metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

trans-Bis(benzyl­di­phenyl­phosphane-κP)di­chloridoplatinum(II)

aResearch Centre for Synthesis and Catalysis, Department of Chemistry, University of Johannesburg (APK Campus), PO Box 524, Auckland Park, Johannesburg, 2006, South Africa
*Correspondence e-mail: mullera@uj.ac.za

(Received 13 November 2012; accepted 15 November 2012; online 24 November 2012)

In the mononuclear title compound, trans-[PtCl2(C19H17P)2], the slightly distorted square-planar coordination sphere of the PtII atom is occupied by two benzyl­diphenyl­phosphane ligands and two chloride atoms in a mutually trans geometry. The effective cone angles for the two phosphane ligands are 160 and 169°. C—H⋯Cl inter­actions generate infinite long chains along [01-1]. Additional C—H⋯π and ππ stacking interactions [centroid–centroid distance = 4.2499 (15) Å and ring slippage = 2.386 Å] are observed.

Related literature

For reviews of related compounds, see: Spessard & Miessler (1996[Spessard, G. O. & Miessler, G. L. (1996). Organometallic Chemistry, pp. 131-135 Upper Saddle River, New Jersey, USA: Prentice Hall.]); Muller & Meijboom (2010[Muller, A. & Meijboom, R. (2010). Acta Cryst. E66, m1420.]). For background to cone angles, see: Tolman (1977[Tolman, C. A. (1977). Chem. Rev. 77, 313-348.]); Otto (2001[Otto, S. (2001). Acta Cryst. C57, 793-795.]). For the cis isomer of the title compound, see: Davis & Meijboom (2011[Davis, W. L. & Meijboom, R. (2011). Acta Cryst. E67, m1800.]).

[Scheme 1]

Experimental

Crystal data
  • [PtCl2(C19H17P)2]

  • Mr = 818.58

  • Triclinic, [P \overline 1]

  • a = 9.5585 (12) Å

  • b = 13.4135 (17) Å

  • c = 14.7553 (18) Å

  • α = 66.307 (2)°

  • β = 73.147 (3)°

  • γ = 88.034 (3)°

  • V = 1650.7 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 4.54 mm−1

  • T = 100 K

  • 0.24 × 0.1 × 0.08 mm

Data collection
  • Bruker APEX DUO 4K CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.409, Tmax = 0.713

  • 33198 measured reflections

  • 8253 independent reflections

  • 7779 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.018

  • wR(F2) = 0.039

  • S = 1.03

  • 8253 reflections

  • 388 parameters

  • H-atom parameters constrained

  • Δρmax = 0.65 e Å−3

  • Δρmin = −0.54 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2, Cg3 and Cg4 are the centroids of the C33—C38, C2—C7, C8—C13 and C27—C32 rings, repectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯Cl2i 0.95 2.85 3.532 (2) 130
C26—H26⋯Cl2 0.95 2.72 3.555 (2) 147
C29—H29⋯Cl1ii 0.95 2.93 3.731 (2) 143
C16—H16⋯Cg1ii 0.95 2.73 3.443 (3) 132
C23—H23⋯Cg2iii 0.95 2.63 3.536 (2) 159
C29—H29⋯Cg3ii 0.95 2.99 3.525 (2) 117
C36—H36⋯Cg4iv 0.95 2.77 3.708 (3) 169
Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x+1, -y+1, -z; (iii) -x, -y, -z+1; (iv) x-1, y, z.

Data collection: APEX2 (Bruker, 2011[Bruker (2011). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2008[Bruker (2008). SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and WinGX (Farrugia, 2012)[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.].

Supporting information


Comment top

Transition metal complexes containing phosphine, arsine and stibine ligands are widely being investigated in various fields of organometallic chemistry (Spessard & Miessler, 1996). As part of a systematic investigation (Muller & Meijboom, 2010) involving complexes with the general formula trans/cis-[MX2(L)2] (M = Pt or Pd; X = halogen, Me, Ph; L = Group 15 donor ligand), crystals of the title compound were obtained by reaction of Zeize's salt, K[Pt(η2-ethylene)Cl3], with benzyldiphenylphosphane.

Molecules of the title compound (Fig. 1) crystallizes in the P1 (Z = 2) space group with the Pt atom lying on general positions in the unit cell. Each pair of equivalent ligands is in a mutually trans orientation with only slight distortion observed in the Pt square-planar coordination sphere (An averaged plane formed by the ligand donor atoms reveals that the Pt is displaced 0.1314 (3) Å from it; r.m.s. of fitted atoms = 0.0041 Å). The Pt—P1/P2 distances differ marginally (2.3096 (5) and 2.3155 (5) Å respectively), while the Pt—Cl distances deviates even less (2.3102 (5) and 2.3128 (5) Å respectively). The P—Pt—P and Cl—Pt—Cl angles show similar distortions from linearity (173.556 (18) and 173.220 (18)° respectively). The orientation of the phosphanes is such that they appear eclipsed when viewed along the P—M–P axis with one of the cyclohexcyl substituents from each phosphane almost perpendicular to the metal square-planar coordination plane (C—P—Pt—Cl dihedral angles vary from 83.74 (7) to 89.59 (7) °). To investigate the steric demand of the phosphane ligands their cone angles were calculated using an adaptation of the Tolman cone angle model (Tolman, 1977) where the geometry form the crystal structure determination is used and the metal phosphorus distance adjusted to 2.28 Å (Otto, 2001). Values obtained with this method vary from 160 to 169°. Surprisingly the cis isomer (Davis & Meijboom, 2011) of the title compound, where more crowding of the bulky ligands are expected, have slightly larger cone angle values (calculation results vary from 172 to 177°) which attest to the flexibility of this particular ligands' substituents. Comparing the title compound to structures from literature where the benzyldiphenylphosphane is coordinated to other transition metals, the cone angle values are comparable to the average cone angle value calculated. Data extracted from the Cambridge Structural Database shows an average cone angle of 165° for the phosphane from 27 hits, containing 43 useable observations, with a standard deviation of ±12° and a spread from 140° to 184°.

In the crystal structure several C—H···Cl interactions are observed (see table 1 and Fig. 2) linking molecules in infinite long chains along the [01–1] direction. Additional C—H···π interactions as well as π···π stacking are observed (centroid to centroid distance = 4.2499 (15) Å, ring slippage = 2.386 Å). These are summarized in Table 1 and Fig. 3.

Related literature top

For reviews of related compounds, see: Spessard & Miessler (1996); Muller & Meijboom (2010). For background to cone angles, see: Tolman (1977); Otto (2001). For the cis isomer of the title compound, see: Davis & Meijboom (2011).

Experimental top

Potassium trichloro(ethylene)platinate(II) (10 mg, 0.0271 mmol) and benzyldiphenylphosphane (7.5 mg, 0.0271 mmol) were dissolved seperately in acetone (10 ml) and the latter added drop-wise to the other with stirring at room temperature (10 min). Slow evaporation of the solvent gave colourless crystals of the title compound suitable for a single-crystal X-ray diffraction study. Analytical data: 31P {H} NMR (CDCl3, 161.99 MHz): d = 13.58 (t, 1J(31P-195Pt) = 2308 Hz).

Refinement top

The aromatic and methylene H atoms were placed in geometrically idealized positions (C—H = 0.95–0.99) and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C). The highest residual electron density (< 1 Å3) are within 1 Å from Pt and represent no physical meaning.

Computing details top

Data collection: APEX2 (Bruker, 2011); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT and XPREP (Bruker, 2008); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: publCIF (Westrip, 2010) and WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. A view of the title complex, showing the atom-numbering scheme and 50% probability displacement ellipsoids. Hydrogen atoms have been omitted for clarity.
[Figure 2] Fig. 2. Packing diagram showing only the C—H···Cl interactions (indicated by red dashed lines).
[Figure 3] Fig. 3. Packing diagram showing only the C—H···π interactions as well as π···π stacking (both indicated by red dashed lines).
trans-Bis(benzyldiphenylphosphane-κP)dichloridoplatinum(II) top
Crystal data top
[PtCl2(C19H17P)2]Z = 2
Mr = 818.58F(000) = 808
Triclinic, P1Dx = 1.647 Mg m3
Dm = 1.647 Mg m3
Dm measured by not measured
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.5585 (12) ÅCell parameters from 9225 reflections
b = 13.4135 (17) Åθ = 2.6–28.4°
c = 14.7553 (18) ŵ = 4.54 mm1
α = 66.307 (2)°T = 100 K
β = 73.147 (3)°Needle, colourless
γ = 88.034 (3)°0.24 × 0.1 × 0.08 mm
V = 1650.7 (4) Å3
Data collection top
Bruker APEX DUO 4K CCD
diffractometer
8253 independent reflections
Radiation source: sealed tube7779 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
Detector resolution: 8.4 pixels mm-1θmax = 28.4°, θmin = 1.6°
ϕ and ω scansh = 1212
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
k = 1717
Tmin = 0.409, Tmax = 0.713l = 1919
33198 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.018Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.039H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0157P)2 + 0.6462P]
where P = (Fo2 + 2Fc2)/3
8253 reflections(Δ/σ)max = 0.002
388 parametersΔρmax = 0.65 e Å3
0 restraintsΔρmin = 0.54 e Å3
Crystal data top
[PtCl2(C19H17P)2]γ = 88.034 (3)°
Mr = 818.58V = 1650.7 (4) Å3
Triclinic, P1Z = 2
a = 9.5585 (12) ÅMo Kα radiation
b = 13.4135 (17) ŵ = 4.54 mm1
c = 14.7553 (18) ÅT = 100 K
α = 66.307 (2)°0.24 × 0.1 × 0.08 mm
β = 73.147 (3)°
Data collection top
Bruker APEX DUO 4K CCD
diffractometer
8253 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
7779 reflections with I > 2σ(I)
Tmin = 0.409, Tmax = 0.713Rint = 0.031
33198 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0180 restraints
wR(F2) = 0.039H-atom parameters constrained
S = 1.03Δρmax = 0.65 e Å3
8253 reflectionsΔρmin = 0.54 e Å3
388 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt10.435237 (8)0.254343 (6)0.260155 (5)0.00938 (2)
Cl10.32010 (6)0.39062 (4)0.16068 (4)0.01605 (10)
Cl20.57602 (5)0.12862 (4)0.34467 (4)0.01508 (9)
P10.49965 (6)0.36874 (4)0.32689 (4)0.01070 (10)
P20.39698 (6)0.14486 (4)0.18021 (4)0.01132 (10)
C10.5284 (2)0.30979 (16)0.45596 (14)0.0133 (4)
H1A0.59610.2520.45720.016*
H1B0.5790.36790.46360.016*
C20.3947 (2)0.26114 (16)0.54973 (14)0.0136 (4)
C30.3107 (2)0.32666 (17)0.59474 (16)0.0173 (4)
H30.33070.40390.56110.021*
C40.1986 (2)0.27982 (18)0.68797 (16)0.0196 (4)
H40.14280.3250.71780.023*
C50.1682 (2)0.16662 (18)0.73760 (16)0.0194 (4)
H50.0930.13440.80210.023*
C60.2477 (2)0.10114 (17)0.69279 (16)0.0191 (4)
H60.22570.0240.72610.023*
C70.3599 (2)0.14780 (16)0.59903 (15)0.0163 (4)
H70.4130.10230.56840.02*
C80.3766 (2)0.47250 (15)0.33790 (14)0.0129 (4)
C90.2264 (2)0.44601 (16)0.36676 (15)0.0155 (4)
H90.19060.37790.37250.019*
C100.1284 (3)0.51857 (18)0.38729 (16)0.0206 (5)
H100.02570.50040.40630.025*
C110.1805 (3)0.61791 (18)0.38000 (16)0.0232 (5)
H110.11350.6670.39550.028*
C120.3307 (3)0.64529 (17)0.34999 (17)0.0233 (5)
H120.36640.71350.34430.028*
C130.4290 (3)0.57345 (16)0.32830 (16)0.0178 (4)
H130.53170.59280.3070.021*
C140.6772 (2)0.44094 (15)0.24140 (15)0.0130 (4)
C150.6881 (2)0.50991 (17)0.13829 (16)0.0186 (4)
H150.60280.52050.1160.022*
C160.8220 (3)0.56263 (18)0.06883 (17)0.0220 (5)
H160.82770.61080.00040.026*
C170.9486 (2)0.54559 (18)0.09962 (17)0.0210 (5)
H171.04080.58120.05150.025*
C180.9389 (2)0.47609 (18)0.20123 (17)0.0212 (5)
H181.0250.46410.22250.025*
C190.8044 (2)0.42395 (17)0.27196 (16)0.0182 (4)
H190.7990.37660.34130.022*
C270.5508 (2)0.17383 (16)0.06288 (14)0.0132 (4)
C320.6258 (2)0.09293 (17)0.03745 (16)0.0179 (4)
H320.59790.0180.08270.021*
C310.7414 (2)0.12179 (17)0.05392 (16)0.0192 (4)
H310.79250.06650.07070.023*
C300.7826 (2)0.23148 (17)0.12105 (15)0.0180 (4)
H300.86130.2510.18360.022*
C290.7083 (2)0.31196 (17)0.09620 (15)0.0182 (4)
H290.73540.38670.14220.022*
C280.5946 (2)0.28397 (16)0.00462 (15)0.0169 (4)
H280.54580.33980.01260.02*
C330.2343 (2)0.16194 (15)0.13646 (15)0.0138 (4)
C380.2353 (3)0.15109 (17)0.04602 (17)0.0205 (5)
H380.32390.13980.00280.025*
C370.1054 (3)0.1569 (2)0.01952 (19)0.0282 (5)
H370.10570.14860.04150.034*
C360.0239 (3)0.17476 (18)0.08137 (17)0.0239 (5)
H360.11170.17860.06270.029*
C350.0251 (2)0.18690 (18)0.17016 (17)0.0225 (5)
H350.11350.19960.21250.027*
C340.1039 (2)0.18053 (18)0.19755 (16)0.0198 (4)
H340.10270.1890.25870.024*
C200.3854 (2)0.00427 (15)0.25407 (15)0.0139 (4)
H20A0.38450.04010.20720.017*
H20B0.47520.02230.27580.017*
C210.2533 (2)0.05230 (15)0.34940 (15)0.0133 (4)
C260.2527 (2)0.05270 (17)0.44434 (15)0.0173 (4)
H260.33440.01850.44880.021*
C250.1336 (3)0.10261 (19)0.53223 (16)0.0231 (5)
H250.13450.10270.59650.028*
C240.0128 (2)0.15251 (18)0.52703 (16)0.0203 (4)
H240.06830.18710.58750.024*
C230.0117 (2)0.15134 (17)0.43293 (16)0.0184 (4)
H230.07050.18510.42870.022*
C220.1304 (2)0.10102 (16)0.34484 (15)0.0167 (4)
H220.12790.09970.28050.02*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.00944 (4)0.00964 (4)0.00983 (4)0.00115 (2)0.00353 (3)0.00432 (3)
Cl10.0197 (3)0.0158 (2)0.0176 (2)0.00698 (19)0.0111 (2)0.00844 (18)
Cl20.0158 (2)0.0131 (2)0.0189 (2)0.00403 (18)0.00962 (19)0.00633 (18)
P10.0105 (2)0.0112 (2)0.0106 (2)0.00044 (18)0.00338 (19)0.00455 (18)
P20.0119 (3)0.0115 (2)0.0102 (2)0.00023 (19)0.00265 (19)0.00438 (18)
C10.0133 (10)0.0147 (9)0.0117 (9)0.0004 (8)0.0048 (8)0.0046 (7)
C20.0139 (10)0.0171 (9)0.0105 (8)0.0010 (8)0.0062 (8)0.0046 (7)
C30.0201 (11)0.0181 (10)0.0171 (10)0.0013 (8)0.0070 (9)0.0095 (8)
C40.0183 (11)0.0269 (11)0.0200 (10)0.0054 (9)0.0067 (9)0.0155 (9)
C50.0149 (11)0.0285 (11)0.0134 (9)0.0006 (9)0.0037 (8)0.0074 (8)
C60.0171 (11)0.0179 (10)0.0177 (10)0.0005 (8)0.0052 (9)0.0027 (8)
C70.0122 (10)0.0180 (10)0.0171 (9)0.0033 (8)0.0037 (8)0.0063 (8)
C80.0162 (10)0.0139 (9)0.0099 (8)0.0034 (8)0.0046 (8)0.0060 (7)
C90.0171 (11)0.0163 (9)0.0119 (9)0.0006 (8)0.0028 (8)0.0055 (7)
C100.0186 (11)0.0271 (11)0.0138 (9)0.0069 (9)0.0030 (8)0.0079 (8)
C110.0315 (14)0.0231 (11)0.0164 (10)0.0127 (10)0.0058 (9)0.0112 (9)
C120.0383 (15)0.0157 (10)0.0199 (10)0.0062 (9)0.0118 (10)0.0094 (8)
C130.0223 (12)0.0155 (10)0.0183 (10)0.0008 (8)0.0095 (9)0.0073 (8)
C140.0128 (10)0.0128 (9)0.0139 (9)0.0001 (7)0.0029 (8)0.0066 (7)
C150.0170 (11)0.0198 (10)0.0169 (10)0.0003 (8)0.0065 (8)0.0043 (8)
C160.0220 (12)0.0215 (11)0.0168 (10)0.0037 (9)0.0052 (9)0.0023 (8)
C170.0161 (11)0.0218 (11)0.0203 (10)0.0048 (9)0.0008 (9)0.0078 (9)
C180.0142 (11)0.0262 (11)0.0229 (11)0.0000 (9)0.0067 (9)0.0088 (9)
C190.0173 (11)0.0193 (10)0.0170 (10)0.0009 (8)0.0068 (8)0.0053 (8)
C270.0108 (10)0.0177 (9)0.0109 (8)0.0008 (8)0.0016 (7)0.0068 (7)
C320.0206 (11)0.0139 (9)0.0174 (10)0.0004 (8)0.0040 (9)0.0056 (8)
C310.0199 (12)0.0189 (10)0.0197 (10)0.0030 (9)0.0036 (9)0.0107 (8)
C300.0143 (11)0.0249 (11)0.0128 (9)0.0003 (8)0.0013 (8)0.0073 (8)
C290.0181 (11)0.0168 (10)0.0148 (9)0.0005 (8)0.0027 (8)0.0031 (8)
C280.0185 (11)0.0153 (9)0.0160 (9)0.0022 (8)0.0033 (8)0.0070 (8)
C330.0152 (10)0.0108 (9)0.0147 (9)0.0023 (7)0.0058 (8)0.0036 (7)
C380.0261 (12)0.0218 (11)0.0203 (10)0.0071 (9)0.0104 (9)0.0132 (9)
C370.0375 (15)0.0330 (13)0.0278 (12)0.0054 (11)0.0217 (11)0.0180 (10)
C360.0221 (12)0.0231 (11)0.0263 (11)0.0044 (9)0.0147 (10)0.0043 (9)
C350.0130 (11)0.0274 (11)0.0197 (10)0.0026 (9)0.0027 (9)0.0034 (9)
C340.0168 (11)0.0274 (11)0.0118 (9)0.0046 (9)0.0032 (8)0.0049 (8)
C200.0153 (10)0.0125 (9)0.0130 (9)0.0015 (8)0.0033 (8)0.0051 (7)
C210.0151 (10)0.0098 (8)0.0132 (9)0.0025 (7)0.0034 (8)0.0037 (7)
C260.0171 (11)0.0190 (10)0.0158 (9)0.0020 (8)0.0059 (8)0.0063 (8)
C250.0237 (12)0.0324 (12)0.0131 (9)0.0044 (10)0.0041 (9)0.0096 (9)
C240.0164 (11)0.0257 (11)0.0159 (10)0.0043 (9)0.0002 (8)0.0084 (8)
C230.0175 (11)0.0189 (10)0.0191 (10)0.0017 (8)0.0053 (9)0.0079 (8)
C220.0206 (11)0.0165 (10)0.0135 (9)0.0019 (8)0.0055 (8)0.0059 (8)
Geometric parameters (Å, º) top
Pt1—P12.3096 (5)C17—C181.388 (3)
Pt1—Cl22.3102 (5)C17—H170.95
Pt1—Cl12.3128 (5)C18—C191.388 (3)
Pt1—P22.3155 (5)C18—H180.95
P1—C141.817 (2)C19—H190.95
P1—C81.818 (2)C27—C321.397 (3)
P1—C11.8456 (19)C27—C281.403 (3)
P2—C331.824 (2)C32—C311.391 (3)
P2—C271.825 (2)C32—H320.95
P2—C201.8424 (19)C31—C301.394 (3)
C1—C21.510 (3)C31—H310.95
C1—H1A0.99C30—C291.385 (3)
C1—H1B0.99C30—H300.95
C2—C71.399 (3)C29—C281.385 (3)
C2—C31.403 (3)C29—H290.95
C3—C41.390 (3)C28—H280.95
C3—H30.95C33—C341.391 (3)
C4—C51.393 (3)C33—C381.396 (3)
C4—H40.95C38—C371.397 (3)
C5—C61.384 (3)C38—H380.95
C5—H50.95C37—C361.385 (4)
C6—C71.395 (3)C37—H370.95
C6—H60.95C36—C351.381 (3)
C7—H70.95C36—H360.95
C8—C91.388 (3)C35—C341.394 (3)
C8—C131.398 (3)C35—H350.95
C9—C101.388 (3)C34—H340.95
C9—H90.95C20—C211.512 (3)
C10—C111.391 (3)C20—H20A0.99
C10—H100.95C20—H20B0.99
C11—C121.389 (3)C21—C221.395 (3)
C11—H110.95C21—C261.397 (3)
C12—C131.387 (3)C26—C251.387 (3)
C12—H120.95C26—H260.95
C13—H130.95C25—C241.390 (3)
C14—C191.396 (3)C25—H250.95
C14—C151.402 (3)C24—C231.385 (3)
C15—C161.381 (3)C24—H240.95
C15—H150.95C23—C221.387 (3)
C16—C171.393 (3)C23—H230.95
C16—H160.95C22—H220.95
P1—Pt1—Cl287.718 (19)C18—C17—C16119.4 (2)
P1—Pt1—Cl191.019 (19)C18—C17—H17120.3
Cl2—Pt1—Cl1173.220 (18)C16—C17—H17120.3
P1—Pt1—P2173.566 (18)C17—C18—C19120.6 (2)
Cl2—Pt1—P290.665 (19)C17—C18—H18119.7
Cl1—Pt1—P289.858 (19)C19—C18—H18119.7
C14—P1—C8106.61 (9)C18—C19—C14120.17 (19)
C14—P1—C1103.09 (9)C18—C19—H19119.9
C8—P1—C1101.91 (9)C14—C19—H19119.9
C14—P1—Pt1107.53 (7)C32—C27—C28118.98 (18)
C8—P1—Pt1116.64 (7)C32—C27—P2123.67 (15)
C1—P1—Pt1119.65 (7)C28—C27—P2117.34 (15)
C33—P2—C27104.68 (9)C31—C32—C27120.15 (19)
C33—P2—C20102.65 (9)C31—C32—H32119.9
C27—P2—C20104.59 (9)C27—C32—H32119.9
C33—P2—Pt1117.37 (7)C32—C31—C30120.3 (2)
C27—P2—Pt1108.96 (7)C32—C31—H31119.8
C20—P2—Pt1117.20 (7)C30—C31—H31119.8
C2—C1—P1117.65 (14)C29—C30—C31119.70 (19)
C2—C1—H1A107.9C29—C30—H30120.1
P1—C1—H1A107.9C31—C30—H30120.1
C2—C1—H1B107.9C28—C29—C30120.32 (19)
P1—C1—H1B107.9C28—C29—H29119.8
H1A—C1—H1B107.2C30—C29—H29119.8
C7—C2—C3118.48 (19)C29—C28—C27120.50 (19)
C7—C2—C1120.09 (18)C29—C28—H28119.7
C3—C2—C1121.19 (18)C27—C28—H28119.7
C4—C3—C2120.78 (19)C34—C33—C38119.19 (19)
C4—C3—H3119.6C34—C33—P2119.13 (15)
C2—C3—H3119.6C38—C33—P2121.60 (17)
C3—C4—C5120.0 (2)C33—C38—C37119.6 (2)
C3—C4—H4120C33—C38—H38120.2
C5—C4—H4120C37—C38—H38120.2
C6—C5—C4119.9 (2)C36—C37—C38120.6 (2)
C6—C5—H5120.1C36—C37—H37119.7
C4—C5—H5120.1C38—C37—H37119.7
C5—C6—C7120.4 (2)C35—C36—C37120.0 (2)
C5—C6—H6119.8C35—C36—H36120
C7—C6—H6119.8C37—C36—H36120
C6—C7—C2120.5 (2)C36—C35—C34119.8 (2)
C6—C7—H7119.8C36—C35—H35120.1
C2—C7—H7119.8C34—C35—H35120.1
C9—C8—C13119.65 (19)C33—C34—C35120.8 (2)
C9—C8—P1118.67 (15)C33—C34—H34119.6
C13—C8—P1121.35 (16)C35—C34—H34119.6
C8—C9—C10120.4 (2)C21—C20—P2115.37 (14)
C8—C9—H9119.8C21—C20—H20A108.4
C10—C9—H9119.8P2—C20—H20A108.4
C9—C10—C11119.9 (2)C21—C20—H20B108.4
C9—C10—H10120P2—C20—H20B108.4
C11—C10—H10120H20A—C20—H20B107.5
C12—C11—C10119.9 (2)C22—C21—C26118.42 (18)
C12—C11—H11120C22—C21—C20120.11 (17)
C10—C11—H11120C26—C21—C20121.43 (18)
C13—C12—C11120.3 (2)C25—C26—C21120.50 (19)
C13—C12—H12119.9C25—C26—H26119.8
C11—C12—H12119.9C21—C26—H26119.8
C12—C13—C8119.9 (2)C26—C25—C24120.50 (19)
C12—C13—H13120.1C26—C25—H25119.8
C8—C13—H13120.1C24—C25—H25119.8
C19—C14—C15118.98 (19)C23—C24—C25119.4 (2)
C19—C14—P1122.68 (15)C23—C24—H24120.3
C15—C14—P1118.15 (15)C25—C24—H24120.3
C16—C15—C14120.5 (2)C24—C23—C22120.2 (2)
C16—C15—H15119.8C24—C23—H23119.9
C14—C15—H15119.8C22—C23—H23119.9
C15—C16—C17120.38 (19)C23—C22—C21120.96 (18)
C15—C16—H16119.8C23—C22—H22119.5
C17—C16—H16119.8C21—C22—H22119.5
Cl2—Pt1—P1—C1483.74 (7)C14—C15—C16—C171.8 (3)
Cl1—Pt1—P1—C1489.59 (7)C15—C16—C17—C180.8 (3)
Cl2—Pt1—P1—C8156.67 (7)C16—C17—C18—C190.1 (3)
Cl1—Pt1—P1—C830.00 (7)C17—C18—C19—C140.0 (3)
Cl2—Pt1—P1—C133.21 (8)C15—C14—C19—C180.9 (3)
Cl1—Pt1—P1—C1153.46 (8)P1—C14—C19—C18175.77 (17)
Cl2—Pt1—P2—C33156.19 (7)C33—P2—C27—C32101.79 (18)
Cl1—Pt1—P2—C3330.57 (7)C20—P2—C27—C325.8 (2)
Cl2—Pt1—P2—C2785.16 (7)Pt1—P2—C27—C32131.87 (16)
Cl1—Pt1—P2—C2788.08 (7)C33—P2—C27—C2878.23 (17)
Cl2—Pt1—P2—C2033.27 (8)C20—P2—C27—C28174.18 (16)
Cl1—Pt1—P2—C20153.49 (8)Pt1—P2—C27—C2848.10 (17)
C14—P1—C1—C2168.80 (15)C28—C27—C32—C310.5 (3)
C8—P1—C1—C258.37 (17)P2—C27—C32—C31179.56 (16)
Pt1—P1—C1—C271.98 (16)C27—C32—C31—C300.4 (3)
P1—C1—C2—C7100.76 (19)C32—C31—C30—C290.3 (3)
P1—C1—C2—C385.0 (2)C31—C30—C29—C280.7 (3)
C7—C2—C3—C42.1 (3)C30—C29—C28—C271.6 (3)
C1—C2—C3—C4172.26 (18)C32—C27—C28—C291.5 (3)
C2—C3—C4—C50.3 (3)P2—C27—C28—C29178.56 (16)
C3—C4—C5—C61.4 (3)C27—P2—C33—C34159.45 (16)
C4—C5—C6—C71.1 (3)C20—P2—C33—C3491.54 (17)
C5—C6—C7—C20.8 (3)Pt1—P2—C33—C3438.53 (18)
C3—C2—C7—C62.4 (3)C27—P2—C33—C3823.99 (19)
C1—C2—C7—C6172.07 (18)C20—P2—C33—C3885.02 (18)
C14—P1—C8—C9157.60 (15)Pt1—P2—C33—C38144.91 (15)
C1—P1—C8—C994.68 (16)C34—C33—C38—C371.2 (3)
Pt1—P1—C8—C937.51 (17)P2—C33—C38—C37175.32 (17)
C14—P1—C8—C1328.96 (18)C33—C38—C37—C360.8 (3)
C1—P1—C8—C1378.77 (17)C38—C37—C36—C350.0 (4)
Pt1—P1—C8—C13149.04 (14)C37—C36—C35—C340.4 (3)
C13—C8—C9—C100.8 (3)C38—C33—C34—C350.9 (3)
P1—C8—C9—C10172.78 (15)P2—C33—C34—C35175.79 (16)
C8—C9—C10—C110.7 (3)C36—C35—C34—C330.1 (3)
C9—C10—C11—C121.4 (3)C33—P2—C20—C2163.36 (16)
C10—C11—C12—C130.7 (3)C27—P2—C20—C21172.43 (14)
C11—C12—C13—C80.8 (3)Pt1—P2—C20—C2166.82 (16)
C9—C8—C13—C121.5 (3)P2—C20—C21—C2298.4 (2)
P1—C8—C13—C12171.87 (15)P2—C20—C21—C2683.9 (2)
C8—P1—C14—C19121.64 (18)C22—C21—C26—C251.4 (3)
C1—P1—C14—C1914.8 (2)C20—C21—C26—C25176.4 (2)
Pt1—P1—C14—C19112.56 (17)C21—C26—C25—C240.3 (3)
C8—P1—C14—C1563.45 (18)C26—C25—C24—C230.5 (3)
C1—P1—C14—C15170.34 (16)C25—C24—C23—C220.2 (3)
Pt1—P1—C14—C1562.34 (17)C24—C23—C22—C211.0 (3)
C19—C14—C15—C161.8 (3)C26—C21—C22—C231.7 (3)
P1—C14—C15—C16176.92 (17)C20—C21—C22—C23176.08 (19)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2, Cg3 and Cg4 are the centroids of the C33—C38, C2—C7, C8—C13 and C27—C32 rings, repectively.
D—H···AD—HH···AD···AD—H···A
C7—H7···Cl2i0.952.853.532 (2)130
C26—H26···Cl20.952.723.555 (2)147
C29—H29···Cl1ii0.952.933.731 (2)143
C16—H16···Cg1ii0.952.733.443 (3)132
C23—H23···Cg2iii0.952.633.536 (2)159
C29—H29···Cg3ii0.952.993.525 (2)117
C36—H36···Cg4iv0.952.773.708 (3)169
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z; (iii) x, y, z+1; (iv) x1, y, z.

Experimental details

Crystal data
Chemical formula[PtCl2(C19H17P)2]
Mr818.58
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)9.5585 (12), 13.4135 (17), 14.7553 (18)
α, β, γ (°)66.307 (2), 73.147 (3), 88.034 (3)
V3)1650.7 (4)
Z2
Radiation typeMo Kα
µ (mm1)4.54
Crystal size (mm)0.24 × 0.1 × 0.08
Data collection
DiffractometerBruker APEX DUO 4K CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.409, 0.713
No. of measured, independent and
observed [I > 2σ(I)] reflections
33198, 8253, 7779
Rint0.031
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.018, 0.039, 1.03
No. of reflections8253
No. of parameters388
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.65, 0.54

Computer programs: APEX2 (Bruker, 2011), SAINT (Bruker, 2008), SAINT and XPREP (Bruker, 2008), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005), publCIF (Westrip, 2010) and WinGX (Farrugia, 2012).

Hydrogen-bond geometry (Å, º) top
Cg1, Cg2, Cg3 and Cg4 are the centroids of the C33—C38, C2—C7, C8—C13 and C27—C32 rings, repectively.
D—H···AD—HH···AD···AD—H···A
C7—H7···Cl2i0.952.853.532 (2)129.8
C26—H26···Cl20.952.723.555 (2)146.7
C29—H29···Cl1ii0.952.933.731 (2)142.5
C16—H16···Cg1ii0.952.733.443 (3)132
C23—H23···Cg2iii0.952.633.536 (2)159
C29—H29···Cg3ii0.952.993.525 (2)117
C36—H36···Cg4iv0.952.773.708 (3)169
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z; (iii) x, y, z+1; (iv) x1, y, z.
 

Acknowledgements

The Research Fund of the University of Johannesburg is gratefully acknowledged.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2008). SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2011). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDavis, W. L. & Meijboom, R. (2011). Acta Cryst. E67, m1800.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMuller, A. & Meijboom, R. (2010). Acta Cryst. E66, m1420.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOtto, S. (2001). Acta Cryst. C57, 793–795.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpessard, G. O. & Miessler, G. L. (1996). Organometallic Chemistry, pp. 131–135 Upper Saddle River, New Jersey, USA: Prentice Hall.  Google Scholar
First citationTolman, C. A. (1977). Chem. Rev. 77, 313–348.  CrossRef CAS Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds