organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-{[2-(2,4-Di­nitro­phen­yl)hydrazinyl­­idene](phen­yl)meth­yl}-5-methyl-2-phenyl-1H-pyrazol-3(2H)-one ethanol monosolvate

aUniversity of Fort Hare, Department of Chemistry, Private Bag X1314, Alice 5700, South Africa, and bNelson Mandela Metropolitan University, Department of Chemistry, PO Box 77000, Port Elizabeth 6031, South Africa
*Correspondence e-mail: idemudiaog@yahoo.com

(Received 6 September 2012; accepted 30 October 2012; online 17 November 2012)

In the title compound, C23H18N6O5·C2H6O, all three benzene rings lie in an approximate plane [maximum deviation = 0.2688 (16) Å] that makes an angle of 53.56 (3)° with the plane of the pyrazolone ring. Intra­molecular N—H⋯O hydrogen bonds occur. In the crystal, the ethanol solvent mol­ecule links adjacent mol­ecules through N—H⋯O—H⋯O hydrogen bonds, leading to an infinite chain along the c-axis direction. The ethyl group of the ethanol solvent mol­ecule is disordered over two set of sites in a 0.762 (5):0.238 (5) ratio.

Related literature

For a related structure, see: Idemudia et al. (2012[Idemudia, O. G., Sadimenko, A. P., Afolayan, A. J. & Hosten, E. C. (2012). Acta Cryst. E68, o1280-o1281.]).

[Scheme 1]

Experimental

Crystal data
  • C23H18N6O5·C2H6O

  • Mr = 504.50

  • Monoclinic, P 21 /c

  • a = 12.8289 (4) Å

  • b = 14.3247 (4) Å

  • c = 14.4213 (4) Å

  • β = 111.347 (1)°

  • V = 2468.38 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 200 K

  • 0.61 × 0.43 × 0.39 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: numerical (SADABS; Bruker, 2008[Bruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.89, Tmax = 0.96

  • 23873 measured reflections

  • 6124 independent reflections

  • 5136 reflections with I > 2σ(I)

  • Rint = 0.014

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.116

  • S = 1.04

  • 6124 reflections

  • 368 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4N⋯O1 0.915 (17) 2.023 (17) 2.8261 (13) 145.6 (14)
N4—H4N⋯O2 0.915 (17) 2.040 (17) 2.6497 (14) 122.8 (13)
N2—H2N⋯O6i 0.936 (18) 1.711 (18) 2.6464 (14) 177.4 (16)
O6—H6⋯O1 0.89 (2) 1.72 (2) 2.5863 (14) 167 (2)
Symmetry code: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and SHELXLE (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Acylpyrazolone derived heterocycles have received considerable research interest due to their versatile reactivity and enormous applications. So have phenylhydrazine Schiff bases and its derivatives. We have reported the crystal structure of a phenyl hydrazone with 4-benzoyl-3-methyl-1-phenyl-2-pyrazolin-5-one (Idemudia et al., 2012). Presented herein is the crystal structure report of an acylpyrazolone based dinitrophenyl hydrazone in continuation of our probe on acylpyrazolone Schiff bases.

In the titled compound the least square plane of the pyrazolone ring makes a dihedral angle of 53.56 (3) ° with the least square plane of all the phenyl rings C11–C16, C21–C26, and C31–C36. The largest deviation distance from the phenyl ring plane is C14 at 0.2688 (16) Å. The dihedral angles with the individual least square planes through the phenyl rings with the pyrazolone plane are 45.87 (7) °, 58.29 (7) ° and 55.84 (7) ° repectively. The ethyl group of the ethanol solvent molecule is disordered over two set of sites [occupancy ratio 0.762 (5):0.238 (5)].

H4N, the hydrogen on N4, has two intra molecular contacts of 2.023 (17) Å and 2.040 (17) Å with O1 and O2 respectievly (Table 1). A C36—H36···N3 intra molecular contact of 2.34 Å also occurs. Molecules of the title compound are stacked in the c axis direction and linked via the ethanol solvent molecule with N2—H2N···O6 and O6—H6···O1 inter molecular contacts of length 1.711 (18) Å and 1.72 (2) Å respectively (Figure 2). Adjacent molecules have a C26—H26···O5 interaction of 2.43 Å (Table 1).

Related literature top

For a related structure, see: Idemudia et al. (2012).

Experimental top

An equimolar mixture of 2,4-dinitrophenyl hydrazine and 4-benzoyl-3-methyl-1-phenyl-2-pyrazoline-5-one in ethanol stirred under reflux for 4 h, afforded a precipitate of the titled compound. Slow evaporation at room temperature of an ethanolic solution of it, gave red single crystals suitable for X-ray diffraction with a melting point of 233–236 °C after a few days.

Refinement top

Carbon bound H atoms were placed in calculated positions and refined as riding atoms, with C—H = 0.95 Å (aromatic CH), 0.99 Å (CH2), 0.98 Å (CH3) and with Uiso(H) = 1.2 (1.5 for methyl) Ueq(C). The nitrogen and oxygen bound H atoms were located on a difference Fourier map and allowed to refine freely. The reflections 011 and 100 were omitted from the refinement since they were obscured by the beam-stop.

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and SHELXLE (Hübschle et al., 2011); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of the titled compound, with atom labels and displacement ellipsoids drawn at 50% probability level.
[Figure 2] Fig. 2. Selected intra and inter molecular contacts, with displacement ellipsoids drawn at 50% probability level. Symmetry operators: i x, -y + 3/2, z - 1/2.
4-{[2-(2,4-Dinitrophenyl)hydrazinylidene](phenyl)methyl}-5-methyl-2- phenyl-1H-pyrazol-3(2H)-one ethanol monosolvate top
Crystal data top
C23H18N6O5·C2H6ODx = 1.358 Mg m3
Mr = 504.50Melting point: 507 K
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 12.8289 (4) ÅCell parameters from 94 reflections
b = 14.3247 (4) Åθ = 2.9–28.9°
c = 14.4213 (4) ŵ = 0.10 mm1
β = 111.347 (1)°T = 200 K
V = 2468.38 (12) Å3Block, red
Z = 40.61 × 0.43 × 0.39 mm
F(000) = 1056
Data collection top
Bruker APEXII CCD
diffractometer
6124 independent reflections
Graphite monochromator5136 reflections with I > 2σ(I)
Detector resolution: 8.3333 pixels mm-1Rint = 0.014
ϕ and ω scansθmax = 28.3°, θmin = 2.2°
Absorption correction: numerical
(SADABS; Bruker, 2008)
h = 1617
Tmin = 0.89, Tmax = 0.96k = 1319
23873 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0507P)2 + 0.8241P]
where P = (Fo2 + 2Fc2)/3
6124 reflections(Δ/σ)max < 0.001
368 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C23H18N6O5·C2H6OV = 2468.38 (12) Å3
Mr = 504.50Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.8289 (4) ŵ = 0.10 mm1
b = 14.3247 (4) ÅT = 200 K
c = 14.4213 (4) Å0.61 × 0.43 × 0.39 mm
β = 111.347 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
6124 independent reflections
Absorption correction: numerical
(SADABS; Bruker, 2008)
5136 reflections with I > 2σ(I)
Tmin = 0.89, Tmax = 0.96Rint = 0.014
23873 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.116H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.28 e Å3
6124 reflectionsΔρmin = 0.22 e Å3
368 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.14776 (8)0.69594 (6)0.47229 (6)0.0383 (2)
O20.07049 (9)0.77842 (7)0.42852 (9)0.0543 (3)
O30.22537 (11)0.83873 (7)0.42516 (10)0.0588 (3)
O40.53149 (10)0.65498 (10)0.42226 (12)0.0730 (4)
O50.53782 (10)0.50904 (11)0.38432 (14)0.0876 (5)
O60.30397 (9)0.73560 (9)0.64059 (8)0.0517 (3)
N10.20431 (9)0.73686 (7)0.34187 (7)0.0317 (2)
N20.20240 (9)0.69518 (7)0.25557 (8)0.0341 (2)
N30.01147 (8)0.51321 (7)0.38324 (8)0.0325 (2)
N40.05711 (9)0.59824 (7)0.39281 (8)0.0328 (2)
N50.16820 (10)0.77102 (7)0.42199 (8)0.0399 (2)
N60.48924 (10)0.58418 (10)0.40330 (11)0.0553 (3)
C10.15772 (9)0.67707 (8)0.39078 (8)0.0299 (2)
C20.12604 (9)0.59567 (8)0.33014 (8)0.0294 (2)
C30.15677 (10)0.61039 (8)0.24838 (9)0.0321 (2)
C40.14119 (14)0.55220 (10)0.15841 (10)0.0466 (3)
H4A0.11620.59190.0990.07*
H4B0.08480.5040.15220.07*
H4C0.21230.52250.16490.07*
C50.07256 (9)0.51282 (8)0.35381 (8)0.0292 (2)
C110.24261 (10)0.82994 (8)0.36714 (9)0.0322 (2)
C120.17815 (12)0.89102 (9)0.39821 (11)0.0424 (3)
H120.10830.87160.40050.051*
C130.21730 (15)0.98106 (10)0.42595 (12)0.0514 (4)
H130.17461.02340.44840.062*
C140.31808 (15)1.00912 (10)0.42101 (12)0.0532 (4)
H140.34471.07060.44060.064*
C150.38033 (14)0.94861 (11)0.38782 (12)0.0520 (4)
H150.44850.96910.38280.062*
C160.34373 (11)0.85755 (9)0.36157 (10)0.0410 (3)
H160.38730.81510.34020.049*
C210.11659 (10)0.41870 (8)0.34431 (8)0.0304 (2)
C220.05139 (11)0.33871 (9)0.33661 (10)0.0375 (3)
H220.02210.34420.33740.045*
C230.09362 (13)0.25170 (9)0.32782 (11)0.0453 (3)
H230.04890.19770.32270.054*
C240.20034 (13)0.24258 (10)0.32641 (10)0.0461 (3)
H240.22820.18270.31890.055*
C250.26619 (12)0.32073 (10)0.33591 (11)0.0455 (3)
H250.340.31470.33610.055*
C260.22459 (11)0.40835 (9)0.34526 (10)0.0379 (3)
H260.27060.46180.35240.045*
C310.16063 (10)0.59744 (8)0.39772 (8)0.0302 (2)
C320.21772 (10)0.67863 (8)0.41052 (9)0.0322 (2)
C330.32476 (11)0.67409 (9)0.41267 (9)0.0364 (3)
H330.36140.72910.42150.044*
C340.37698 (10)0.58920 (10)0.40188 (10)0.0393 (3)
C350.32465 (11)0.50752 (10)0.38895 (11)0.0422 (3)
H350.36220.44930.38170.051*
C360.21948 (11)0.51165 (9)0.38672 (10)0.0378 (3)
H360.18460.45570.37760.045*
H2N0.2371 (14)0.7212 (12)0.2146 (13)0.054 (5)*
H4N0.0119 (14)0.6495 (12)0.4120 (12)0.050 (4)*
H60.2561 (18)0.7277 (14)0.5787 (17)0.072 (6)*
C6A0.41626 (18)0.74427 (15)0.64338 (17)0.0497 (6)0.762 (5)
H6AA0.42220.71360.5840.06*0.762 (5)
H6AB0.46780.71190.70310.06*0.762 (5)
C7A0.4500 (3)0.8432 (2)0.64576 (19)0.0669 (9)0.762 (5)
H7AA0.40440.87370.58330.1*0.762 (5)
H7AB0.52920.84670.65390.1*0.762 (5)
H7AC0.43890.87490.70170.1*0.762 (5)
C6B0.3762 (6)0.8194 (5)0.6360 (5)0.053 (2)0.238 (5)
H6BA0.34330.85290.57190.064*0.238 (5)
H6BB0.38520.86360.69130.064*0.238 (5)
C7B0.4832 (8)0.7761 (8)0.6459 (10)0.091 (4)0.238 (5)
H7BA0.47270.73560.58850.136*0.238 (5)
H7BB0.51050.73890.70710.136*0.238 (5)
H7BC0.53790.82480.64880.136*0.238 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0441 (5)0.0430 (5)0.0328 (4)0.0148 (4)0.0199 (4)0.0091 (4)
O20.0559 (6)0.0345 (5)0.0824 (8)0.0116 (4)0.0368 (6)0.0076 (5)
O30.0760 (8)0.0300 (5)0.0843 (8)0.0055 (5)0.0457 (7)0.0046 (5)
O40.0488 (6)0.0734 (8)0.1089 (11)0.0175 (6)0.0432 (7)0.0078 (8)
O50.0437 (7)0.0796 (10)0.1479 (15)0.0183 (6)0.0448 (8)0.0171 (9)
O60.0405 (5)0.0805 (8)0.0385 (5)0.0101 (5)0.0197 (4)0.0182 (5)
N10.0401 (5)0.0269 (5)0.0327 (5)0.0068 (4)0.0186 (4)0.0038 (4)
N20.0466 (6)0.0290 (5)0.0335 (5)0.0046 (4)0.0229 (4)0.0024 (4)
N30.0329 (5)0.0267 (5)0.0399 (5)0.0011 (4)0.0154 (4)0.0001 (4)
N40.0347 (5)0.0252 (5)0.0423 (5)0.0032 (4)0.0185 (4)0.0012 (4)
N50.0526 (7)0.0289 (5)0.0443 (6)0.0025 (5)0.0249 (5)0.0027 (4)
N60.0333 (6)0.0630 (9)0.0725 (9)0.0017 (6)0.0227 (6)0.0030 (7)
C10.0308 (5)0.0297 (5)0.0305 (5)0.0050 (4)0.0129 (4)0.0017 (4)
C20.0323 (5)0.0259 (5)0.0314 (5)0.0024 (4)0.0134 (4)0.0012 (4)
C30.0383 (6)0.0267 (5)0.0338 (6)0.0006 (4)0.0162 (5)0.0015 (4)
C40.0689 (9)0.0375 (7)0.0414 (7)0.0057 (6)0.0297 (7)0.0093 (5)
C50.0296 (5)0.0269 (5)0.0302 (5)0.0041 (4)0.0098 (4)0.0006 (4)
C110.0394 (6)0.0254 (5)0.0311 (5)0.0054 (4)0.0119 (5)0.0003 (4)
C120.0466 (7)0.0338 (6)0.0478 (7)0.0022 (5)0.0182 (6)0.0054 (5)
C130.0679 (10)0.0303 (7)0.0527 (8)0.0016 (6)0.0181 (7)0.0058 (6)
C140.0717 (10)0.0267 (6)0.0499 (8)0.0124 (6)0.0089 (7)0.0011 (6)
C150.0540 (8)0.0406 (8)0.0571 (9)0.0187 (7)0.0151 (7)0.0049 (6)
C160.0425 (7)0.0354 (6)0.0466 (7)0.0072 (5)0.0181 (6)0.0018 (5)
C210.0328 (6)0.0273 (5)0.0298 (5)0.0020 (4)0.0098 (4)0.0001 (4)
C220.0366 (6)0.0318 (6)0.0414 (6)0.0067 (5)0.0108 (5)0.0041 (5)
C230.0542 (8)0.0294 (6)0.0461 (7)0.0078 (6)0.0110 (6)0.0064 (5)
C240.0596 (9)0.0319 (6)0.0423 (7)0.0098 (6)0.0132 (6)0.0015 (5)
C250.0431 (7)0.0435 (7)0.0509 (8)0.0108 (6)0.0184 (6)0.0043 (6)
C260.0348 (6)0.0330 (6)0.0465 (7)0.0002 (5)0.0155 (5)0.0034 (5)
C310.0317 (5)0.0293 (5)0.0306 (5)0.0022 (4)0.0124 (4)0.0004 (4)
C320.0384 (6)0.0280 (6)0.0317 (5)0.0011 (5)0.0145 (5)0.0002 (4)
C330.0375 (6)0.0374 (6)0.0354 (6)0.0061 (5)0.0147 (5)0.0016 (5)
C340.0284 (6)0.0458 (7)0.0442 (7)0.0004 (5)0.0137 (5)0.0007 (5)
C350.0341 (6)0.0367 (7)0.0555 (8)0.0072 (5)0.0159 (6)0.0049 (6)
C360.0342 (6)0.0295 (6)0.0511 (7)0.0033 (5)0.0172 (5)0.0050 (5)
C6A0.0436 (12)0.0495 (12)0.0643 (13)0.0020 (9)0.0296 (9)0.0051 (9)
C7A0.072 (2)0.0563 (16)0.0620 (14)0.0192 (13)0.0121 (12)0.0037 (11)
C6B0.044 (4)0.060 (5)0.049 (4)0.006 (3)0.008 (3)0.001 (3)
C7B0.052 (5)0.074 (7)0.150 (10)0.005 (4)0.041 (6)0.025 (6)
Geometric parameters (Å, º) top
O1—C11.2572 (14)C15—C161.3913 (19)
O2—N51.2270 (15)C15—H150.95
O3—N51.2269 (15)C16—H160.95
O4—N61.2268 (18)C21—C261.3886 (17)
O5—N61.2238 (19)C21—C221.3991 (16)
O6—C6A1.432 (2)C22—C231.3831 (19)
O6—C6B1.533 (8)C22—H220.95
O6—H60.89 (2)C23—C241.383 (2)
N1—N21.3725 (13)C23—H230.95
N1—C11.3767 (14)C24—C251.379 (2)
N1—C111.4218 (14)C24—H240.95
N2—C31.3358 (15)C25—C261.3895 (18)
N2—H2N0.936 (18)C25—H250.95
N3—C51.2942 (15)C26—H260.95
N3—N41.3801 (14)C31—C361.4206 (16)
N4—C311.3554 (15)C31—C321.4219 (16)
N4—H4N0.915 (17)C32—C331.3864 (17)
N5—C321.4512 (15)C33—C341.3696 (19)
N6—C341.4496 (17)C33—H330.95
C1—C21.4251 (15)C34—C351.3948 (19)
C2—C31.3888 (16)C35—C361.3626 (18)
C2—C51.4718 (15)C35—H350.95
C3—C41.4931 (17)C36—H360.95
C4—H4A0.98C6A—C7A1.479 (3)
C4—H4B0.98C6A—H6AA0.99
C4—H4C0.98C6A—H6AB0.99
C5—C211.4873 (16)C7A—H7AA0.98
C11—C121.3856 (18)C7A—H7AB0.98
C11—C161.3863 (18)C7A—H7AC0.98
C12—C131.3891 (19)C6B—C7B1.466 (13)
C12—H120.95C6B—H6BA0.99
C13—C141.380 (2)C6B—H6BB0.99
C13—H130.95C7B—H7BA0.98
C14—C151.377 (2)C7B—H7BB0.98
C14—H140.95C7B—H7BC0.98
C6A—O6—H6111.1 (13)C26—C21—C22118.61 (11)
C6B—O6—H6105.4 (13)C26—C21—C5120.47 (10)
N2—N1—C1109.04 (9)C22—C21—C5120.91 (11)
N2—N1—C11122.07 (9)C23—C22—C21120.16 (12)
C1—N1—C11128.75 (10)C23—C22—H22119.9
C3—N2—N1109.19 (9)C21—C22—H22119.9
C3—N2—H2N127.5 (11)C24—C23—C22120.63 (13)
N1—N2—H2N122.9 (11)C24—C23—H23119.7
C5—N3—N4118.09 (10)C22—C23—H23119.7
C31—N4—N3117.20 (10)C25—C24—C23119.72 (13)
C31—N4—H4N121.1 (10)C25—C24—H24120.1
N3—N4—H4N119.6 (10)C23—C24—H24120.1
O3—N5—O2122.46 (11)C24—C25—C26120.00 (13)
O3—N5—C32118.84 (11)C24—C25—H25120.0
O2—N5—C32118.70 (10)C26—C25—H25120.0
O5—N6—O4123.14 (13)C21—C26—C25120.84 (12)
O5—N6—C34117.91 (13)C21—C26—H26119.6
O4—N6—C34118.95 (13)C25—C26—H26119.6
O1—C1—N1123.79 (10)N4—C31—C36119.51 (11)
O1—C1—C2130.26 (10)N4—C31—C32124.10 (10)
N1—C1—C2105.94 (9)C36—C31—C32116.37 (10)
C3—C2—C1106.92 (10)C33—C32—C31121.72 (11)
C3—C2—C5128.31 (10)C33—C32—N5115.87 (11)
C1—C2—C5124.77 (10)C31—C32—N5122.41 (11)
N2—C3—C2108.91 (10)C34—C33—C32119.12 (11)
N2—C3—C4119.43 (11)C34—C33—H33120.4
C2—C3—C4131.56 (11)C32—C33—H33120.4
C3—C4—H4A109.5C33—C34—C35121.37 (11)
C3—C4—H4B109.5C33—C34—N6119.33 (12)
H4A—C4—H4B109.5C35—C34—N6119.30 (12)
C3—C4—H4C109.5C36—C35—C34119.71 (12)
H4A—C4—H4C109.5C36—C35—H35120.1
H4B—C4—H4C109.5C34—C35—H35120.1
N3—C5—C2125.94 (10)C35—C36—C31121.70 (12)
N3—C5—C21115.07 (10)C35—C36—H36119.1
C2—C5—C21119.00 (10)C31—C36—H36119.1
C12—C11—C16121.32 (12)O6—C6A—C7A111.5 (2)
C12—C11—N1118.94 (11)O6—C6A—H6AA109.3
C16—C11—N1119.74 (11)C7A—C6A—H6AA109.3
C11—C12—C13118.93 (13)O6—C6A—H6AB109.3
C11—C12—H12120.5C7A—C6A—H6AB109.3
C13—C12—H12120.5H6AA—C6A—H6AB108.0
C14—C13—C12120.18 (14)C7B—C6B—O6102.9 (6)
C14—C13—H13119.9C7B—C6B—H6BA111.2
C12—C13—H13119.9O6—C6B—H6BA111.2
C15—C14—C13120.48 (13)C7B—C6B—H6BB111.2
C15—C14—H14119.8O6—C6B—H6BB111.2
C13—C14—H14119.8H6BA—C6B—H6BB109.1
C14—C15—C16120.25 (14)C6B—C7B—H7BA109.5
C14—C15—H15119.9C6B—C7B—H7BB109.5
C16—C15—H15119.9H7BA—C7B—H7BB109.5
C11—C16—C15118.82 (13)C6B—C7B—H7BC109.5
C11—C16—H16120.6H7BA—C7B—H7BC109.5
C15—C16—H16120.6H7BB—C7B—H7BC109.5
C1—N1—N2—C30.45 (14)N3—C5—C21—C26159.14 (11)
C11—N1—N2—C3176.44 (11)C2—C5—C21—C2620.72 (16)
C5—N3—N4—C31163.07 (11)N3—C5—C21—C2219.34 (16)
N2—N1—C1—O1179.97 (11)C2—C5—C21—C22160.80 (11)
C11—N1—C1—O14.3 (2)C26—C21—C22—C231.49 (19)
N2—N1—C1—C20.23 (13)C5—C21—C22—C23180.00 (12)
C11—N1—C1—C2175.41 (11)C21—C22—C23—C240.1 (2)
O1—C1—C2—C3179.48 (13)C22—C23—C24—C251.3 (2)
N1—C1—C2—C30.80 (13)C23—C24—C25—C261.0 (2)
O1—C1—C2—C50.3 (2)C22—C21—C26—C251.82 (19)
N1—C1—C2—C5179.97 (11)C5—C21—C26—C25179.67 (12)
N1—N2—C3—C20.97 (14)C24—C25—C26—C210.6 (2)
N1—N2—C3—C4177.64 (12)N3—N4—C31—C363.89 (17)
C1—C2—C3—N21.10 (14)N3—N4—C31—C32178.08 (11)
C5—C2—C3—N2179.77 (11)N4—C31—C32—C33178.43 (11)
C1—C2—C3—C4177.22 (14)C36—C31—C32—C330.34 (17)
C5—C2—C3—C43.6 (2)N4—C31—C32—N51.50 (18)
N4—N3—C5—C20.72 (17)C36—C31—C32—N5179.59 (11)
N4—N3—C5—C21179.44 (10)O3—N5—C32—C335.39 (17)
C3—C2—C5—N3134.04 (14)O2—N5—C32—C33174.35 (12)
C1—C2—C5—N346.97 (18)O3—N5—C32—C31174.54 (12)
C3—C2—C5—C2146.12 (17)O2—N5—C32—C315.72 (18)
C1—C2—C5—C21132.87 (12)C31—C32—C33—C340.20 (18)
N2—N1—C11—C12131.90 (13)N5—C32—C33—C34179.73 (11)
C1—N1—C11—C1243.23 (18)C32—C33—C34—C350.1 (2)
N2—N1—C11—C1648.92 (17)C32—C33—C34—N6179.53 (12)
C1—N1—C11—C16135.95 (13)O5—N6—C34—C33173.35 (16)
C16—C11—C12—C131.2 (2)O4—N6—C34—C335.9 (2)
N1—C11—C12—C13177.96 (12)O5—N6—C34—C356.3 (2)
C11—C12—C13—C141.0 (2)O4—N6—C34—C35174.49 (15)
C12—C13—C14—C150.6 (2)C33—C34—C35—C360.1 (2)
C13—C14—C15—C161.8 (2)N6—C34—C35—C36179.48 (13)
C12—C11—C16—C150.1 (2)C34—C35—C36—C310.3 (2)
N1—C11—C16—C15179.21 (12)N4—C31—C36—C35178.57 (12)
C14—C15—C16—C111.6 (2)C32—C31—C36—C350.39 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4N···O10.915 (17)2.023 (17)2.8261 (13)145.6 (14)
N4—H4N···O20.915 (17)2.040 (17)2.6497 (14)122.8 (13)
N2—H2N···O6i0.936 (18)1.711 (18)2.6464 (14)177.4 (16)
O6—H6···O10.89 (2)1.72 (2)2.5863 (14)167 (2)
Symmetry code: (i) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC23H18N6O5·C2H6O
Mr504.50
Crystal system, space groupMonoclinic, P21/c
Temperature (K)200
a, b, c (Å)12.8289 (4), 14.3247 (4), 14.4213 (4)
β (°) 111.347 (1)
V3)2468.38 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.61 × 0.43 × 0.39
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionNumerical
(SADABS; Bruker, 2008)
Tmin, Tmax0.89, 0.96
No. of measured, independent and
observed [I > 2σ(I)] reflections
23873, 6124, 5136
Rint0.014
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.116, 1.04
No. of reflections6124
No. of parameters368
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.28, 0.22

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and SHELXLE (Hübschle et al., 2011), ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4N···O10.915 (17)2.023 (17)2.8261 (13)145.6 (14)
N4—H4N···O20.915 (17)2.040 (17)2.6497 (14)122.8 (13)
N2—H2N···O6i0.936 (18)1.711 (18)2.6464 (14)177.4 (16)
O6—H6···O10.89 (2)1.72 (2)2.5863 (14)167.(2)
Symmetry code: (i) x, y+3/2, z1/2.
 

Acknowledgements

The authors would like to thank the Department of Chemistry and Govan Mbeki Research and Development Centre (GMRDC) both of the University of Fort Hare for their support.

References

First citationBruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationIdemudia, O. G., Sadimenko, A. P., Afolayan, A. J. & Hosten, E. C. (2012). Acta Cryst. E68, o1280–o1281.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds