metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 12| December 2012| Pages m1557-m1558

Di-μ-azido-bis­­(μ-1,4,7,10,13,16-hexa­oxa­cyclo­octa­deca­ne)bis­­(5,10,15,20-tetra­phenyl­porphyrinato)dicadmium­disodium

aLaboratoire de Physico-chimie des Matériaux, Université de Monastir, Faculté des Sciences de Monastir, Avenue de l'environnement, 5019 Monastir, Tunisia, and bLaboratoire de Chimie de Coordination CNRS UPR 8241, 205 Route de Norbone, 31077 Toulouse Cedex 04, France
*Correspondence e-mail: hnasri1@gmail.com

(Received 3 November 2012; accepted 22 November 2012; online 30 November 2012)

The asymmetric unit of the title compound, [Cd2Na2(N3)2(C44H28N4)2(C12H24O6)2], consists of one half of the dimeric complex; the tetra­nuclear mol­ecule lies about an inversion centre. The CdII atom is coordinated by the four pyrrole N atoms of the 5,10,15,20-tetra­phenyl­porphyrinate ligand and one N atom of the axial azide ligand in a square-pyramidal geometry. The azide group is also linked to the NaI atom, which is surrounded by one 18-crown-6 molecule and additionally bonded to a second 18-crown-6 molecule trans to the azide group. The porphyrin core exhibits a major doming distortion (∼40%) and the crystal structure is stabilized by weak C—H⋯π inter­actions. The mol­ecular structure features weak intra­molecular hydrogen bonds: two O—H⋯O inter­actions within the 18-crown-6 mol­ecule and one C—H(18-crown-6)⋯N(azido) contact.

Related literature

For the synthesis of [Cd(TPP)] (TPP = 5,10,15,20-tetraphenylporphyrinato), see: Rodesiler et al. (1985[Rodesiler, P. F., Griffith, E. A. H., Charles, N. G., Lebioda, L. & Amma, E. L. (1985). Inorg. Chem. 24, 4595-4600.]). For related structures, see: Byrn et al. (1991[Byrn, M. P., Curtis, C. J., Goldberg, I., Hsiou, Y., Khan, S. I., Sawin, P. A., Tendick, S. K. & Strouse, C. E. (1991). J. Am. Chem. Soc. 113, 6549-6557.]); Mansour et al. (2010[Mansour, A., Belkhiria, M. S., Daran, J.-C. & Nasri, H. (2010). Acta Cryst. E66, m509-m510.]); Liu et al. (2009[Liu, J.-J., He, X., Shao, M. & Li, M.-X. (2009). Inorg. Chem. Commun. 12, 972-974.]). For further details of geometric distortions in related compounds, see: Jentzen et al. (1997[Jentzen, W., Song, X. & Shelnutt, J. A. (1997). J. Phys. Chem. B, 101, 1684-1699.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd2Na2(N3)2(C44H28N4)2(C12H24O6)2]

  • Mr = 2108.90

  • Monoclinic, P 21 /n

  • a = 11.4175 (3) Å

  • b = 19.5363 (4) Å

  • c = 22.6086 (6) Å

  • β = 102.683 (2)°

  • V = 4919.9 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.51 mm−1

  • T = 180 K

  • 0.48 × 0.42 × 0.28 mm

Data collection
  • Oxford Diffraction Xcalibur (Sapphire1) diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrystAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.791, Tmax = 0.870

  • 44385 measured reflections

  • 12338 independent reflections

  • 9493 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.071

  • S = 1.02

  • 12338 reflections

  • 640 parameters

  • H-atom parameters constrained

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2, Cg3 and Cg11 are the centroids of the N1/C11–C14, N2/C21–C24, N3/C31–C34 and C351–C356 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C62—H62A⋯N6 0.99 2.51 3.303 (3) 137
C63—H63B⋯O3i 0.99 2.56 3.489 (2) 156
C65—H65B⋯O6i 0.99 2.47 3.257 (2) 136
C62—H62BCg1 0.99 2.90 3.555 (2) 124
C63—H63ACg11ii 0.99 2.75 3.662 (2) 154
C71—H71ACg3iii 0.99 2.88 3.535 (2) 124
C353—H353⋯Cg2iv 0.95 2.62 3.459 (2) 147
C454—H454⋯Cg11iii 0.95 2.82 3.697 (3) 153
Symmetry codes: (i) -x+1, -y+1, -z; (ii) x-1, y, z; (iii) [x-{\script{3\over 2}}, -y-{\script{1\over 2}}, z-{\script{3\over 2}}]; (iv) x+1, y, z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrystAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrystAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]) and ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As part of a systematic investigation of metalloporphyrins used as biomimetic models for hemoproteines and in several other domains (e.g. catalysis, medicine, electronic) several metalloporphyrin complexes has been characterized by our group (Mansour et al., 2010).

We report herein on the molecular structure of the title compound. The Cd atom is five-coordinated bound to the four porphyrin N atoms and to the nitrogen N5 atom of the azido ligand (Fig. 1). The Cd__N(azido) bond length [2.238 (2) Å] is in the range [2.250 (4) - 2.417 (6) Å] found for bridging µ2 (Cd-azido-M) moiety in non-porphyrin complexes where M is a metal atom (i.e., Liu et al. 2009).

The most interesting features of the structure of (I) are: (i) each [Cd(TPP)(N3)]- complex ion is strongly linked to the sodium atom of the counterion [Na(18-crown-6)]+ through the nitrogen N7 of the azido ligand where the Na__N(azido) distance is 2.492 (2) Å, (ii) the sodium atoms of two symmetry related [Na(18—C-6)]+ counterions are linked by two strong Na—O distances where the Na+ belongs to one 18-crown-6 molecule and the oxygen atom belong to the symmetry related adjacent ether crown molecule. The value of this distance [2.540 (1) Å] is shorter than the average Na—O(18-crown-6) which is 2.703 (2) Å.

The average equatorial cadmium-pyrrole N bond length (Cd—Np) [2.2148 (13) Å] is in the range [2.126 (9), 2.3167 (3) Å] for Cd porphyrin complexes (i.e., Byrn et al., 1991). The porphyrin core is not very distorted but present a major doming deformation as confirmed by the Normal Structural Decomposition (NSD) calculations (Jentzen, et al.,1997) with a value of 42%.

The molecular structure of (I) shows the presence of weak intramoleculair hydrogen bonds: two O—H···O bonds within the 18-crown-6 molecule and one CH(18-crown-6)···N6(azido) bond. The crystal packing of the title compound is stabilized by C—H······π intermolecular interactions involving Cg pyrrole and phenyl centroids rings (Table 1 and Fig. 2).

Related literature top

For the synthesis of [Cd(TPP)] (TPP = [please define]), see: Rodesiler et al. (1985). For related structures, see: Byrn et al. (1991); Mansour et al. (2010); Liu et al. (2009). For further details of geometric distortions in related compounds, see: Jentzen et al. (1997).

Experimental top

The [Cd(TPP)] complex (Rodesiler et al. 1985) (20 mg, 0.027 mmol) with an excess of sodium azide NaN3 (100 mg, 1.5 mmol) and 18-crown-6 (52 mg, 0.19 mmol) in chlorobenzene (10 ml) were stirred overnight at room temperature under air to yield a dark-purple solution. Crystals of the title complex were obtained by diffusion of hexanes through the chlorobenzene solution.

Refinement top

All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.99 Å (methylene) and 0.95 Å (aromatic) with Uiso(H) = 1.2Ueq(Caromatic, methylene).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title molecule with the atom-numbering. Displacement ellipsoids are drawn at 50% and H atoms have been omitted.
[Figure 2] Fig. 2. The crystal structure of the title compound plotted in projection along [100]. H atoms have been omitted.
[(5,10,15,20-Retraphenylporphyrinato)cadmium]-µ-azido-sodium-bis(µ- 1,4,7,10,13,16-hexaoxacyclooctadecane)-sodium-µ-azido-[(5,10,15,20- tetraphenylporphyrinato)cadmium] top
Crystal data top
[Cd2Na2(N3)2(C44H28N4)2(C12H24O6)2]F(000) = 2176.0
Mr = 2108.90Dx = 1.424 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 23347 reflections
a = 11.4175 (3) Åθ = 3.0–32.2°
b = 19.5363 (4) ŵ = 0.51 mm1
c = 22.6086 (6) ÅT = 180 K
β = 102.683 (2)°Prism, dark purple
V = 4919.9 (2) Å30.48 × 0.42 × 0.28 mm
Z = 2
Data collection top
Oxford Diffraction Xcalibur (Sapphire1)
diffractometer
12338 independent reflections
Radiation source: fine-focus sealed tube9493 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
Detector resolution: 8.2632 pixels mm-1θmax = 28.4°, θmin = 3.1°
ω scansh = 1515
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
k = 2626
Tmin = 0.791, Tmax = 0.870l = 3026
44385 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.071H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.041P)2]
where P = (Fo2 + 2Fc2)/3
12338 reflections(Δ/σ)max = 0.002
640 parametersΔρmax = 0.54 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
[Cd2Na2(N3)2(C44H28N4)2(C12H24O6)2]V = 4919.9 (2) Å3
Mr = 2108.90Z = 2
Monoclinic, P21/nMo Kα radiation
a = 11.4175 (3) ŵ = 0.51 mm1
b = 19.5363 (4) ÅT = 180 K
c = 22.6086 (6) Å0.48 × 0.42 × 0.28 mm
β = 102.683 (2)°
Data collection top
Oxford Diffraction Xcalibur (Sapphire1)
diffractometer
12338 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
9493 reflections with I > 2σ(I)
Tmin = 0.791, Tmax = 0.870Rint = 0.030
44385 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.071H-atom parameters constrained
S = 1.02Δρmax = 0.54 e Å3
12338 reflectionsΔρmin = 0.39 e Å3
640 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > σ(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd0.955191 (10)0.298901 (6)0.222285 (5)0.01846 (4)
C110.79257 (14)0.16615 (8)0.18211 (7)0.0200 (3)
C120.75768 (15)0.12022 (8)0.13139 (7)0.0228 (3)
H120.68980.09080.12360.027*
C130.84030 (15)0.12703 (9)0.09686 (8)0.0250 (4)
H130.84090.10340.06020.030*
C140.92715 (14)0.17697 (8)0.12627 (7)0.0210 (3)
C150.73057 (14)0.17493 (8)0.22913 (7)0.0196 (3)
C210.76402 (14)0.21780 (8)0.27977 (7)0.0198 (3)
C220.70306 (15)0.22250 (9)0.32908 (7)0.0235 (3)
H220.63310.19810.33270.028*
C230.76396 (14)0.26804 (9)0.36900 (7)0.0233 (3)
H230.74480.28160.40610.028*
C240.86392 (14)0.29252 (8)0.34505 (7)0.0192 (3)
C250.95047 (14)0.33965 (8)0.37323 (7)0.0193 (3)
C311.05490 (14)0.36012 (8)0.35404 (7)0.0187 (3)
C321.15390 (14)0.39757 (8)0.39028 (7)0.0221 (3)
H321.15750.41630.42940.026*
C331.24091 (14)0.40109 (8)0.35806 (7)0.0213 (3)
H331.31720.42230.37060.026*
C341.19591 (13)0.36672 (8)0.30123 (7)0.0185 (3)
C351.25978 (14)0.35663 (8)0.25478 (7)0.0191 (3)
C411.22266 (14)0.31638 (8)0.20222 (7)0.0199 (3)
C421.28971 (14)0.30580 (8)0.15556 (7)0.0221 (3)
H421.36520.32550.15430.027*
C431.22553 (15)0.26289 (9)0.11422 (7)0.0239 (3)
H431.24720.24690.07840.029*
C441.11770 (14)0.24567 (8)0.13440 (7)0.0210 (3)
C451.02922 (14)0.19925 (8)0.10574 (7)0.0220 (3)
C610.57959 (19)0.32908 (10)0.09250 (9)0.0379 (5)
H61A0.49700.31320.07480.046*
H61B0.59760.31890.13650.046*
C620.6662 (2)0.29300 (10)0.06335 (10)0.0400 (5)
H62A0.74920.30680.08260.048*
H62B0.65910.24290.06810.048*
C630.51419 (17)0.43920 (10)0.11408 (8)0.0329 (4)
H63A0.51620.41910.15450.039*
H63B0.43010.43880.09060.039*
C640.56024 (19)0.51090 (10)0.12088 (8)0.0372 (5)
H64A0.51720.53730.14690.045*
H64B0.64680.51090.14030.045*
C650.60174 (17)0.60662 (10)0.06432 (10)0.0363 (4)
H65A0.59690.63060.10230.044*
H65B0.55940.63500.02990.044*
C660.73074 (18)0.60012 (11)0.06112 (9)0.0392 (5)
H66A0.76900.64590.06490.047*
H66B0.77380.57120.09490.047*
C670.85595 (17)0.57584 (10)0.00566 (11)0.0420 (5)
H67A0.91290.54900.02500.050*
H67B0.88200.62430.00250.050*
C680.85524 (19)0.54956 (10)0.06700 (11)0.0439 (5)
H68A0.79500.57460.09750.053*
H68B0.93510.55620.07650.053*
C690.8252 (2)0.44956 (13)0.12541 (11)0.0554 (6)
H69A0.90250.45840.13700.066*
H69B0.76000.47000.15660.066*
C700.8059 (3)0.37510 (13)0.12149 (12)0.0630 (7)
H70A0.80780.35300.16070.076*
H70B0.87020.35480.08980.076*
C710.6697 (2)0.29346 (12)0.09761 (12)0.0543 (7)
H71A0.71170.26490.12260.065*
H71B0.58250.28460.11100.065*
C720.7101 (2)0.27356 (12)0.03293 (11)0.0491 (6)
H72A0.69930.22370.02820.059*
H72B0.79620.28460.01820.059*
C1510.61833 (14)0.13391 (8)0.22497 (7)0.0205 (3)
C1520.50758 (15)0.16382 (9)0.20413 (8)0.0283 (4)
H1520.50280.21070.19280.034*
C1530.40297 (18)0.12598 (12)0.19951 (10)0.0415 (5)
H1530.32700.14720.18580.050*
C1540.4095 (2)0.05846 (12)0.21466 (10)0.0476 (6)
H1540.33790.03230.21010.057*
C1560.62280 (18)0.06554 (9)0.24185 (9)0.0346 (4)
H1560.69820.04440.25730.042*
C1550.5182 (2)0.02790 (10)0.23634 (11)0.0475 (6)
H1550.52190.01900.24760.057*
C2510.93115 (14)0.37047 (9)0.43087 (7)0.0217 (3)
C2520.89204 (19)0.43716 (10)0.43156 (9)0.0361 (4)
H2520.87920.46370.39550.043*
C2530.8714 (2)0.46554 (12)0.48412 (10)0.0491 (6)
H2530.84480.51160.48400.059*
C2540.8890 (2)0.42795 (11)0.53662 (9)0.0426 (5)
H2540.87400.44770.57260.051*
C2550.92830 (18)0.36194 (11)0.53656 (8)0.0357 (4)
H2550.94170.33580.57290.043*
C2560.94880 (17)0.33272 (10)0.48362 (8)0.0315 (4)
H2560.97510.28660.48380.038*
C3511.37943 (14)0.39124 (9)0.26353 (7)0.0213 (3)
C3521.48392 (15)0.35385 (10)0.26812 (8)0.0266 (4)
H3521.48000.30530.26550.032*
C3531.59456 (16)0.38634 (11)0.27650 (8)0.0368 (5)
H3531.66540.36010.27850.044*
C3541.60158 (18)0.45626 (12)0.28195 (9)0.0429 (5)
H3541.67760.47830.28870.051*
C3551.4996 (2)0.49444 (11)0.27768 (9)0.0397 (5)
H3551.50450.54280.28140.048*
C3561.38891 (16)0.46187 (9)0.26790 (8)0.0302 (4)
H3561.31810.48860.26410.036*
C4511.04429 (15)0.16895 (10)0.04724 (8)0.0280 (4)
C4521.0733 (2)0.10085 (11)0.04350 (10)0.0447 (5)
H4521.08720.07280.07870.054*
C4531.0821 (2)0.07327 (14)0.01290 (14)0.0646 (8)
H4531.10200.02640.01580.078*
C4541.0622 (2)0.11344 (18)0.06310 (12)0.0666 (9)
H4541.06860.09450.10100.080*
C4551.0333 (2)0.18053 (17)0.05956 (10)0.0575 (7)
H4551.01880.20810.09500.069*
C4561.02489 (17)0.20883 (12)0.00495 (9)0.0390 (5)
H4561.00570.25600.00290.047*
N10.89440 (12)0.19971 (7)0.17725 (6)0.0217 (3)
N20.86096 (12)0.26054 (7)0.29118 (6)0.0203 (3)
N31.08356 (11)0.34256 (7)0.30064 (6)0.0187 (3)
N41.11881 (12)0.27945 (7)0.18739 (6)0.0217 (3)
N50.85120 (16)0.38938 (9)0.17817 (8)0.0395 (4)
N60.85280 (14)0.41290 (8)0.13048 (8)0.0376 (4)
N70.85002 (16)0.43766 (11)0.08343 (10)0.0583 (6)
Na0.67309 (6)0.44498 (4)0.00329 (3)0.03434 (17)
O10.58802 (11)0.40026 (6)0.08330 (6)0.0298 (3)
O20.54207 (11)0.54180 (6)0.06255 (6)0.0310 (3)
O60.63991 (12)0.31060 (6)0.00076 (6)0.0360 (3)
O30.73794 (11)0.57028 (6)0.00506 (6)0.0334 (3)
O40.82635 (13)0.47896 (7)0.06839 (6)0.0410 (3)
O50.69298 (14)0.36427 (8)0.10704 (7)0.0518 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd0.01716 (6)0.02225 (6)0.01685 (6)0.00263 (5)0.00563 (4)0.00278 (5)
C110.0196 (8)0.0186 (8)0.0216 (8)0.0015 (6)0.0044 (6)0.0016 (6)
C120.0237 (8)0.0204 (8)0.0245 (8)0.0039 (6)0.0053 (7)0.0040 (7)
C130.0267 (9)0.0252 (9)0.0235 (9)0.0032 (7)0.0068 (7)0.0083 (7)
C140.0210 (8)0.0226 (8)0.0205 (8)0.0024 (6)0.0068 (7)0.0049 (6)
C150.0188 (8)0.0193 (7)0.0214 (8)0.0026 (6)0.0061 (6)0.0000 (6)
C210.0182 (8)0.0215 (8)0.0208 (8)0.0029 (6)0.0065 (6)0.0004 (6)
C220.0207 (8)0.0281 (9)0.0236 (8)0.0038 (6)0.0093 (7)0.0003 (7)
C230.0206 (8)0.0309 (9)0.0202 (8)0.0019 (7)0.0086 (7)0.0013 (7)
C240.0175 (7)0.0240 (8)0.0171 (7)0.0012 (6)0.0063 (6)0.0020 (6)
C250.0199 (8)0.0209 (8)0.0181 (8)0.0018 (6)0.0060 (6)0.0022 (6)
C310.0189 (8)0.0199 (8)0.0177 (7)0.0008 (6)0.0049 (6)0.0025 (6)
C320.0245 (8)0.0230 (8)0.0190 (8)0.0022 (7)0.0056 (6)0.0051 (7)
C330.0186 (8)0.0235 (8)0.0216 (8)0.0040 (6)0.0036 (6)0.0040 (7)
C340.0169 (7)0.0192 (8)0.0196 (8)0.0004 (6)0.0043 (6)0.0009 (6)
C350.0162 (7)0.0208 (8)0.0210 (8)0.0006 (6)0.0057 (6)0.0013 (6)
C410.0165 (8)0.0235 (8)0.0207 (8)0.0013 (6)0.0065 (6)0.0002 (6)
C420.0202 (8)0.0261 (9)0.0222 (8)0.0016 (6)0.0093 (6)0.0005 (7)
C430.0230 (8)0.0303 (9)0.0209 (8)0.0003 (7)0.0103 (7)0.0016 (7)
C440.0208 (8)0.0244 (8)0.0197 (8)0.0007 (6)0.0085 (6)0.0034 (6)
C450.0216 (8)0.0264 (8)0.0196 (8)0.0008 (7)0.0081 (6)0.0046 (7)
C610.0470 (12)0.0309 (10)0.0344 (11)0.0095 (9)0.0059 (9)0.0088 (9)
C620.0441 (12)0.0273 (10)0.0433 (12)0.0012 (8)0.0017 (9)0.0067 (9)
C630.0348 (10)0.0419 (11)0.0237 (9)0.0026 (8)0.0100 (8)0.0030 (8)
C640.0427 (12)0.0448 (12)0.0235 (9)0.0007 (9)0.0055 (8)0.0022 (8)
C650.0359 (11)0.0258 (10)0.0456 (12)0.0008 (8)0.0058 (9)0.0055 (9)
C660.0362 (11)0.0347 (11)0.0441 (12)0.0065 (8)0.0030 (9)0.0082 (9)
C670.0265 (10)0.0329 (11)0.0671 (15)0.0077 (8)0.0113 (10)0.0014 (10)
C680.0361 (11)0.0372 (11)0.0645 (15)0.0014 (9)0.0241 (11)0.0149 (11)
C690.0664 (17)0.0668 (17)0.0399 (13)0.0115 (13)0.0267 (12)0.0002 (12)
C700.0738 (18)0.0661 (17)0.0622 (17)0.0110 (14)0.0436 (15)0.0202 (13)
C710.0617 (16)0.0451 (14)0.0637 (16)0.0151 (11)0.0307 (13)0.0267 (12)
C720.0434 (13)0.0357 (11)0.0723 (17)0.0059 (9)0.0213 (12)0.0117 (11)
C1510.0223 (8)0.0207 (8)0.0202 (8)0.0047 (6)0.0081 (6)0.0027 (6)
C1520.0246 (9)0.0295 (10)0.0299 (9)0.0050 (7)0.0043 (7)0.0027 (7)
C1530.0232 (10)0.0557 (14)0.0441 (12)0.0090 (9)0.0042 (9)0.0019 (10)
C1540.0401 (12)0.0531 (14)0.0526 (14)0.0289 (11)0.0170 (10)0.0047 (11)
C1560.0374 (11)0.0237 (9)0.0446 (12)0.0001 (8)0.0131 (9)0.0022 (8)
C1550.0630 (16)0.0250 (10)0.0608 (15)0.0171 (10)0.0273 (12)0.0012 (10)
C2510.0180 (8)0.0285 (9)0.0198 (8)0.0035 (6)0.0068 (6)0.0064 (7)
C2520.0494 (12)0.0324 (10)0.0289 (10)0.0084 (9)0.0140 (9)0.0026 (8)
C2530.0714 (16)0.0392 (12)0.0405 (12)0.0149 (11)0.0205 (11)0.0108 (10)
C2540.0523 (13)0.0511 (13)0.0305 (11)0.0047 (10)0.0220 (10)0.0164 (10)
C2550.0409 (11)0.0474 (12)0.0213 (9)0.0065 (9)0.0120 (8)0.0019 (8)
C2560.0366 (10)0.0334 (10)0.0259 (9)0.0001 (8)0.0101 (8)0.0015 (8)
C3510.0186 (8)0.0284 (9)0.0176 (8)0.0038 (6)0.0055 (6)0.0003 (7)
C3520.0209 (9)0.0368 (10)0.0220 (8)0.0010 (7)0.0042 (7)0.0051 (7)
C3530.0185 (9)0.0617 (14)0.0291 (10)0.0010 (9)0.0030 (7)0.0131 (9)
C3540.0273 (11)0.0715 (16)0.0281 (10)0.0240 (10)0.0023 (8)0.0087 (10)
C3550.0465 (12)0.0388 (11)0.0359 (11)0.0222 (10)0.0132 (9)0.0037 (9)
C3560.0300 (10)0.0295 (10)0.0332 (10)0.0056 (7)0.0115 (8)0.0027 (8)
C4510.0220 (9)0.0395 (10)0.0254 (9)0.0098 (7)0.0115 (7)0.0130 (8)
C4520.0498 (13)0.0425 (12)0.0495 (13)0.0070 (10)0.0272 (11)0.0187 (10)
C4530.0583 (16)0.0649 (17)0.082 (2)0.0199 (13)0.0394 (15)0.0508 (16)
C4540.0459 (14)0.121 (3)0.0415 (14)0.0345 (15)0.0288 (11)0.0446 (16)
C4550.0363 (13)0.113 (2)0.0262 (11)0.0203 (13)0.0136 (9)0.0123 (13)
C4560.0271 (10)0.0663 (15)0.0259 (10)0.0075 (9)0.0105 (8)0.0044 (9)
N10.0209 (7)0.0252 (7)0.0210 (7)0.0036 (6)0.0088 (5)0.0059 (6)
N20.0191 (7)0.0246 (7)0.0188 (7)0.0038 (5)0.0074 (5)0.0039 (6)
N30.0168 (6)0.0221 (7)0.0179 (7)0.0004 (5)0.0057 (5)0.0008 (5)
N40.0203 (7)0.0258 (7)0.0207 (7)0.0036 (5)0.0080 (6)0.0055 (6)
N50.0441 (10)0.0371 (10)0.0324 (9)0.0111 (8)0.0021 (7)0.0051 (8)
N60.0250 (8)0.0361 (9)0.0477 (11)0.0010 (7)0.0008 (7)0.0112 (8)
N70.0320 (10)0.0777 (15)0.0622 (13)0.0044 (9)0.0041 (9)0.0414 (12)
Na0.0301 (4)0.0364 (4)0.0349 (4)0.0041 (3)0.0035 (3)0.0096 (3)
O10.0304 (7)0.0290 (7)0.0316 (7)0.0025 (5)0.0100 (5)0.0066 (5)
O20.0317 (7)0.0307 (7)0.0285 (7)0.0027 (5)0.0018 (5)0.0008 (5)
O60.0353 (8)0.0314 (7)0.0405 (8)0.0058 (5)0.0068 (6)0.0025 (6)
O30.0248 (7)0.0324 (7)0.0421 (8)0.0053 (5)0.0057 (6)0.0019 (6)
O40.0522 (9)0.0348 (8)0.0409 (8)0.0053 (6)0.0209 (7)0.0043 (6)
O50.0538 (10)0.0521 (10)0.0553 (10)0.0120 (8)0.0244 (8)0.0128 (8)
Geometric parameters (Å, º) top
Cd—N32.2076 (13)C68—H68A0.9900
Cd—N22.2093 (13)C68—H68B0.9900
Cd—N42.2145 (13)C69—O41.409 (3)
Cd—N12.2278 (13)C69—C701.477 (3)
Cd—N52.2380 (16)C69—H69A0.9900
C11—N11.360 (2)C69—H69B0.9900
C11—C151.411 (2)C70—O51.413 (3)
C11—C121.442 (2)C70—H70A0.9900
C12—C131.356 (2)C70—H70B0.9900
C12—H120.9500C71—O51.433 (3)
C13—C141.445 (2)C71—C721.485 (3)
C13—H130.9500C71—H71A0.9900
C14—N11.362 (2)C71—H71B0.9900
C14—C451.414 (2)C72—O61.419 (2)
C15—C211.402 (2)C72—H72A0.9900
C15—C1511.497 (2)C72—H72B0.9900
C21—N21.365 (2)C151—C1521.379 (2)
C21—C221.441 (2)C151—C1561.387 (2)
C22—C231.347 (2)C152—C1531.389 (2)
C22—H220.9500C152—H1520.9500
C23—C241.448 (2)C153—C1541.361 (3)
C23—H230.9500C153—H1530.9500
C24—N21.3626 (19)C154—C1551.367 (3)
C24—C251.398 (2)C154—H1540.9500
C25—C311.413 (2)C156—C1551.385 (3)
C25—C2511.495 (2)C156—H1560.9500
C31—N31.3623 (19)C155—H1550.9500
C31—C321.441 (2)C251—C2521.379 (2)
C32—C331.356 (2)C251—C2561.379 (2)
C32—H320.9500C252—C2531.378 (3)
C33—C341.441 (2)C252—H2520.9500
C33—H330.9500C253—C2541.372 (3)
C34—N31.3641 (19)C253—H2530.9500
C34—C351.418 (2)C254—C2551.365 (3)
C35—C411.410 (2)C254—H2540.9500
C35—C3511.498 (2)C255—C2561.392 (2)
C41—N41.365 (2)C255—H2550.9500
C41—C421.448 (2)C256—H2560.9500
C42—C431.346 (2)C351—C3521.383 (2)
C42—H420.9500C351—C3561.386 (2)
C43—C441.444 (2)C352—C3531.389 (2)
C43—H430.9500C352—H3520.9500
C44—N41.365 (2)C353—C3541.372 (3)
C44—C451.405 (2)C353—H3530.9500
C45—C4511.493 (2)C354—C3551.368 (3)
C61—O11.412 (2)C354—H3540.9500
C61—C621.482 (3)C355—C3561.389 (3)
C61—H61A0.9900C355—H3550.9500
C61—H61B0.9900C356—H3560.9500
C62—O61.423 (2)C451—C4521.378 (3)
C62—H62A0.9900C451—C4561.390 (3)
C62—H62B0.9900C452—C4531.408 (3)
C63—O11.425 (2)C452—H4520.9500
C63—C641.492 (3)C453—C4541.357 (4)
C63—H63A0.9900C453—H4530.9500
C63—H63B0.9900C454—C4551.358 (4)
C64—O21.424 (2)C454—H4540.9500
C64—H64A0.9900C455—C4561.375 (3)
C64—H64B0.9900C455—H4550.9500
C65—O21.434 (2)C456—H4560.9500
C65—C661.496 (3)N5—N61.176 (2)
C65—H65A0.9900N6—N71.163 (2)
C65—H65B0.9900N7—Na2.491 (2)
C66—O31.414 (2)Na—O12.5248 (14)
C66—H66A0.9900Na—O2i2.5400 (14)
C66—H66B0.9900Na—O32.5523 (14)
C67—O31.425 (2)Na—O42.6076 (15)
C67—C681.477 (3)Na—O62.6570 (15)
C67—H67A0.9900Na—O52.8765 (17)
C67—H67B0.9900Na—O23.0015 (15)
C68—O41.417 (2)O2—Nai2.5400 (14)
N3—Cd—N284.58 (5)O6—C72—H72B110.2
N3—Cd—N483.62 (5)C71—C72—H72B110.2
N2—Cd—N4140.58 (5)H72A—C72—H72B108.5
N3—Cd—N1142.01 (5)C152—C151—C156118.53 (16)
N2—Cd—N182.88 (5)C152—C151—C15120.20 (15)
N4—Cd—N183.71 (5)C156—C151—C15121.27 (15)
N3—Cd—N5104.25 (6)C151—C152—C153120.61 (18)
N2—Cd—N5106.81 (6)C151—C152—H152119.7
N4—Cd—N5112.54 (6)C153—C152—H152119.7
N1—Cd—N5113.69 (6)C154—C153—C152119.9 (2)
N1—C11—C15125.56 (14)C154—C153—H153120.0
N1—C11—C12109.12 (14)C152—C153—H153120.0
C15—C11—C12125.33 (14)C153—C154—C155120.55 (19)
C13—C12—C11106.93 (14)C153—C154—H154119.7
C13—C12—H12126.5C155—C154—H154119.7
C11—C12—H12126.5C155—C156—C151120.50 (19)
C12—C13—C14107.16 (14)C155—C156—H156119.7
C12—C13—H13126.4C151—C156—H156119.7
C14—C13—H13126.4C154—C155—C156119.85 (19)
N1—C14—C45125.20 (15)C154—C155—H155120.1
N1—C14—C13108.75 (14)C156—C155—H155120.1
C45—C14—C13126.05 (15)C252—C251—C256118.81 (16)
C21—C15—C11126.58 (14)C252—C251—C25120.04 (15)
C21—C15—C151116.55 (13)C256—C251—C25121.13 (15)
C11—C15—C151116.86 (14)C253—C252—C251120.48 (19)
N2—C21—C15125.71 (14)C253—C252—H252119.8
N2—C21—C22108.92 (14)C251—C252—H252119.8
C15—C21—C22125.35 (14)C254—C253—C252120.7 (2)
C23—C22—C21107.13 (14)C254—C253—H253119.7
C23—C22—H22126.4C252—C253—H253119.7
C21—C22—H22126.4C255—C254—C253119.36 (18)
C22—C23—C24107.51 (14)C255—C254—H254120.3
C22—C23—H23126.2C253—C254—H254120.3
C24—C23—H23126.2C254—C255—C256120.36 (18)
N2—C24—C25125.85 (14)C254—C255—H255119.8
N2—C24—C23108.43 (14)C256—C255—H255119.8
C25—C24—C23125.70 (14)C251—C256—C255120.29 (18)
C24—C25—C31127.32 (14)C251—C256—H256119.9
C24—C25—C251115.96 (13)C255—C256—H256119.9
C31—C25—C251116.71 (14)C352—C351—C356117.90 (15)
N3—C31—C25125.72 (14)C352—C351—C35121.20 (15)
N3—C31—C32108.70 (13)C356—C351—C35120.90 (15)
C25—C31—C32125.33 (14)C351—C352—C353120.83 (18)
C33—C32—C31107.21 (14)C351—C352—H352119.6
C33—C32—H32126.4C353—C352—H352119.6
C31—C32—H32126.4C354—C353—C352120.04 (19)
C32—C33—C34107.18 (14)C354—C353—H353120.0
C32—C33—H33126.4C352—C353—H353120.0
C34—C33—H33126.4C355—C354—C353120.28 (18)
N3—C34—C35125.46 (14)C355—C354—H354119.9
N3—C34—C33108.69 (13)C353—C354—H354119.9
C35—C34—C33125.78 (14)C354—C355—C356119.5 (2)
C41—C35—C34126.39 (14)C354—C355—H355120.3
C41—C35—C351117.37 (13)C356—C355—H355120.3
C34—C35—C351116.22 (14)C351—C356—C355121.45 (18)
N4—C41—C35125.85 (14)C351—C356—H356119.3
N4—C41—C42108.38 (14)C355—C356—H356119.3
C35—C41—C42125.75 (14)C452—C451—C456118.98 (18)
C43—C42—C41107.49 (14)C452—C451—C45120.86 (18)
C43—C42—H42126.3C456—C451—C45120.12 (18)
C41—C42—H42126.3C451—C452—C453119.4 (2)
C42—C43—C44107.31 (14)C451—C452—H452120.3
C42—C43—H43126.3C453—C452—H452120.3
C44—C43—H43126.3C454—C453—C452120.3 (2)
N4—C44—C45125.71 (14)C454—C453—H453119.9
N4—C44—C43108.69 (14)C452—C453—H453119.9
C45—C44—C43125.54 (14)C453—C454—C455120.5 (2)
C44—C45—C14127.44 (15)C453—C454—H454119.8
C44—C45—C451116.95 (14)C455—C454—H454119.8
C14—C45—C451115.61 (14)C454—C455—C456120.4 (2)
O1—C61—C62109.22 (16)C454—C455—H455119.8
O1—C61—H61A109.8C456—C455—H455119.8
C62—C61—H61A109.8C455—C456—C451120.5 (2)
O1—C61—H61B109.8C455—C456—H456119.8
C62—C61—H61B109.8C451—C456—H456119.8
H61A—C61—H61B108.3C11—N1—C14108.04 (13)
O6—C62—C61108.16 (16)C11—N1—Cd124.64 (10)
O6—C62—H62A110.1C14—N1—Cd123.68 (11)
C61—C62—H62A110.1C24—N2—C21108.01 (13)
O6—C62—H62B110.1C24—N2—Cd123.66 (10)
C61—C62—H62B110.1C21—N2—Cd125.06 (10)
H62A—C62—H62B108.4C31—N3—C34108.21 (13)
O1—C63—C64108.58 (15)C31—N3—Cd124.20 (10)
O1—C63—H63A110.0C34—N3—Cd126.78 (10)
C64—C63—H63A110.0C41—N4—C44108.13 (13)
O1—C63—H63B110.0C41—N4—Cd125.23 (11)
C64—C63—H63B110.0C44—N4—Cd123.33 (11)
H63A—C63—H63B108.4N6—N5—Cd127.13 (14)
O2—C64—C63109.03 (15)N7—N6—N5177.1 (2)
O2—C64—H64A109.9N6—N7—Na126.76 (14)
C63—C64—H64A109.9N7—Na—O175.73 (6)
O2—C64—H64B109.9N7—Na—O2i160.77 (7)
C63—C64—H64B109.9O1—Na—O2i87.25 (5)
H64A—C64—H64B108.3N7—Na—O379.92 (6)
O2—C65—C66112.97 (16)O1—Na—O3115.42 (5)
O2—C65—H65A109.0O2i—Na—O399.95 (5)
C66—C65—H65A109.0N7—Na—O485.99 (6)
O2—C65—H65B109.0O1—Na—O4161.06 (5)
C66—C65—H65B109.0O2i—Na—O4111.57 (5)
H65A—C65—H65B107.8O3—Na—O465.03 (5)
O3—C66—C65109.27 (16)N7—Na—O690.76 (6)
O3—C66—H66A109.8O1—Na—O663.21 (4)
C65—C66—H66A109.8O2i—Na—O689.42 (5)
O3—C66—H66B109.8O3—Na—O6170.52 (5)
C65—C66—H66B109.8O4—Na—O6112.92 (5)
H66A—C66—H66B108.3N7—Na—O5114.50 (7)
O3—C67—C68108.84 (17)O1—Na—O5123.73 (5)
O3—C67—H67A109.9O2i—Na—O582.30 (5)
C68—C67—H67A109.9O3—Na—O5120.83 (5)
O3—C67—H67B109.9O4—Na—O559.76 (5)
C68—C67—H67B109.9O6—Na—O561.56 (5)
H67A—C67—H67B108.3N7—Na—O292.99 (6)
O4—C68—C67108.21 (16)O1—Na—O260.99 (4)
O4—C68—H68A110.1O2i—Na—O270.60 (5)
C67—C68—H68A110.1O3—Na—O261.77 (4)
O4—C68—H68B110.1O4—Na—O2126.07 (5)
C67—C68—H68B110.1O6—Na—O2121.01 (4)
H68A—C68—H68B108.4O5—Na—O2152.50 (5)
O4—C69—C70108.55 (18)C61—O1—C63112.76 (14)
O4—C69—H69A110.0C61—O1—Na120.34 (11)
C70—C69—H69A110.0C63—O1—Na124.29 (10)
O4—C69—H69B110.0C64—O2—C65112.14 (14)
C70—C69—H69B110.0C64—O2—Nai117.33 (11)
H69A—C69—H69B108.4C65—O2—Nai108.86 (11)
O5—C70—C69108.5 (2)C64—O2—Na101.84 (10)
O5—C70—H70A110.0C65—O2—Na106.55 (10)
C69—C70—H70A110.0Nai—O2—Na109.40 (5)
O5—C70—H70B110.0C72—O6—C62112.94 (16)
C69—C70—H70B110.0C72—O6—Na112.55 (13)
H70A—C70—H70B108.4C62—O6—Na105.81 (10)
O5—C71—C72111.80 (19)C66—O3—C67111.37 (15)
O5—C71—H71A109.3C66—O3—Na112.88 (11)
C72—C71—H71A109.3C67—O3—Na109.29 (11)
O5—C71—H71B109.3C69—O4—C68111.87 (16)
C72—C71—H71B109.3C69—O4—Na122.69 (13)
H71A—C71—H71B107.9C68—O4—Na114.65 (11)
O6—C72—C71107.75 (18)C70—O5—C71112.78 (18)
O6—C72—H72A110.2C70—O5—Na110.22 (13)
C71—C72—H72A110.2C71—O5—Na110.93 (12)
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2, Cg3 and Cg11 are the centroids of the N1/C11–C14, N2/C21–C24, N3/C31–C34 and C351–C356 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C62—H62A···N60.992.513.303 (3)137
C63—H63B···O3i0.992.563.489 (2)156
C65—H65B···O6i0.992.473.257 (2)136
C62—H62B···Cg10.992.903.555 (2)124
C63—H63A···Cg11ii0.992.753.662 (2)154
C71—H71A···Cg3iii0.992.883.535 (2)124
C353—H353···Cg2iv0.952.623.459 (2)147
C454—H454···Cg11iii0.952.823.697 (3)153
Symmetry codes: (i) x+1, y+1, z; (ii) x1, y, z; (iii) x3/2, y1/2, z3/2; (iv) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Cd2Na2(N3)2(C44H28N4)2(C12H24O6)2]
Mr2108.90
Crystal system, space groupMonoclinic, P21/n
Temperature (K)180
a, b, c (Å)11.4175 (3), 19.5363 (4), 22.6086 (6)
β (°) 102.683 (2)
V3)4919.9 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.51
Crystal size (mm)0.48 × 0.42 × 0.28
Data collection
DiffractometerOxford Diffraction Xcalibur (Sapphire1)
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.791, 0.870
No. of measured, independent and
observed [I > 2σ(I)] reflections
44385, 12338, 9493
Rint0.030
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.071, 1.02
No. of reflections12338
No. of parameters640
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.54, 0.39

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 2012).

Hydrogen-bond geometry (Å, º) top
Cg1, Cg2, Cg3 and Cg11 are the centroids of the N1/C11–C14, N2/C21–C24, N3/C31–C34 and C351–C356 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C62—H62A···N60.992.513.303 (3)137.0
C63—H63B···O3i0.992.563.489 (2)156.0
C65—H65B···O6i0.992.473.257 (2)136.0
C62—H62B···Cg10.992.903.555 (2)124.0
C63—H63A···Cg11ii0.992.753.662 (2)154.0
C71—H71A···Cg3iii0.992.883.535 (2)124.0
C353—H353···Cg2iv0.952.623.459 (2)147.0
C454—H454···Cg11iii0.952.823.697 (3)153.0
Symmetry codes: (i) x+1, y+1, z; (ii) x1, y, z; (iii) x3/2, y1/2, z3/2; (iv) x+1, y, z.
 

Acknowledgements

The authors gratefully acknowledge financial support from the Ministry of Higher Education and Scientific Research of Tunisia.

References

First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationByrn, M. P., Curtis, C. J., Goldberg, I., Hsiou, Y., Khan, S. I., Sawin, P. A., Tendick, S. K. & Strouse, C. E. (1991). J. Am. Chem. Soc. 113, 6549–6557.  CSD CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJentzen, W., Song, X. & Shelnutt, J. A. (1997). J. Phys. Chem. B, 101, 1684–1699.  CrossRef CAS Web of Science Google Scholar
First citationLiu, J.-J., He, X., Shao, M. & Li, M.-X. (2009). Inorg. Chem. Commun. 12, 972–974.  Web of Science CSD CrossRef CAS Google Scholar
First citationMansour, A., Belkhiria, M. S., Daran, J.-C. & Nasri, H. (2010). Acta Cryst. E66, m509–m510.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrystAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationRodesiler, P. F., Griffith, E. A. H., Charles, N. G., Lebioda, L. & Amma, E. L. (1985). Inorg. Chem. 24, 4595-4600.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 12| December 2012| Pages m1557-m1558
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds