metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(1,10-phenanthroline-κ2N,N′)(sulfato-κ2O,O′)nickel(II) butane-2,3-diol monosolvate

aDepartment of Applied Chemistry, Nanjing College of Chemical Technology, Nanjing, 210048, People's Republic of China
*Correspondence e-mail: zklong76@163.com

(Received 8 November 2012; accepted 16 November 2012; online 24 November 2012)

In the title compound, [Ni(SO4)(C12H8N2)2]·C4H10O2, the NiII ion is six-coordinated by four N atoms from two chelating 1,10-phenanthroline ligands and two O atoms from an O,O′-bidentate sulfate anion, resulting in a distorted octa­hedral geometry for the metal ion. The dihedral angle between the two chelating N2C2 groups is 83.82 (12)°. The NiII ion, the S atom and the mid-point of the central C—C bond of the butane-2,3-diol solvent mol­ecule lie on a twofold rotation axis. In the crystal, the complex mol­ecules and solvent mol­ecules are held together by pairs of symmetry-related Odiol—H⋯Osulfate hydrogen bonds involving the uncoordinating O atoms of the sulfate ions. The solvent mol­ecule is disordered over two sets of sites with site occupancies of 0.450 (9) and 0.550 (9).

Related literature

For the ethane-1,2-diol analog of the title complex, see: Zhong et al. (2009[Zhong, K.-L., Ni, C. & Wang, J.-M. (2009). Acta Cryst. E65, m911.]). For the propane-1,3-diol analog of the title complex, see: Ni et al. (2010[Ni, C., Zhong, K.-L. & Cui, J.-D. (2010). Acta Cryst. E66, m746-m747.]). For an isotypic structure, see: Wang & Zhong (2011[Wang, S.-J. & Zhong, K.-L. (2011). Acta Cryst. E67, m446.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(SO4)(C12H8N2)2]·C4H10O2

  • Mr = 605.29

  • Monoclinic, C 2/c

  • a = 18.147 (4) Å

  • b = 13.051 (3) Å

  • c = 13.259 (3) Å

  • β = 122.43 (3)°

  • V = 2650.5 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.86 mm−1

  • T = 223 K

  • 0.35 × 0.30 × 0.20 mm

Data collection
  • Rigaku Mercury CCD diffractometer

  • Absorption correction: multi-scan (REQAB: Jacobson, 1998[Jacobson, R. (1998). REQAB. Molecular Structure Corporation, The Woodlands, Texas, USA.]) Tmin = 0.736, Tmax = 1.000

  • 6326 measured reflections

  • 2325 independent reflections

  • 1964 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.108

  • S = 1.14

  • 2325 reflections

  • 210 parameters

  • 56 restraints

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯O2 0.82 1.97 2.729 (7) 154
O3′—H3′A⋯O2 0.82 2.03 2.769 (8) 150

Data collection: CrystalClear (Rigaku, 2007[Rigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the past few years, we have synthesized and reported many Ni-Phen complexes with interesting four-membered chelate rings via a solvothermal reaction. e.g. [NiSO4(C12H8N2)2].C2H6O2 (Zhong et al., 2009), (II) and [NiSO4(C12H8N2)2].C3H8O2 (Ni et al., 2010), (III). The title nickel complex, [NiSO4(C12H8N2)2].C4H10O2, (I), is isotypic with the previously reported cobalt(II) structure (Wang & Zhong, 2011).

The Ni2+ ion, the S atom and the mid-point of C—C bond of the butane-2,3-diol solvent molecule lie on a crystallographic 2-fold axis. The nickel ion is six-coordinated by four N atoms from two chelating 1,10-phenanthroline ligands and two O atoms from an O,O'-bidentate sulfate ion, in a distorted NiN4O2 octahedral environment (Fig. 1). The Ni—N bond distances [2.075 (3) - 2.086 (3) Å], the Ni—O bond distances [2.103 (2) Å], the N—Ni—N bite angle [79.90 (11)°], the O—Ni—O bite angle [68.06 (12)°]m and the dihedral angle between the two chelating NCCN groups [83.82 (12)°] are in good agreement with those observed in (II) and (III).

In the title compound crystal, the neutral monomeric [NiSO4(C10H8N2)2] complex and the butane-2,3-diol solvent molecule are connected by a pair of symmetry-related intermolecular O—H···O hydrogen bonds with the uncoordinated O atoms of the sulfate ligand (Fig.1 and Table 1).

The solvent molecule is disordered over two positions and was refined with a site occupancy ratio of 0.45:0.55.

Related literature top

For the ethane-1,2-diol analog of the title complex, see: Zhong et al. (2009). For the propane-1,3-diol analog of the title complex, see: Ni et al. (2010). For an isotypic structure, see: Wang & Zhong (2011).

Experimental top

The single crystals of the title compound were obtained by a procedure similar to that described preiously (Wang & Zhong, 2011), but with NiSO4.7H2O in place of CoSO4.7H2O.

Refinement top

The non-hydrogen atoms were refined anisotropically. All H atoms were positioned geometrically and allowed to ride on their attached atoms, with C—H(Ar) = 0.93 Å, C—H(CH) = 0.98 Å, C—H(CH3) = 0.96 Å and O—H = 0.82 Å; Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O). The solvent molecule butane-2,3-diol is disordered over two positions and was refined with 0.45 and 0.55 site occupancies.

Computing details top

Data collection: CrystalClear (Rigaku, 2007); cell refinement: CrystalClear (Rigaku 2007); data reduction: CrystalClear (Rigaku 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Figure 1. The molecular structure of (I) showing the atom-numbering scheme and with displacement ellipsoids drawn at the 35% probability level. The dashed lines depict O—H···O interactions. Unlabeled atoms are related to the labelled atoms by the symmetry operator (-x + 1, y, -z + 1/2).
Bis(1,10-phenanthroline-κ2N,N')(sulfato-κ2O, O')nickel(II) butane-2,3-diol monosolvate top
Crystal data top
[Ni(SO4)(C12H8N2)2]·C4H10O2F(000) = 1256
Mr = 605.29Dx = 1.517 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 5284 reflections
a = 18.147 (4) Åθ = 3.1–25.0°
b = 13.051 (3) ŵ = 0.86 mm1
c = 13.259 (3) ÅT = 223 K
β = 122.43 (3)°Block, blue
V = 2650.5 (14) Å30.35 × 0.30 × 0.20 mm
Z = 4
Data collection top
Rigaku Mercury CCD
diffractometer
2325 independent reflections
Radiation source: fine-focus sealed tube1964 reflections with I > 2σ(I)
Graphite Monochromator monochromatorRint = 0.035
Detector resolution: 28.5714 pixels mm-1θmax = 25.0°, θmin = 3.2°
ω scansh = 2119
Absorption correction: multi-scan
(REQAB: Jacobson, 1998)
k = 1514
Tmin = 0.736, Tmax = 1.000l = 1315
6326 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.0472P)2 + 2.5256P]
where P = (Fo2 + 2Fc2)/3
2325 reflections(Δ/σ)max = 0.006
210 parametersΔρmax = 0.39 e Å3
56 restraintsΔρmin = 0.39 e Å3
Crystal data top
[Ni(SO4)(C12H8N2)2]·C4H10O2V = 2650.5 (14) Å3
Mr = 605.29Z = 4
Monoclinic, C2/cMo Kα radiation
a = 18.147 (4) ŵ = 0.86 mm1
b = 13.051 (3) ÅT = 223 K
c = 13.259 (3) Å0.35 × 0.30 × 0.20 mm
β = 122.43 (3)°
Data collection top
Rigaku Mercury CCD
diffractometer
2325 independent reflections
Absorption correction: multi-scan
(REQAB: Jacobson, 1998)
1964 reflections with I > 2σ(I)
Tmin = 0.736, Tmax = 1.000Rint = 0.035
6326 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04756 restraints
wR(F2) = 0.108H-atom parameters constrained
S = 1.14Δρmax = 0.39 e Å3
2325 reflectionsΔρmin = 0.39 e Å3
210 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni10.50000.32087 (4)0.25000.0327 (2)
S10.50000.52556 (8)0.25000.0338 (3)
O10.56037 (14)0.45442 (17)0.3492 (2)0.0396 (6)
O20.45146 (16)0.58892 (18)0.2856 (2)0.0478 (7)
O30.4425 (6)0.7955 (5)0.3087 (10)0.108 (3)0.550 (9)
H3A0.45780.73920.29920.163*0.550 (9)
O3'0.4035 (5)0.7861 (6)0.1968 (10)0.087 (3)0.450 (9)
H3'A0.43510.73920.23880.130*0.450 (9)
N10.40659 (17)0.21783 (19)0.1282 (2)0.0340 (7)
N20.42127 (17)0.3083 (2)0.3190 (2)0.0349 (6)
C10.3964 (2)0.1793 (3)0.0285 (3)0.0434 (9)
H1A0.43660.19690.00820.052*
C20.3278 (3)0.1135 (3)0.0468 (3)0.0505 (10)
H2A0.32290.08790.11560.061*
C30.2678 (2)0.0866 (3)0.0195 (3)0.0459 (9)
H3B0.22220.04260.06910.055*
C40.2756 (2)0.1262 (3)0.0841 (3)0.0377 (8)
C50.2166 (2)0.1035 (3)0.1210 (3)0.0482 (9)
H5A0.17090.05800.07610.058*
C60.2254 (2)0.1464 (3)0.2196 (3)0.0497 (10)
H6A0.18600.12970.24160.060*
C70.2946 (2)0.2173 (3)0.2906 (3)0.0412 (9)
C80.3046 (3)0.2696 (3)0.3896 (3)0.0524 (10)
H8A0.26620.25720.41440.063*
C90.3709 (3)0.3388 (3)0.4497 (3)0.0512 (10)
H9A0.37760.37390.51520.061*
C100.4280 (2)0.3563 (3)0.4125 (3)0.0435 (9)
H10A0.47290.40330.45450.052*
C110.3548 (2)0.2399 (2)0.2583 (3)0.0344 (8)
C120.3464 (2)0.1929 (2)0.1549 (3)0.0321 (7)
C130.4921 (10)0.8683 (7)0.3028 (11)0.093 (4)0.550 (9)
H13A0.54990.86220.37640.112*0.550 (9)
C13'0.4499 (5)0.8753 (8)0.2301 (12)0.077 (4)0.450 (9)
H13C0.41670.93460.18160.092*0.450 (9)
C140.4532 (8)0.9682 (7)0.3136 (10)0.089 (3)0.550 (9)
H14A0.44840.96510.38220.134*0.550 (9)
H14B0.39630.97810.24300.134*0.550 (9)
H14C0.49031.02440.32220.134*0.550 (9)
C14'0.5030 (14)0.8961 (18)0.3636 (13)0.142 (7)0.450 (9)
H14G0.46440.90390.39180.213*0.450 (9)
H14H0.53620.95780.37910.213*0.450 (9)
H14I0.54190.83980.40430.213*0.450 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0246 (3)0.0300 (3)0.0387 (4)0.0000.0139 (3)0.000
S10.0230 (6)0.0294 (6)0.0429 (7)0.0000.0136 (5)0.000
O10.0278 (12)0.0351 (12)0.0397 (13)0.0009 (10)0.0073 (10)0.0017 (11)
O20.0398 (14)0.0416 (14)0.0680 (17)0.0050 (11)0.0329 (14)0.0031 (12)
O30.146 (6)0.052 (4)0.179 (8)0.003 (4)0.122 (6)0.001 (4)
O3'0.071 (5)0.068 (5)0.122 (7)0.005 (4)0.052 (5)0.029 (5)
N10.0290 (15)0.0309 (14)0.0401 (16)0.0016 (12)0.0171 (13)0.0019 (13)
N20.0288 (14)0.0331 (14)0.0382 (15)0.0034 (12)0.0149 (13)0.0050 (13)
C10.042 (2)0.044 (2)0.046 (2)0.0014 (17)0.0244 (18)0.0082 (18)
C20.046 (2)0.055 (2)0.043 (2)0.0032 (19)0.0181 (18)0.0138 (19)
C30.0336 (19)0.042 (2)0.047 (2)0.0028 (16)0.0113 (17)0.0106 (18)
C40.0285 (17)0.0323 (18)0.0418 (19)0.0010 (14)0.0119 (15)0.0012 (16)
C50.0339 (19)0.047 (2)0.050 (2)0.0108 (17)0.0139 (17)0.0034 (19)
C60.0329 (19)0.060 (2)0.055 (2)0.0110 (18)0.0234 (18)0.004 (2)
C70.0314 (19)0.050 (2)0.041 (2)0.0002 (16)0.0182 (16)0.0049 (17)
C80.046 (2)0.074 (3)0.046 (2)0.004 (2)0.031 (2)0.001 (2)
C90.053 (2)0.061 (2)0.042 (2)0.001 (2)0.0276 (19)0.0101 (19)
C100.040 (2)0.043 (2)0.042 (2)0.0033 (17)0.0192 (17)0.0079 (17)
C110.0274 (17)0.0331 (17)0.0362 (18)0.0022 (14)0.0127 (15)0.0017 (15)
C120.0252 (16)0.0294 (16)0.0351 (18)0.0039 (13)0.0117 (14)0.0041 (14)
C130.118 (8)0.075 (6)0.114 (8)0.004 (6)0.080 (7)0.011 (6)
C13'0.067 (7)0.069 (7)0.102 (8)0.000 (5)0.051 (6)0.016 (6)
C140.107 (7)0.090 (6)0.110 (7)0.020 (5)0.084 (6)0.018 (5)
C14'0.153 (10)0.180 (11)0.130 (9)0.013 (8)0.100 (8)0.017 (8)
Geometric parameters (Å, º) top
Ni1—N2i2.075 (3)C4—C51.427 (5)
Ni1—N22.075 (3)C5—C61.350 (5)
Ni1—N12.086 (3)C5—H5A0.9300
Ni1—N1i2.086 (3)C6—C71.433 (5)
Ni1—O12.103 (2)C6—H6A0.9300
Ni1—O1i2.103 (2)C7—C111.402 (5)
Ni1—S12.6714 (14)C7—C81.402 (5)
S1—O2i1.459 (2)C8—C91.368 (5)
S1—O21.459 (2)C8—H8A0.9300
S1—O1i1.499 (2)C9—C101.384 (5)
S1—O11.499 (2)C9—H9A0.9300
O3—C131.340 (9)C10—H10A0.9300
O3—H3A0.8200C11—C121.435 (5)
O3'—C13'1.362 (9)C13—C141.526 (10)
O3'—H3'A0.8200C13—C13i1.572 (14)
N1—C11.332 (4)C13—H13A0.9800
N1—C121.355 (4)C13'—C14'1.519 (11)
N2—C101.335 (4)C13'—C13'i1.600 (14)
N2—C111.363 (4)C13'—H13C0.9800
C1—C21.398 (5)C14—H14A0.9600
C1—H1A0.9300C14—H14B0.9600
C2—C31.365 (5)C14—H14C0.9600
C2—H2A0.9300C14'—H14G0.9600
C3—C41.401 (5)C14'—H14H0.9600
C3—H3B0.9300C14'—H14I0.9600
C4—C121.412 (5)
N2i—Ni1—N2170.97 (15)C3—C4—C5124.0 (3)
N2i—Ni1—N194.23 (11)C12—C4—C5118.8 (3)
N2—Ni1—N179.90 (11)C6—C5—C4121.7 (3)
N2i—Ni1—N1i79.90 (11)C6—C5—H5A119.1
N2—Ni1—N1i94.23 (11)C4—C5—H5A119.1
N1—Ni1—N1i99.75 (15)C5—C6—C7120.7 (3)
N2i—Ni1—O195.18 (10)C5—C6—H6A119.7
N2—Ni1—O192.30 (10)C7—C6—H6A119.7
N1—Ni1—O1162.31 (9)C11—C7—C8116.9 (3)
N1i—Ni1—O196.63 (10)C11—C7—C6119.2 (3)
N2i—Ni1—O1i92.30 (10)C8—C7—C6123.9 (3)
N2—Ni1—O1i95.18 (10)C9—C8—C7119.9 (4)
N1—Ni1—O1i96.63 (10)C9—C8—H8A120.1
N1i—Ni1—O1i162.31 (9)C7—C8—H8A120.1
O1—Ni1—O1i68.06 (12)C8—C9—C10119.6 (4)
N2i—Ni1—S194.52 (7)C8—C9—H9A120.2
N2—Ni1—S194.52 (7)C10—C9—H9A120.2
N1—Ni1—S1130.13 (7)N2—C10—C9122.7 (3)
N1i—Ni1—S1130.13 (7)N2—C10—H10A118.6
O1—Ni1—S134.03 (6)C9—C10—H10A118.6
O1i—Ni1—S134.03 (6)N2—C11—C7123.1 (3)
O2i—S1—O2110.9 (2)N2—C11—C12116.8 (3)
O2i—S1—O1i110.55 (14)C7—C11—C12120.1 (3)
O2—S1—O1i110.56 (14)N1—C12—C4123.2 (3)
O2i—S1—O1110.56 (14)N1—C12—C11117.3 (3)
O2—S1—O1110.55 (14)C4—C12—C11119.4 (3)
O1i—S1—O1103.47 (18)O3—C13—C14103.9 (8)
O2i—S1—Ni1124.53 (11)O3—C13—C13i120.1 (10)
O2—S1—Ni1124.53 (11)C14—C13—C13i113.5 (7)
O1i—S1—Ni151.74 (9)O3—C13—H13A106.1
O1—S1—Ni151.74 (9)C14—C13—H13A106.1
S1—O1—Ni194.23 (11)C13i—C13—H13A106.1
C13—O3—H3A109.5O3'—C13'—C14'115.2 (14)
C13'—O3'—H3'A109.5O3'—C13'—C13'i120.1 (5)
C1—N1—C12117.8 (3)C14'—C13'—C13'i73.6 (11)
C1—N1—Ni1129.3 (2)O3'—C13'—H13C114.0
C12—N1—Ni1112.8 (2)C14'—C13'—H13C114.0
C10—N2—C11117.8 (3)C13'i—C13'—H13C114.0
C10—N2—Ni1129.1 (2)C13—C14—H14A109.5
C11—N2—Ni1113.1 (2)C13—C14—H14B109.5
N1—C1—C2122.4 (4)H14A—C14—H14B109.5
N1—C1—H1A118.8C13—C14—H14C109.5
C2—C1—H1A118.8H14A—C14—H14C109.5
C3—C2—C1120.1 (4)H14B—C14—H14C109.5
C3—C2—H2A120.0C13'—C14'—H14G109.5
C1—C2—H2A120.0C13'—C14'—H14H109.5
C2—C3—C4119.3 (3)H14G—C14'—H14H109.5
C2—C3—H3B120.3C13'—C14'—H14I109.5
C4—C3—H3B120.3H14G—C14'—H14I109.5
C3—C4—C12117.2 (3)H14H—C14'—H14I109.5
N2i—Ni1—S1—O2i2.57 (14)O1i—Ni1—N2—C1082.1 (3)
N2—Ni1—S1—O2i177.43 (14)S1—Ni1—N2—C1047.9 (3)
N1—Ni1—S1—O2i101.97 (16)N1—Ni1—N2—C112.9 (2)
N1i—Ni1—S1—O2i78.03 (16)N1i—Ni1—N2—C1196.3 (2)
O1—Ni1—S1—O2i90.01 (17)O1—Ni1—N2—C11166.9 (2)
O1i—Ni1—S1—O2i89.99 (17)O1i—Ni1—N2—C1198.7 (2)
N2i—Ni1—S1—O2177.43 (14)S1—Ni1—N2—C11132.9 (2)
N2—Ni1—S1—O22.57 (14)C12—N1—C1—C21.3 (5)
N1—Ni1—S1—O278.03 (16)Ni1—N1—C1—C2177.4 (3)
N1i—Ni1—S1—O2101.97 (16)N1—C1—C2—C30.2 (6)
O1—Ni1—S1—O289.99 (17)C1—C2—C3—C40.4 (5)
O1i—Ni1—S1—O290.01 (17)C2—C3—C4—C120.2 (5)
N2i—Ni1—S1—O1i87.43 (14)C2—C3—C4—C5179.8 (3)
N2—Ni1—S1—O1i92.57 (14)C3—C4—C5—C6177.7 (4)
N1—Ni1—S1—O1i11.98 (16)C12—C4—C5—C61.9 (5)
N1i—Ni1—S1—O1i168.02 (16)C4—C5—C6—C70.4 (6)
O1—Ni1—S1—O1i180.0C5—C6—C7—C111.6 (6)
N2i—Ni1—S1—O192.57 (14)C5—C6—C7—C8175.9 (4)
N2—Ni1—S1—O187.43 (14)C11—C7—C8—C90.1 (5)
N1—Ni1—S1—O1168.02 (16)C6—C7—C8—C9177.6 (4)
N1i—Ni1—S1—O111.98 (16)C7—C8—C9—C100.3 (6)
O1i—Ni1—S1—O1180.0C11—N2—C10—C90.3 (5)
O2i—S1—O1—Ni1118.38 (13)Ni1—N2—C10—C9178.9 (3)
O2—S1—O1—Ni1118.39 (13)C8—C9—C10—N20.2 (6)
O1i—S1—O1—Ni10.0C10—N2—C11—C70.8 (5)
N2i—Ni1—O1—S190.40 (12)Ni1—N2—C11—C7178.5 (3)
N2—Ni1—O1—S194.66 (12)C10—N2—C11—C12177.2 (3)
N1—Ni1—O1—S131.5 (4)Ni1—N2—C11—C123.5 (3)
N1i—Ni1—O1—S1170.81 (12)C8—C7—C11—N20.7 (5)
O1i—Ni1—O1—S10.0C6—C7—C11—N2178.3 (3)
N2i—Ni1—N1—C112.5 (3)C8—C7—C11—C12177.3 (3)
N2—Ni1—N1—C1174.4 (3)C6—C7—C11—C120.4 (5)
N1i—Ni1—N1—C193.0 (3)C1—N1—C12—C41.9 (4)
O1—Ni1—N1—C1109.5 (4)Ni1—N1—C12—C4178.6 (2)
O1i—Ni1—N1—C180.3 (3)C1—N1—C12—C11176.1 (3)
S1—Ni1—N1—C187.0 (3)Ni1—N1—C12—C110.6 (3)
N2i—Ni1—N1—C12171.2 (2)C3—C4—C12—N11.3 (5)
N2—Ni1—N1—C121.9 (2)C5—C4—C12—N1179.0 (3)
N1i—Ni1—N1—C1290.7 (2)C3—C4—C12—C11176.6 (3)
O1—Ni1—N1—C1266.8 (4)C5—C4—C12—C113.1 (5)
O1i—Ni1—N1—C1296.0 (2)N2—C11—C12—N11.9 (4)
S1—Ni1—N1—C1289.3 (2)C7—C11—C12—N1180.0 (3)
N1—Ni1—N2—C10177.9 (3)N2—C11—C12—C4176.1 (3)
N1i—Ni1—N2—C1082.9 (3)C7—C11—C12—C41.9 (5)
O1—Ni1—N2—C1013.9 (3)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O20.821.972.729 (7)154
O3—H3A···O20.822.032.769 (8)150

Experimental details

Crystal data
Chemical formula[Ni(SO4)(C12H8N2)2]·C4H10O2
Mr605.29
Crystal system, space groupMonoclinic, C2/c
Temperature (K)223
a, b, c (Å)18.147 (4), 13.051 (3), 13.259 (3)
β (°) 122.43 (3)
V3)2650.5 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.86
Crystal size (mm)0.35 × 0.30 × 0.20
Data collection
DiffractometerRigaku Mercury CCD
diffractometer
Absorption correctionMulti-scan
(REQAB: Jacobson, 1998)
Tmin, Tmax0.736, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
6326, 2325, 1964
Rint0.035
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.108, 1.14
No. of reflections2325
No. of parameters210
No. of restraints56
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.39

Computer programs: CrystalClear (Rigaku, 2007), CrystalClear (Rigaku 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O20.821.972.729 (7)154
O3'—H3'A···O20.822.032.769 (8)150
 

Acknowledgements

This work was supported by the Scientific Research Foundation of Nanjing College of Chemical Technology (grant No. NHKY-2010-17).

References

First citationJacobson, R. (1998). REQAB. Molecular Structure Corporation, The Woodlands, Texas, USA.  Google Scholar
First citationNi, C., Zhong, K.-L. & Cui, J.-D. (2010). Acta Cryst. E66, m746–m747.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, S.-J. & Zhong, K.-L. (2011). Acta Cryst. E67, m446.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhong, K.-L., Ni, C. & Wang, J.-M. (2009). Acta Cryst. E65, m911.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds