organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(4-Methyl­phen­yl)-2-oxo­ethyl 3-bromo­benzoate

aDepartment of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan, and bDepartment of Chemistry, Adam Mickiewicz University, Grunwaldzka 6, 60-780 Poznań, Poland
*Correspondence e-mail: imtiaz_qau@yahoo.com

(Received 9 November 2012; accepted 15 November 2012; online 28 November 2012)

The mol­ecule of the title compound, C16H13BrO3, is built of two approximately planar fragments, viz. 3-bromo­benzoate [maximum deviation = 0.055 (2) Å and 2-oxo-2-p-tolyl­ethyl [maximum deviation = 0.042 (2) Å], inclined by 46.51 (7)°. In the crystal, weak C—H⋯O hydrogen bonds and Br⋯Br contacts [3.6491 (7) Å] connect the mol­ecules into infinite layers parallel to (-221).

Related literature

For the structures of similar compounds, see: Fun, Arshad et al. (2011[Fun, H.-K., Arshad, S., Garudachari, B., Isloor, A. M. & Shivananda, K. N. (2011). Acta Cryst. E67, o2836.]); Fun, Loh et al. (2011[Fun, H.-K., Loh, W.-S., Garudachari, B., Isloor, A. M. & Satyanarayan, M. N. (2011). Acta Cryst. E67, o1597.]); Fun, Ooi et al. (2011[Fun, H.-K., Ooi, C. W., Garudachari, B., Isloor, A. M. & Satyanarayan, M. N. (2011). Acta Cryst. E67, o3119.]); Fun, Shahani et al. (2011[Fun, H.-K., Shahani, T., Garudachari, B., Isloor, A. M. & Satyanarayan, M. N. (2011). Acta Cryst. E67, o3154.]).

[Scheme 1]

Experimental

Crystal data
  • C16H13BrO3

  • Mr = 333.17

  • Triclinic, [P \overline 1]

  • a = 4.7977 (3) Å

  • b = 10.9951 (7) Å

  • c = 14.1645 (8) Å

  • α = 74.829 (5)°

  • β = 87.758 (5)°

  • γ = 79.327 (5)°

  • V = 708.64 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.90 mm−1

  • T = 295 K

  • 0.25 × 0.2 × 0.08 mm

Data collection
  • Agilent Xcalibur Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.335, Tmax = 1.000

  • 7924 measured reflections

  • 2501 independent reflections

  • 1768 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.106

  • S = 1.05

  • 2501 reflections

  • 192 parameters

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O10i 0.93 2.44 3.198 (4) 139
C9—H92⋯O7ii 0.97 2.56 3.406 (4) 146
Symmetry codes: (i) -x, -y, -z+1; (ii) -x+1, -y+1, -z+1.

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Keto esters, an important class of versatile intermediates, are extensively used in agrochemical, pharmaceutical, and dyestuff industries. They are also useful organic building blocks for the synthesis of complex natural products and are frequently employed synthons in organic synthesis, especially in heterocyclic synthesis. Prompted by literature findings, we herein report the synthesis of 2-(4-methylphenyl)-2-oxoethyl 3-bromobenzoate which can be used as an effective synthon in heterocyclic chemistry. The formation of keto ester (1) was confirmed by the changes in the spectral properties such as IR absorptions, 1H and 13C NMR signals for dominant functional groups. The conformation of molecule (1) can be described by the dihedral angle between two approximately planar fragments: 3-bromobenzoate (maximum deviation from the least-squares plane is 0.055 (2) Å) and 2-oxo-2-p-tolylethyl (0.042 (2) Å). In the crystal, this angle is 46.51 (7) ° (Fig. 1). In similarly substituted (para-meta) analogues, this angle was much smaller: in 2-(4-fluorophenyl)-2-oxoethyl 3-(trifluoromethyl)benzoate (Fun, Arshad et al., 2011) this angle is 20.34 (9)°, in 2-(4-chlorophenyl)-2-oxoethyl 3-(trifluoromethyl)benzoate (Fun, Loh et al., 2011) - 15.50 (8)°; on the other hand, this angle was larger in some other similar compounds: 66.66 (8)° in 2-(4-bromophenyl)-2-oxoethyl 2-methylbenzoate (Fun, Ooi et al., 2011) and 80.70 (7)° in 2-(4-bromophenyl)-2-oxoethyl 4-methylbenzoate (Fun, Shahani et al., 2011).

Weak but directional C—H···O hydrogen bonds and C—Br···Br(-1 - x,1 - y,-z) halogen interactions (Br···Br 3.6491 (7) Å, C—Br···Br 164.37 (10) °) connect molecules into layers approximately parallel to (-221) plane (Fig. 2); these planes are interacting with one another by means of weak C—H···O contacts and van der Waals interactions.

Related literature top

For the structures of similar compounds, see: Fun, Arshad et al. (2011); Fun, Loh et al. (2011); Fun, Ooi et al. (2011); Fun, Shahani et al. (2011).

Experimental top

2-(4-Methylphenyl)-2-oxoethyl 3-bromobenzoate (1) was synthesized by treating 3-bromobenzoic acid (0.01 mol) with the solution of 2-bromo-1-p-tolylethanone (0.01 mol) in N,N-dimethylformamide (DMF) using triethylamine (TEA) as a catalyst at room temperature for 2 h. Yield: 87%; m.p 96–97°C; Rf: 0.27 (n-hexane: ethyl acetate, 9: 1); IR (neat, cm-1): 3034 (Csp2-H), 2924, 2853 (Csp3-H), 1728 (C=Oester), 1685 (C=Oketo), 1585, 1561 (C=C), 1230 (C—O); 1H NMR (300 MHz, CDCl3): δ 8.08–8.04 (m, 1H, Ar—H), 7.88 (d, 2H, J = 8.4 Hz, Ar—H), 7.72–7.68 (m, 1H, Ar—H), 7.45–7.36 (m, 2H, Ar—H), 7.35–7.28 (m, 2H, Ar—H), 5.59 (s, 2H, OCH2), 2.44 (s, 3H, CH3); 13C NMR (75 MHz, CDCl3): δ 191.33, 165.44, 145.06, 134.42, 133.02, 132.04, 131.61, 131.21, 129.64, 127.94, 127.30, 122.07, 66.65, 21.85.

Crystals were obtained by recrystallization from ethyl acetate.

Refinement top

Hydrogen atoms were placed geometrically and refined as riding model with isotropic thermal parameters.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Anisotropic ellipsoid representation of 1 together with atom labelling scheme. The ellipsoids are drawn at 50% probability level, hydrogen atoms are depicted as spheres with arbitrary radii.
[Figure 2] Fig. 2. The layer of the molecules connected by weak C—H···O and Br···Br interactions
2-(4-Methylphenyl)-2-oxoethyl 3-bromobenzoate top
Crystal data top
C16H13BrO3Z = 2
Mr = 333.17F(000) = 336
Triclinic, P1Dx = 1.561 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 4.7977 (3) ÅCell parameters from 2186 reflections
b = 10.9951 (7) Åθ = 3.0–29.0°
c = 14.1645 (8) ŵ = 2.90 mm1
α = 74.829 (5)°T = 295 K
β = 87.758 (5)°Plate, colourless
γ = 79.327 (5)°0.25 × 0.2 × 0.08 mm
V = 708.64 (7) Å3
Data collection top
Agilent Xcalibur Eos
diffractometer
2501 independent reflections
Radiation source: Enhance (Mo) X-ray Source1768 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
Detector resolution: 16.1544 pixels mm-1θmax = 25.0°, θmin = 3.0°
ω–scanh = 55
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 1213
Tmin = 0.335, Tmax = 1.000l = 1616
7924 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.053P)2 + 0.0904P]
where P = (Fo2 + 2Fc2)/3
2501 reflections(Δ/σ)max = 0.001
192 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.42 e Å3
Crystal data top
C16H13BrO3γ = 79.327 (5)°
Mr = 333.17V = 708.64 (7) Å3
Triclinic, P1Z = 2
a = 4.7977 (3) ÅMo Kα radiation
b = 10.9951 (7) ŵ = 2.90 mm1
c = 14.1645 (8) ÅT = 295 K
α = 74.829 (5)°0.25 × 0.2 × 0.08 mm
β = 87.758 (5)°
Data collection top
Agilent Xcalibur Eos
diffractometer
2501 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
1768 reflections with I > 2σ(I)
Tmin = 0.335, Tmax = 1.000Rint = 0.026
7924 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.106H-atom parameters constrained
S = 1.05Δρmax = 0.44 e Å3
2501 reflectionsΔρmin = 0.42 e Å3
192 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0123 (5)0.2958 (2)0.3969 (2)0.0458 (6)
C20.0749 (6)0.3618 (3)0.3014 (2)0.0526 (7)
H20.00980.43800.27440.049 (8)*
C30.2350 (6)0.3141 (3)0.2459 (2)0.0600 (8)
Br30.32035 (10)0.40451 (4)0.11376 (3)0.1043 (2)
C40.3331 (7)0.2016 (3)0.2848 (3)0.0694 (9)
H40.44060.17010.24670.079 (10)*
C50.2713 (7)0.1369 (3)0.3799 (3)0.0715 (9)
H50.33830.06120.40670.088 (12)*
C60.1099 (6)0.1829 (3)0.4368 (2)0.0576 (7)
H60.06740.13810.50150.069 (9)*
C70.1605 (6)0.3501 (3)0.4556 (2)0.0473 (7)
O70.2638 (5)0.4429 (2)0.42375 (15)0.0679 (6)
O80.1859 (5)0.2813 (2)0.54790 (14)0.0658 (6)
C90.3630 (7)0.3139 (3)0.6129 (2)0.0609 (8)
H910.24730.35390.65810.081 (11)*
H920.47750.37390.57600.071 (10)*
C100.5507 (6)0.1933 (3)0.6681 (2)0.0524 (7)
O100.5558 (5)0.0932 (2)0.64683 (19)0.0828 (7)
C110.7323 (6)0.1995 (3)0.74883 (19)0.0492 (7)
C120.9153 (7)0.0901 (3)0.7958 (2)0.0662 (8)
H120.92380.01540.77580.084 (11)*
C131.0847 (7)0.0896 (3)0.8713 (3)0.0729 (9)
H131.20530.01430.90220.090 (11)*
C141.0804 (6)0.1984 (3)0.9026 (2)0.0621 (8)
C1411.2672 (8)0.1975 (4)0.9864 (3)0.0861 (11)
H14A1.26300.28390.98990.129*
H14B1.45830.15880.97600.129*
H14C1.19880.14931.04660.129*
C150.8999 (7)0.3084 (3)0.8553 (2)0.0625 (8)
H150.89350.38310.87510.087 (12)*
C160.7272 (6)0.3098 (3)0.7786 (2)0.0567 (8)
H160.60780.38520.74710.057 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0446 (15)0.0450 (15)0.0505 (16)0.0089 (12)0.0063 (12)0.0156 (12)
C20.0567 (17)0.0521 (17)0.0504 (16)0.0082 (13)0.0129 (13)0.0148 (13)
C30.0624 (19)0.0616 (19)0.0565 (18)0.0044 (15)0.0214 (14)0.0239 (15)
Br30.1370 (4)0.1121 (4)0.0632 (3)0.0071 (3)0.0476 (2)0.0254 (2)
C40.063 (2)0.070 (2)0.086 (2)0.0042 (16)0.0257 (17)0.0422 (19)
C50.076 (2)0.0570 (19)0.089 (3)0.0188 (16)0.0179 (19)0.0251 (18)
C60.0611 (19)0.0512 (17)0.0621 (19)0.0100 (14)0.0132 (14)0.0155 (15)
C70.0496 (16)0.0497 (16)0.0443 (15)0.0114 (13)0.0086 (12)0.0124 (13)
O70.0873 (16)0.0654 (13)0.0551 (12)0.0380 (12)0.0191 (11)0.0034 (10)
O80.0865 (15)0.0708 (13)0.0456 (12)0.0411 (11)0.0199 (10)0.0032 (10)
C90.077 (2)0.0640 (18)0.0477 (17)0.0278 (16)0.0182 (16)0.0116 (15)
C100.0626 (18)0.0583 (18)0.0428 (15)0.0261 (14)0.0009 (13)0.0140 (13)
O100.1036 (18)0.0669 (14)0.0898 (17)0.0245 (13)0.0233 (14)0.0314 (13)
C110.0514 (17)0.0560 (16)0.0409 (15)0.0174 (13)0.0016 (12)0.0080 (13)
C120.067 (2)0.0602 (19)0.071 (2)0.0069 (15)0.0087 (17)0.0184 (16)
C130.061 (2)0.074 (2)0.075 (2)0.0002 (17)0.0183 (17)0.0108 (18)
C140.0527 (18)0.085 (2)0.0456 (16)0.0219 (16)0.0094 (13)0.0029 (16)
C1410.072 (2)0.114 (3)0.068 (2)0.025 (2)0.0261 (18)0.006 (2)
C150.071 (2)0.071 (2)0.0503 (17)0.0276 (16)0.0097 (15)0.0121 (15)
C160.069 (2)0.0532 (17)0.0463 (16)0.0164 (14)0.0158 (14)0.0035 (14)
Geometric parameters (Å, º) top
C1—C21.372 (4)C9—H920.9700
C1—C61.382 (4)C10—O101.210 (4)
C1—C71.494 (4)C10—C111.488 (4)
C2—C31.376 (4)C11—C121.378 (4)
C2—H20.9300C11—C161.379 (4)
C3—C41.376 (5)C12—C131.367 (5)
C3—Br31.895 (3)C12—H120.9300
C4—C51.364 (5)C13—C141.376 (5)
C4—H40.9300C13—H130.9300
C5—C61.382 (4)C14—C151.377 (4)
C5—H50.9300C14—C1411.512 (4)
C6—H60.9300C141—H14A0.9600
C7—O71.191 (3)C141—H14B0.9600
C7—O81.325 (3)C141—H14C0.9600
O8—C91.430 (3)C15—C161.387 (4)
C9—C101.501 (4)C15—H150.9300
C9—H910.9700C16—H160.9300
C2—C1—C6120.2 (3)O10—C10—C11120.7 (3)
C2—C1—C7118.2 (2)O10—C10—C9120.7 (3)
C6—C1—C7121.5 (2)C11—C10—C9118.6 (3)
C1—C2—C3119.4 (3)C12—C11—C16118.4 (3)
C1—C2—H2120.3C12—C11—C10118.4 (3)
C3—C2—H2120.3C16—C11—C10123.2 (3)
C4—C3—C2120.9 (3)C13—C12—C11121.0 (3)
C4—C3—Br3119.6 (2)C13—C12—H12119.5
C2—C3—Br3119.5 (2)C11—C12—H12119.5
C5—C4—C3119.4 (3)C12—C13—C14121.4 (3)
C5—C4—H4120.3C12—C13—H13119.3
C3—C4—H4120.3C14—C13—H13119.3
C4—C5—C6120.6 (3)C13—C14—C15117.9 (3)
C4—C5—H5119.7C13—C14—C141121.3 (3)
C6—C5—H5119.7C15—C14—C141120.9 (3)
C1—C6—C5119.5 (3)C14—C141—H14A109.5
C1—C6—H6120.3C14—C141—H14B109.5
C5—C6—H6120.3H14A—C141—H14B109.5
O7—C7—O8124.1 (3)C14—C141—H14C109.5
O7—C7—C1124.5 (2)H14A—C141—H14C109.5
O8—C7—C1111.3 (2)H14B—C141—H14C109.5
C7—O8—C9118.8 (2)C14—C15—C16121.2 (3)
O8—C9—C10108.3 (2)C14—C15—H15119.4
O8—C9—H91110.0C16—C15—H15119.4
C10—C9—H91110.0C11—C16—C15120.1 (3)
O8—C9—H92110.0C11—C16—H16119.9
C10—C9—H92110.0C15—C16—H16119.9
H91—C9—H92108.4
C6—C1—C2—C30.2 (4)O8—C9—C10—O107.5 (4)
C7—C1—C2—C3179.7 (2)O8—C9—C10—C11173.0 (2)
C1—C2—C3—C40.1 (4)O10—C10—C11—C122.9 (4)
C1—C2—C3—Br3179.7 (2)C9—C10—C11—C12176.6 (3)
C2—C3—C4—C50.2 (5)O10—C10—C11—C16177.5 (3)
Br3—C3—C4—C5180.0 (2)C9—C10—C11—C163.1 (4)
C3—C4—C5—C60.5 (5)C16—C11—C12—C131.2 (5)
C2—C1—C6—C50.1 (4)C10—C11—C12—C13179.2 (3)
C7—C1—C6—C5179.4 (3)C11—C12—C13—C140.5 (5)
C4—C5—C6—C10.4 (5)C12—C13—C14—C150.1 (5)
C2—C1—C7—O75.0 (4)C12—C13—C14—C141179.8 (3)
C6—C1—C7—O7175.5 (3)C13—C14—C15—C160.1 (5)
C2—C1—C7—O8175.4 (2)C141—C14—C15—C16179.8 (3)
C6—C1—C7—O84.1 (4)C12—C11—C16—C151.2 (4)
O7—C7—O8—C94.4 (4)C10—C11—C16—C15179.2 (3)
C1—C7—O8—C9175.2 (2)C14—C15—C16—C110.5 (5)
C7—O8—C9—C10132.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O10i0.932.443.198 (4)139
C9—H92···O7ii0.972.563.406 (4)146
Symmetry codes: (i) x, y, z+1; (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC16H13BrO3
Mr333.17
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)4.7977 (3), 10.9951 (7), 14.1645 (8)
α, β, γ (°)74.829 (5), 87.758 (5), 79.327 (5)
V3)708.64 (7)
Z2
Radiation typeMo Kα
µ (mm1)2.90
Crystal size (mm)0.25 × 0.2 × 0.08
Data collection
DiffractometerAgilent Xcalibur Eos
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.335, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
7924, 2501, 1768
Rint0.026
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.106, 1.05
No. of reflections2501
No. of parameters192
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.42

Computer programs: CrysAlis PRO (Agilent, 2010), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O10i0.932.443.198 (4)139.1
C9—H92···O7ii0.972.563.406 (4)146.4
Symmetry codes: (i) x, y, z+1; (ii) x+1, y+1, z+1.
 

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Arshad, S., Garudachari, B., Isloor, A. M. & Shivananda, K. N. (2011). Acta Cryst. E67, o2836.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Loh, W.-S., Garudachari, B., Isloor, A. M. & Satyanarayan, M. N. (2011). Acta Cryst. E67, o1597.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Ooi, C. W., Garudachari, B., Isloor, A. M. & Satyanarayan, M. N. (2011). Acta Cryst. E67, o3119.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Shahani, T., Garudachari, B., Isloor, A. M. & Satyanarayan, M. N. (2011). Acta Cryst. E67, o3154.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds