (2)0.0278 (3)
C60.66316 (17)0.57266 (7)0.9140 (2)0.0271 (3)
H60.70200.53620.97550.033*
C70.53247 (16)0.57424 (6)0.77457 (19)0.0229 (3)
C80.32896 (16)0.54330 (6)0.57115 (19)0.0223 (3)
C90.8859 (2)0.70603 (8)1.0666 (2)0.0403 (4)
H9A0.98720.71371.03650.048*
H9B0.88660.72591.18210.048*
C100.22658 (16)0.49448 (6)0.48447 (19)0.0225 (3)
C110.10942 (17)0.50551 (7)0.3331 (2)0.0257 (3)
H110.09480.54510.28120.031*
C120.01626 (18)0.45741 (7)0.2619 (2)0.0274 (3)
C130.03117 (18)0.39881 (7)0.3285 (2)0.0292 (3)
H130.03580.36680.27430.035*
C140.14759 (19)0.38828 (7)0.4776 (2)0.0314 (3)
H140.16130.34830.52720.038*
C150.24452 (18)0.43523 (7)0.5557 (2)0.0280 (3)
H150.32380.42720.65830.034*
C160.33604 (19)0.67847 (7)0.2700 (2)0.0306 (3)
H16A0.29470.71640.20610.037*
H16B0.43900.68800.34620.037*
C170.3535 (2)0.62964 (10)0.1369 (3)0.0450 (4)
H17A0.39610.59230.20000.068*
H17B0.42370.64430.06420.068*
H17C0.25190.62060.06000.068*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.02202 (18)0.01839 (17)0.02712 (19)0.00208 (12)0.00156 (13)0.00075 (13)
F10.0445 (6)0.0362 (5)0.0436 (6)0.0053 (4)0.0138 (5)0.0012 (4)
O10.0256 (5)0.0197 (5)0.0266 (5)0.0015 (4)0.0013 (4)0.0023 (4)
O20.0397 (7)0.0311 (6)0.0465 (7)0.0092 (5)0.0113 (6)0.0031 (5)
O30.0365 (7)0.0404 (7)0.0419 (7)0.0063 (5)0.0133 (5)0.0026 (5)
O40.0370 (6)0.0226 (5)0.0417 (7)0.0079 (4)0.0069 (5)0.0049 (5)
C10.0206 (6)0.0208 (6)0.0233 (6)0.0025 (5)0.0050 (5)0.0011 (5)
C20.0216 (6)0.0227 (7)0.0226 (7)0.0025 (5)0.0056 (5)0.0009 (5)
C30.0261 (7)0.0212 (7)0.0278 (7)0.0020 (5)0.0046 (6)0.0011 (5)
C40.0264 (7)0.0257 (7)0.0288 (7)0.0023 (6)0.0051 (6)0.0037 (6)
C50.0225 (7)0.0342 (8)0.0248 (7)0.0003 (6)0.0011 (6)0.0010 (6)
C60.0262 (7)0.0271 (7)0.0264 (7)0.0040 (6)0.0021 (6)0.0047 (6)
C70.0233 (7)0.0211 (7)0.0241 (7)0.0002 (5)0.0051 (5)0.0000 (5)
C80.0219 (6)0.0220 (7)0.0225 (7)0.0022 (5)0.0041 (5)0.0007 (5)
C90.0382 (9)0.0403 (9)0.0363 (9)0.0093 (8)0.0048 (7)0.0005 (7)
C100.0241 (7)0.0196 (6)0.0253 (7)0.0001 (5)0.0086 (5)0.0007 (5)
C110.0279 (7)0.0212 (7)0.0278 (7)0.0001 (5)0.0058 (6)0.0005 (5)
C120.0271 (7)0.0274 (7)0.0270 (7)0.0003 (6)0.0045 (6)0.0030 (6)
C130.0319 (8)0.0242 (7)0.0333 (8)0.0058 (6)0.0111 (6)0.0059 (6)
C140.0391 (9)0.0202 (7)0.0360 (8)0.0007 (6)0.0106 (7)0.0017 (6)
C150.0308 (7)0.0236 (7)0.0289 (7)0.0009 (6)0.0050 (6)0.0031 (6)
C160.0310 (8)0.0296 (8)0.0301 (8)0.0033 (6)0.0046 (6)0.0080 (6)
C170.0486 (11)0.0550 (12)0.0347 (9)0.0016 (9)0.0162 (8)0.0018 (8)
Geometric parameters (Å, º) top
S1—O41.4954 (11)C8—C101.4602 (19)
S1—C11.7651 (14)C9—H9A0.9900
S1—C161.8029 (16)C9—H9B0.9900
F1—C121.3568 (18)C10—C111.399 (2)
O1—C71.3717 (17)C10—C151.400 (2)
O1—C81.3809 (16)C11—C121.372 (2)
O2—C41.3733 (18)C11—H110.9500
O2—C91.424 (2)C12—C131.373 (2)
O3—C51.3724 (18)C13—C141.381 (2)
O3—C91.420 (2)C13—H130.9500
C1—C81.366 (2)C14—C151.385 (2)
C1—C21.4473 (19)C14—H140.9500
C2—C71.3905 (19)C15—H150.9500
C2—C31.407 (2)C16—C171.513 (3)
C3—C41.369 (2)C16—H16A0.9900
C3—H30.9500C16—H16B0.9900
C4—C51.395 (2)C17—H17A0.9800
C5—C61.365 (2)C17—H17B0.9800
C6—C71.393 (2)C17—H17C0.9800
C6—H60.9500
O4—S1—C1106.63 (7)O3—C9—H9B109.9
O4—S1—C16106.65 (7)O2—C9—H9B109.9
C1—S1—C1697.95 (7)H9A—C9—H9B108.3
C7—O1—C8107.07 (10)C11—C10—C15118.99 (13)
C4—O2—C9105.97 (13)C11—C10—C8121.69 (13)
C5—O3—C9105.99 (13)C15—C10—C8119.32 (13)
C8—C1—C2107.41 (12)C12—C11—C10118.03 (14)
C8—C1—S1128.05 (11)C12—C11—H11121.0
C2—C1—S1124.35 (11)C10—C11—H11121.0
C7—C2—C3120.10 (13)F1—C12—C11117.79 (14)
C7—C2—C1104.88 (12)F1—C12—C13117.90 (13)
C3—C2—C1135.01 (13)C11—C12—C13124.31 (14)
C4—C3—C2114.80 (13)C12—C13—C14117.26 (14)
C4—C3—H3122.6C12—C13—H13121.4
C2—C3—H3122.6C14—C13—H13121.4
C3—C4—O2127.07 (14)C13—C14—C15120.90 (14)
C3—C4—C5123.50 (14)C13—C14—H14119.5
O2—C4—C5109.43 (13)C15—C14—H14119.5
C6—C5—O3126.94 (14)C14—C15—C10120.50 (14)
C6—C5—C4123.35 (14)C14—C15—H15119.8
O3—C5—C4109.70 (14)C10—C15—H15119.8
C5—C6—C7113.02 (13)C17—C16—S1111.26 (12)
C5—C6—H6123.5C17—C16—H16A109.4
C7—C6—H6123.5S1—C16—H16A109.4
O1—C7—C2110.68 (12)C17—C16—H16B109.4
O1—C7—C6124.09 (12)S1—C16—H16B109.4
C2—C7—C6125.22 (13)H16A—C16—H16B108.0
C1—C8—O1109.95 (12)C16—C17—H17A109.5
C1—C8—C10135.85 (13)C16—C17—H17B109.5
O1—C8—C10114.20 (12)H17A—C17—H17B109.5
O3—C9—O2108.90 (13)C16—C17—H17C109.5
O3—C9—H9A109.9H17A—C17—H17C109.5
O2—C9—H9A109.9H17B—C17—H17C109.5
O4—S1—C1—C8134.07 (14)C1—C2—C7—C6179.62 (14)
C16—S1—C1—C8115.83 (15)C5—C6—C7—O1178.29 (14)
O4—S1—C1—C240.34 (14)C5—C6—C7—C20.7 (2)
C16—S1—C1—C269.76 (13)C2—C1—C8—O10.08 (16)
C8—C1—C2—C70.34 (16)S1—C1—C8—O1175.09 (10)
S1—C1—C2—C7175.05 (11)C2—C1—C8—C10179.64 (16)
C8—C1—C2—C3178.82 (16)S1—C1—C8—C105.2 (3)
S1—C1—C2—C35.8 (2)C7—O1—C8—C10.22 (16)
C7—C2—C3—C40.3 (2)C7—O1—C8—C10180.00 (12)
C1—C2—C3—C4178.78 (16)C5—O3—C9—O20.8 (2)
C2—C3—C4—O2178.99 (15)C4—O2—C9—O31.3 (2)
C2—C3—C4—C50.4 (2)C1—C8—C10—C115.9 (3)
C9—O2—C4—C3178.18 (17)O1—C8—C10—C11173.83 (13)
C9—O2—C4—C51.29 (19)C1—C8—C10—C15173.27 (17)
C9—O3—C5—C6178.63 (17)O1—C8—C10—C157.0 (2)
C9—O3—C5—C40.03 (19)C15—C10—C11—C120.5 (2)
C3—C4—C5—C60.0 (3)C8—C10—C11—C12178.70 (14)
O2—C4—C5—C6179.54 (15)C10—C11—C12—F1179.18 (13)
C3—C4—C5—O3178.68 (15)C10—C11—C12—C130.6 (2)
O2—C4—C5—O30.81 (19)F1—C12—C13—C14179.45 (14)
O3—C5—C6—C7177.91 (15)C11—C12—C13—C140.3 (2)
C4—C5—C6—C70.6 (2)C12—C13—C14—C150.1 (2)
C8—O1—C7—C20.45 (16)C13—C14—C15—C100.2 (2)
C8—O1—C7—C6179.59 (14)C11—C10—C15—C140.1 (2)
C3—C2—C7—O1178.82 (13)C8—C10—C15—C14179.08 (14)
C1—C2—C7—O10.49 (16)O4—S1—C16—C17172.19 (12)
C3—C2—C7—C60.3 (2)C1—S1—C16—C1777.73 (13)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C2–C7 benzene ring.
D—H···AD—HH···AD···AD—H···A
C9—H9A···O4i0.992.453.314 (2)145
C9—H9B···O2ii0.992.593.519 (3)156
C16—H16A···O4iii0.992.293.2689 (19)169
C6—H6···F1iv0.952.373.2532 (18)154
C17—H17B···Cg1v0.982.743.642 (3)153
Symmetry codes: (i) x+1, y+3/2, z+1/2; (ii) x, y+3/2, z+1/2; (iii) x, y+3/2, z1/2; (iv) x+1, y, z+1; (v) x, y, z1.

Experimental details

Crystal data
Chemical formulaC17H13FO4S
Mr332.33
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)8.8516 (2), 21.8221 (4), 7.7228 (2)
β (°) 102.949 (1)
V3)1453.80 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.39 × 0.29 × 0.26
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.908, 0.937
No. of measured, independent and
observed [I > 2σ(I)] reflections
14376, 3600, 3131
Rint0.025
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.101, 1.02
No. of reflections3600
No. of parameters209
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.45, 0.35

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C2–C7 benzene ring.
D—H···AD—HH···AD···AD—H···A
C9—H9A···O4i0.992.453.314 (2)145
C9—H9B···O2ii0.992.593.519 (3)156
C16—H16A···O4iii0.992.293.2689 (19)169
C6—H6···F1iv0.952.373.2532 (18)154
C17—H17B···Cg1v0.982.743.642 (3)153
Symmetry codes: (i) x+1, y+3/2, z+1/2; (ii) x, y+3/2, z+1/2; (iii) x, y+3/2, z1/2; (iv) x+1, y, z+1; (v) x, y, z1.
 

Acknowledgements

This work was supported by the Blue-Bio Industry Regional Innovation Center (RIC08-06-07) at Dongeui University as an RIC program under the Ministry of Knowledge Economy and Busan City.

References

First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010). Acta Cryst. E66, o1296.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationSeo, P. J., Choi, H. D., Son, B. W. & Lee, U. (2011). Acta Cryst. E67, o3504.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds