organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2E)-3-[4-(Benz­yl­oxy)phen­yl]-1-(2,6-di­chloro-3-fluoro­phen­yl)prop-2-en-1-one

aUniversity of Mysore, Department of Studies in Chemistry, Manasagangotri, Mysore 570 006, India, and bNelson Mandela Metropolitan University, Summerstrand Campus, Department of Chemistry, University Way, Summerstrand, PO Box 77000, Port Elizabeth, 6031, South Africa
*Correspondence e-mail: richard.betz@webmail.co.za

(Received 4 November 2012; accepted 14 November 2012; online 17 November 2012)

In the title compound, C22H15Cl2FO2, a chalcone derivative featuring a threefold-halogenated aromatic substituent, the conformation about the C=C bond is E. In the crystal C—H⋯F and C—H⋯Cl contacts connect the mol­ecules into undulating sheets parallel to (101). In addition, C—H⋯π inter­actions are also present.

Related literature

For background to possible applications of chalcones in pharmacy and industry, see: Lin et al. (2002[Lin, Y. M., Zhou, Y., Flavin, M. T., Zhou, L. M., Nie, W. & Chen, F. C. (2002). Bioorg. Med. Chem. 10, 2795-2802.]); Modzelewska et al. (2006[Modzelewska, A., Pettit, C., Achanta, G., Davidson, N. E., Huang, P. & Khan, S. R. (2006). Bioorg. Med. Chem. 14, 3491-3495.]); Svetaz et al. (2004[Svetaz, L., Tapia, A., Lopez, S., Furlan, R. L. E., Petenatti, E., Pioli, R., Schmeda-Hirschmann, G. & Zacchino, S. A. (2004). J. Agric. Food Chem. 52, 3297-3300.]); Sarojini et al. (2006[Sarojini, B. K., Narayana, B., Ashalatha, B. V., Indira, J. & Lobo, K. G. (2006). J. Cryst. Growth, 295, 54-59.]). For related structures, see: Yathirajan et al. (2006[Yathirajan, H. S., Sarojini, B. K., Narayana, B., Bindya, S. & Bolte, M. (2006). Acta Cryst. E62, o3631-o3632.]); Betz et al. (2012[Betz, R., Gerber, T., Hosten, E., Praveen, A. S., Yathirajan, H. S. & Narayana, B. (2012). Acta Cryst. E68, o512.]). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C22H15Cl2FO2

  • Mr = 401.24

  • Monoclinic, P 21 /c

  • a = 9.1977 (2) Å

  • b = 21.6887 (4) Å

  • c = 11.6072 (2) Å

  • β = 124.629 (1)°

  • V = 1905.29 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.36 mm−1

  • T = 200 K

  • 0.40 × 0.17 × 0.14 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS. Bruker Inc., Madison, Wisconsin, USA.]) Tmin = 0.681, Tmax = 0.746

  • 17237 measured reflections

  • 4712 independent reflections

  • 3729 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.101

  • S = 1.02

  • 4712 reflections

  • 244 parameters

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C21–C26 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C23—H23⋯F1i 0.95 2.55 3.375 (2) 145
C34—H34⋯Cl1ii 0.95 2.80 3.5462 (18) 136
C14—H14⋯Cgiii 0.95 2.51 3.297 (2) 140
Symmetry codes: (i) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x+1, -y-{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Chalcones are α-β-unsaturated ketones containing a reactive Michael system. Some substituted chalcones and their derivatives have been reported to possess interesting biological properties such as antitubercular (Lin et al., 2002), anticancer (Modzelewska et al., 2006) and antifungal (Svetaz et al., 2004) activity. Chalcones also find application as organic nonlinear optical materials for their SHG conversion efficiency (Sarojini et al., 2006). The crystal structures of some chalcones have been reported (Yathirajan et al., 2006; Betz et al., 2012). As part of our ongoing studies on chalcones, the title compound was synthesized.

The C=C bond in the Michael system is (E)-configured. The least-squares planes defined by the respective carbon atoms of the two terminal aromatic moieties intersect at an angle of 48.50 (10) ° and enclose angles of 62.82 (11) ° and 74.58 (8) ° with the least-squares plane defined by the carbon atoms of the central phenyl group. The larger of the latter two angles is created by the halogenated phenyl moiety (Fig 1).

In the crystal, intermolecular C–H···F and C–H···Cl contacts whose range invariably falls by more than 0.1 Å below the sum of van-der-Waals radii of the corresponding atoms are observed. These contacts are exclusively supported by hydrogen atoms on the central as well as the terminal non-halogenated phenyl group and connect the molecules to undulated sheets parallel to [1 0 1]. In addition, C–H···π interactions are present. Details about metrical parameters of these contacts as well as information about their symmetry can be found in Table 1. In terms of graph-set analysis (Etter et al., 1990; Bernstein et al., 1995), the C–H···F as well as the C–H···Cl contacts necessitate a C11(11)C11(17) descriptor on the unary level. The shortest intercentroid distance between two aromatic systems was found at 4.5552 (12) Å and is apparent between the central as well as the halogenated phenyl moiety in neighbouring molecules.

Related literature top

For background to possible applications of chalcones in pharmacy and industry, see: Lin et al. (2002); Modzelewska et al. (2006); Svetaz et al. (2004); Sarojini et al. (2006). For related structures, see: Yathirajan et al. (2006); Betz et al. (2012). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990); Bernstein et al. (1995).

Experimental top

To a stirred solution of 1-(2,6-dichloro-3-fluorophenyl)ethanone (1 g, 4.8 mmol) and 4-(benzyloxy)benzaldehyde (1.01 g, 4.8 mmol) in ethanol (10 ml), powdered KOH (0.40 g, 7.2 mmol) was added at 273 K. The reaction mixture was stirred at room temperature for 2 h. After completion of the reaction, the mixture was poured into ice cold water, acidified with HCl (1.5 N) until the pH value was approximately 3. The solid that precipitated was filtered and dried to afford the title compound as off-white solid, yield: 1.8 g (95%). Single crystals suitable for the X-ray diffraction study were grown from a mixture of toluene and acetone (v:v = 1:1) by slow evaporation at room temperature.

Refinement top

Carbon-bound H atoms were placed in calculated positions (C–H 0.95 Å for aromatic and vinylic carbon atoms, C–H 0.99 Å for methylene groups) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and anisotropic displacement ellipsoids (drawn at 50% probability level).
(2E)-3-[4-(Benzyloxy)phenyl]-1-(2,6-dichloro-3-fluorophenyl)prop- 2-en-1-one top
Crystal data top
C22H15Cl2FO2F(000) = 824
Mr = 401.24Dx = 1.399 Mg m3
Monoclinic, P21/cMelting point = 369–367 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 9.1977 (2) ÅCell parameters from 8954 reflections
b = 21.6887 (4) Åθ = 2.5–28.3°
c = 11.6072 (2) ŵ = 0.36 mm1
β = 124.629 (1)°T = 200 K
V = 1905.29 (6) Å3Cube, white
Z = 40.40 × 0.17 × 0.14 mm
Data collection top
Bruker APEXII CCD
diffractometer
4712 independent reflections
Radiation source: fine-focus sealed tube3729 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ϕ and ω scansθmax = 28.3°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1212
Tmin = 0.681, Tmax = 0.746k = 2028
17237 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.041P)2 + 0.8279P]
where P = (Fo2 + 2Fc2)/3
4712 reflections(Δ/σ)max = 0.001
244 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C22H15Cl2FO2V = 1905.29 (6) Å3
Mr = 401.24Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.1977 (2) ŵ = 0.36 mm1
b = 21.6887 (4) ÅT = 200 K
c = 11.6072 (2) Å0.40 × 0.17 × 0.14 mm
β = 124.629 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
4712 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3729 reflections with I > 2σ(I)
Tmin = 0.681, Tmax = 0.746Rint = 0.027
17237 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.101H-atom parameters constrained
S = 1.02Δρmax = 0.40 e Å3
4712 reflectionsΔρmin = 0.27 e Å3
244 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.07669 (6)0.33062 (2)0.86095 (4)0.05144 (14)
Cl21.60001 (7)0.17443 (2)1.21644 (5)0.05090 (14)
F11.35724 (19)0.38832 (5)0.85238 (13)0.0634 (3)
O11.20670 (18)0.23629 (6)1.15009 (13)0.0490 (3)
O20.66727 (17)0.00811 (5)0.41450 (12)0.0422 (3)
C11.2218 (2)0.22034 (7)1.05687 (16)0.0338 (3)
C21.1208 (2)0.16972 (8)0.96163 (17)0.0384 (4)
H21.05300.14450.98130.046*
C31.1186 (2)0.15692 (7)0.84785 (16)0.0319 (3)
H31.19700.18000.83600.038*
C40.6360 (2)0.00076 (8)0.27948 (17)0.0397 (4)
H4A0.74520.00990.28480.048*
H4B0.60010.04220.24650.048*
C111.3486 (2)0.25530 (6)1.03696 (14)0.0283 (3)
C121.2938 (2)0.30701 (7)0.95115 (15)0.0323 (3)
C131.4134 (3)0.33938 (7)0.93831 (17)0.0394 (4)
C141.5873 (3)0.32290 (8)1.01107 (18)0.0421 (4)
H141.66780.34631.00220.050*
C151.6452 (2)0.27204 (8)1.09749 (17)0.0393 (4)
H151.76580.26011.14890.047*
C161.5253 (2)0.23868 (7)1.10837 (15)0.0316 (3)
C211.0085 (2)0.11127 (7)0.73997 (16)0.0316 (3)
C220.8987 (2)0.06930 (8)0.74900 (17)0.0397 (4)
H220.90000.06820.83140.048*
C230.7894 (3)0.02991 (8)0.64018 (18)0.0423 (4)
H230.71640.00180.64820.051*
C240.7851 (2)0.03105 (7)0.51816 (16)0.0343 (3)
C250.8940 (2)0.07133 (7)0.50716 (17)0.0340 (3)
H250.89360.07190.42520.041*
C261.0036 (2)0.11089 (7)0.61807 (17)0.0338 (3)
H261.07750.13860.61020.041*
C310.4920 (2)0.04454 (7)0.18024 (16)0.0351 (3)
C320.5074 (2)0.10705 (8)0.21101 (17)0.0392 (4)
H320.60790.12170.29690.047*
C330.3791 (3)0.14809 (9)0.11877 (18)0.0459 (4)
H330.39180.19070.14140.055*
C340.2328 (3)0.12764 (10)0.00587 (19)0.0499 (5)
H340.14470.15610.06950.060*
C350.2144 (3)0.06611 (11)0.03803 (19)0.0570 (5)
H350.11310.05190.12400.068*
C360.3439 (3)0.02427 (9)0.05494 (19)0.0489 (4)
H360.33020.01830.03210.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0470 (3)0.0639 (3)0.0343 (2)0.0235 (2)0.01765 (19)0.00794 (19)
Cl20.0530 (3)0.0481 (3)0.0527 (3)0.0169 (2)0.0307 (2)0.0229 (2)
F10.0982 (10)0.0362 (6)0.0626 (7)0.0085 (6)0.0497 (7)0.0160 (5)
O10.0587 (8)0.0596 (8)0.0430 (7)0.0113 (7)0.0375 (7)0.0124 (6)
O20.0528 (7)0.0349 (6)0.0353 (6)0.0162 (5)0.0228 (6)0.0089 (5)
C10.0340 (8)0.0385 (8)0.0293 (7)0.0024 (7)0.0183 (6)0.0012 (6)
C20.0388 (9)0.0404 (9)0.0404 (8)0.0120 (7)0.0251 (7)0.0061 (7)
C30.0299 (8)0.0297 (7)0.0336 (7)0.0026 (6)0.0166 (6)0.0014 (6)
C40.0460 (9)0.0328 (8)0.0352 (8)0.0060 (7)0.0200 (7)0.0020 (7)
C110.0337 (8)0.0275 (7)0.0219 (6)0.0026 (6)0.0147 (6)0.0044 (5)
C120.0373 (8)0.0321 (7)0.0233 (7)0.0029 (6)0.0147 (6)0.0032 (6)
C130.0610 (11)0.0252 (7)0.0335 (8)0.0018 (7)0.0277 (8)0.0006 (6)
C140.0498 (10)0.0384 (9)0.0427 (9)0.0165 (8)0.0291 (8)0.0073 (7)
C150.0339 (8)0.0436 (9)0.0362 (8)0.0060 (7)0.0174 (7)0.0049 (7)
C160.0355 (8)0.0292 (7)0.0271 (7)0.0012 (6)0.0160 (6)0.0017 (6)
C210.0304 (7)0.0271 (7)0.0334 (7)0.0014 (6)0.0157 (6)0.0019 (6)
C220.0506 (10)0.0338 (8)0.0338 (8)0.0099 (7)0.0235 (8)0.0017 (6)
C230.0532 (11)0.0325 (8)0.0405 (9)0.0151 (8)0.0261 (8)0.0026 (7)
C240.0385 (9)0.0235 (7)0.0355 (8)0.0037 (6)0.0178 (7)0.0043 (6)
C250.0351 (8)0.0325 (8)0.0365 (8)0.0018 (7)0.0216 (7)0.0052 (6)
C260.0323 (8)0.0316 (8)0.0401 (8)0.0043 (6)0.0221 (7)0.0051 (6)
C310.0375 (8)0.0357 (8)0.0298 (7)0.0025 (7)0.0178 (7)0.0019 (6)
C320.0424 (9)0.0380 (9)0.0296 (8)0.0038 (7)0.0160 (7)0.0003 (6)
C330.0602 (12)0.0400 (9)0.0399 (9)0.0137 (9)0.0299 (9)0.0075 (7)
C340.0494 (11)0.0637 (12)0.0352 (9)0.0186 (10)0.0232 (8)0.0167 (8)
C350.0410 (10)0.0772 (15)0.0328 (9)0.0045 (10)0.0091 (8)0.0019 (9)
C360.0474 (11)0.0455 (10)0.0409 (9)0.0067 (8)0.0175 (8)0.0052 (8)
Geometric parameters (Å, º) top
Cl1—C121.7230 (17)C15—H150.9500
Cl2—C161.7344 (15)C21—C261.389 (2)
F1—C131.3425 (18)C21—C221.408 (2)
O1—C11.2167 (19)C22—C231.376 (2)
O2—C241.3643 (18)C22—H220.9500
O2—C41.4327 (19)C23—C241.395 (2)
C1—C21.457 (2)C23—H230.9500
C1—C111.515 (2)C24—C251.388 (2)
C2—C31.338 (2)C25—C261.391 (2)
C2—H20.9500C25—H250.9500
C3—C211.460 (2)C26—H260.9500
C3—H30.9500C31—C361.383 (2)
C4—C311.500 (2)C31—C321.389 (2)
C4—H4A0.9900C32—C331.377 (2)
C4—H4B0.9900C32—H320.9500
C11—C161.388 (2)C33—C341.374 (3)
C11—C121.390 (2)C33—H330.9500
C12—C131.383 (2)C34—C351.370 (3)
C13—C141.366 (3)C34—H340.9500
C14—C151.378 (2)C35—C361.395 (3)
C14—H140.9500C35—H350.9500
C15—C161.383 (2)C36—H360.9500
C24—O2—C4117.41 (12)C26—C21—C3118.88 (14)
O1—C1—C2122.91 (15)C22—C21—C3123.48 (14)
O1—C1—C11118.69 (14)C23—C22—C21120.93 (15)
C2—C1—C11118.39 (13)C23—C22—H22119.5
C3—C2—C1123.41 (15)C21—C22—H22119.5
C3—C2—H2118.3C22—C23—C24120.38 (15)
C1—C2—H2118.3C22—C23—H23119.8
C2—C3—C21126.97 (15)C24—C23—H23119.8
C2—C3—H3116.5O2—C24—C25124.31 (14)
C21—C3—H3116.5O2—C24—C23115.75 (14)
O2—C4—C31108.06 (13)C25—C24—C23119.92 (14)
O2—C4—H4A110.1C24—C25—C26118.97 (14)
C31—C4—H4A110.1C24—C25—H25120.5
O2—C4—H4B110.1C26—C25—H25120.5
C31—C4—H4B110.1C21—C26—C25122.23 (15)
H4A—C4—H4B108.4C21—C26—H26118.9
C16—C11—C12117.55 (14)C25—C26—H26118.9
C16—C11—C1121.37 (13)C36—C31—C32118.46 (16)
C12—C11—C1121.01 (14)C36—C31—C4121.24 (16)
C13—C12—C11119.96 (15)C32—C31—C4120.27 (15)
C13—C12—Cl1120.13 (12)C33—C32—C31120.94 (16)
C11—C12—Cl1119.91 (13)C33—C32—H32119.5
F1—C13—C14119.16 (16)C31—C32—H32119.5
F1—C13—C12119.19 (17)C34—C33—C32120.26 (18)
C14—C13—C12121.65 (15)C34—C33—H33119.9
C13—C14—C15119.46 (16)C32—C33—H33119.9
C13—C14—H14120.3C35—C34—C33119.79 (17)
C15—C14—H14120.3C35—C34—H34120.1
C14—C15—C16119.14 (16)C33—C34—H34120.1
C14—C15—H15120.4C34—C35—C36120.27 (18)
C16—C15—H15120.4C34—C35—H35119.9
C15—C16—C11122.21 (14)C36—C35—H35119.9
C15—C16—Cl2118.54 (13)C31—C36—C35120.29 (18)
C11—C16—Cl2119.25 (12)C31—C36—H36119.9
C26—C21—C22117.55 (14)C35—C36—H36119.9
O1—C1—C2—C3170.87 (17)C2—C3—C21—C26169.97 (17)
C11—C1—C2—C38.0 (2)C2—C3—C21—C226.4 (3)
C1—C2—C3—C21173.56 (16)C26—C21—C22—C230.6 (3)
C24—O2—C4—C31175.17 (14)C3—C21—C22—C23175.83 (16)
O1—C1—C11—C1688.4 (2)C21—C22—C23—C240.2 (3)
C2—C1—C11—C1692.69 (18)C4—O2—C24—C259.4 (2)
O1—C1—C11—C1288.61 (19)C4—O2—C24—C23169.19 (15)
C2—C1—C11—C1290.29 (18)C22—C23—C24—O2177.49 (16)
C16—C11—C12—C130.7 (2)C22—C23—C24—C251.2 (3)
C1—C11—C12—C13177.82 (13)O2—C24—C25—C26177.34 (15)
C16—C11—C12—Cl1179.34 (11)C23—C24—C25—C261.2 (2)
C1—C11—C12—Cl12.20 (19)C22—C21—C26—C250.6 (2)
C11—C12—C13—F1178.39 (13)C3—C21—C26—C25176.04 (15)
Cl1—C12—C13—F11.6 (2)C24—C25—C26—C210.3 (2)
C11—C12—C13—C141.7 (2)O2—C4—C31—C36127.10 (17)
Cl1—C12—C13—C14178.27 (13)O2—C4—C31—C3254.7 (2)
F1—C13—C14—C15178.82 (15)C36—C31—C32—C330.4 (3)
C12—C13—C14—C151.3 (3)C4—C31—C32—C33177.76 (16)
C13—C14—C15—C160.1 (2)C31—C32—C33—C340.1 (3)
C14—C15—C16—C111.2 (2)C32—C33—C34—C350.3 (3)
C14—C15—C16—Cl2179.46 (12)C33—C34—C35—C360.3 (3)
C12—C11—C16—C150.8 (2)C32—C31—C36—C350.4 (3)
C1—C11—C16—C15176.37 (14)C4—C31—C36—C35177.73 (18)
C12—C11—C16—Cl2179.88 (11)C34—C35—C36—C310.1 (3)
C1—C11—C16—Cl22.99 (19)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C21–C26 ring.
D—H···AD—HH···AD···AD—H···A
C23—H23···F1i0.952.553.375 (2)145
C34—H34···Cl1ii0.952.803.5462 (18)136
C14—H14···Cgiii0.952.513.297 (2)140
Symmetry codes: (i) x+2, y1/2, z+3/2; (ii) x+1, y1/2, z+1/2; (iii) x+1, y1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC22H15Cl2FO2
Mr401.24
Crystal system, space groupMonoclinic, P21/c
Temperature (K)200
a, b, c (Å)9.1977 (2), 21.6887 (4), 11.6072 (2)
β (°) 124.629 (1)
V3)1905.29 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.36
Crystal size (mm)0.40 × 0.17 × 0.14
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.681, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
17237, 4712, 3729
Rint0.027
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.101, 1.02
No. of reflections4712
No. of parameters244
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.40, 0.27

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2010), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 2012) and Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C21–C26 ring.
D—H···AD—HH···AD···AD—H···A
C23—H23···F1i0.952.553.375 (2)145.1
C34—H34···Cl1ii0.952.803.5462 (18)136.0
C14—H14···Cgiii0.952.513.297 (2)140
Symmetry codes: (i) x+2, y1/2, z+3/2; (ii) x+1, y1/2, z+1/2; (iii) x+1, y1/2, z1/2.
 

Acknowledgements

ASP thanks the UOM for research facilities.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBetz, R., Gerber, T., Hosten, E., Praveen, A. S., Yathirajan, H. S. & Narayana, B. (2012). Acta Cryst. E68, o512.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2008). SADABS. Bruker Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLin, Y. M., Zhou, Y., Flavin, M. T., Zhou, L. M., Nie, W. & Chen, F. C. (2002). Bioorg. Med. Chem. 10, 2795–2802.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationModzelewska, A., Pettit, C., Achanta, G., Davidson, N. E., Huang, P. & Khan, S. R. (2006). Bioorg. Med. Chem. 14, 3491–3495.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSarojini, B. K., Narayana, B., Ashalatha, B. V., Indira, J. & Lobo, K. G. (2006). J. Cryst. Growth, 295, 54–59.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSvetaz, L., Tapia, A., Lopez, S., Furlan, R. L. E., Petenatti, E., Pioli, R., Schmeda-Hirschmann, G. & Zacchino, S. A. (2004). J. Agric. Food Chem. 52, 3297–3300.  Web of Science CrossRef PubMed CAS Google Scholar
First citationYathirajan, H. S., Sarojini, B. K., Narayana, B., Bindya, S. & Bolte, M. (2006). Acta Cryst. E62, o3631–o3632.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds