metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 12| December 2012| Pages m1437-m1438

catena-Poly[[[di­chlorido(pyridin-1-ium-3-yl)arsenic(III)]-μ-chlorido] mono­hydrate]

aSchool of Chemistry, Trinity College Dublin, Dublin 2, Ireland
*Correspondence e-mail: schmittw@tcd.ie

(Received 10 August 2012; accepted 14 October 2012; online 3 November 2012)

The crystal structure of the title compound, {[AsCl3(C5H5N)]·H2O}n, is characterized by polymeric chains consisting of alternating arsenic and chlorine atoms running parallel to the a axis. O—H⋯Cl and N—H⋯O hydrogen bonds mediated by non-coordinating water mol­ecules assemble these chains into a three-dimensional framework. The AsIII atom, the atoms of the pyridinium ring and the water O atom have m site symmetry and the bridging Cl atom has site symmetry 2. This is the first reported organotrichloro­arsenate(III) in which arsenic adopts a ψ-octa­hedral fivefold coordination.

Related literature

For the synthesis, see: Binz & von Schickh (1936[Binz, A. & von Schickh, O. (1936). German Patent DE 633867.]). For mono­meric and oligomeric monoorganohaloarsenates(III) with tetra­coordinate arsenic, see: Grewe et al. (1998[Grewe, S., Häusler, T., Mannel, M., Rossenbeck, B. & Sheldrick, W. S. (1998). Z. Anorg. Allg. Chem. 624, 613-619.]). For homologous monoorganohaloanti­monate(III)/-bis­muth­ate(III) structures, see: Althaus et al. (1999[Althaus, H., Breunig, H. J. & Lork, E. (1999). Chem. Commun. pp. 1971-1972.]); Breunig et al. (1992[Breunig, H. J., Ebert, K. H., Gülec, S., Dräger, M., Sowerby, D. B., Begley, M. J. & Behrens, U. (1992). J. Organomet. Chem. 427, 39-48.], 1999[Breunig, H. J., Denker, M. & Lork, E. (1999). Z. Anorg. Allg. Chem. 625, 117-120.], 2010[Breunig, H. J., Koehne, T., Lork, E., Moldovan, O., Poveleit, J. & Raţ, C. I. (2010). Z. Naturforsch. Teil B, 65, 1245-1248.]); Hall & Sowerby (1988[Hall, M. & Sowerby, D. B. (1988). J. Organomet. Chem. 347, 59-70.]); James et al. (1999[James, S. C., Norman, N. C. & Orpen, A. G. (1999). J. Chem. Soc. Dalton Trans. pp. 2837-2843.]); Preut et al. (1987[Preut, H., Huber, F. & Alonzo, G. (1987). Acta Cryst. C43, 46-48.]); Sheldrick & Martin (1992[Sheldrick, W. S. & Martin, C. (1992). Z. Naturforsch. Teil B, 47, 919-924.]); von Seyerl et al. (1986[Seyerl, J. von, Scheidsteger, O., Berke, H. & Huttner, G. (1986). J. Organomet. Chem. 311, 85-89.]). For organoarsenic functionalized metal oxide clusters, see: Breen, Clérac et al. (2012[Breen, J. M., Clérac, R., Zhang, L., Cloonan, S. M., Kennedy, E., Feeney, M., McCabe, T., Willams, D. C. & Schmitt, W. (2012). Dalton Trans. 41, 2918-2926.]); Breen, Zhang et al. (2012[Breen, J. M., Zhang, L., Clement, R. & Schmitt, W. (2012). Inorg. Chem. 51, 19-21.]); Onet et al. (2011[Onet, C. I., Zhang, L., Clérac, R., Jean-Denis, J. B., Feeney, M., McCabe, T. & Schmitt, W. (2011). Inorg. Chem. 50, 604-613.]); Zhang et al. (2012[Zhang, L., Clérac, R., Heijboer, P. & Schmitt, W. (2012). Angew. Chem. Int. Ed. 51, 3007-3011.]).

[Scheme 1]

Experimental

Crystal data
  • [AsCl3(C5H5N)]·H2O

  • Mr = 278.39

  • Orthorhombic, I m 2a

  • a = 8.2107 (9) Å

  • b = 8.5812 (9) Å

  • c = 13.2046 (14) Å

  • V = 930.37 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.46 mm−1

  • T = 200 K

  • 0.5 × 0.2 × 0.2 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.341, Tmax = 0.469

  • 3423 measured reflections

  • 1184 independent reflections

  • 1167 reflections with I > 2σ(I)

  • Rint = 0.068

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.078

  • S = 1.10

  • 1184 reflections

  • 66 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.14 e Å−3

  • Δρmin = −1.28 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 529 Friedel pairs

  • Flack parameter: 0.006 (12)

Table 1
Selected bond lengths (Å)

As1—Cl1 2.2624 (8)
As1—Cl2 2.8907 (5)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯Cl2 0.82 (2) 2.40 (2) 3.197 (2) 165 (3)
N3—H3⋯O1i 0.88 1.84 2.711 173
Symmetry code: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

In the course of our work on arylarsonate functionalized metal oxide clusters (see Breen, Clérac et al. (2012), Breen, Zhang et al. (2012) and references therein for vanadium oxide clusters, Onet et al. (2011) for molybdenum oxide clusters and Zhang et al. (2012) for manganese oxide clusters) we prepared the title compound, whose crystal structure had until now not been determined. In general, the structural chemistry of organohaloarsenates(III) has not been the object of intense study, the only relevant peer-reviewed publication known to us being the contribution by Grewe et al. (1998), which is summarized below. The homologous organohalobismuthates(III) and organohaloantimonates(III) have been more widely studied.

Organodichloroarsines compounds are known to act as soft Lewis acids and form adducts with chloride anions, e.g. [RAsCl3]- (R = Me, Et, Ph) and [MeAsCl2(µ-Cl)AsCl2Me]-. In these adducts, arsenic occurs in ψ-trigonal bipyramidal fourfold coordination. Pentacoordinate, ψ-octahedral adducts are only known for the bromo analogues on account of their stronger acidity: organotribromoarsenates(III) form doubly bridged dimers [RBr2As(µ-Br2)AsBr2R]2- (R = Me, Et, Ph) (Grewe et al., 1998). The homologous organohaloantimonates(III) and organohalobismuthates(III) form a wider variety of structures based mostly on ψ-octahedral REX4 motifs. These units are found isolated in [PhSbCl4]2- (Hall & Sowerby, 1988), [PhSbBr4]2- (James et al., 1999) and [MeSbI4]2- (Breunig et al., 1992). The ψ-trigonal bipyramidal [PhSbCl3]- does exist (Hall & Sowerby, 1988), but its ψ-octahedral dimer [PhCl2Sb(µ-Cl)2SbCl2Ph]2- is also attested (Preut et al., 1987). [Me2Sb2Cl6]2- (Breunig et al., 2010), [Me2Sb2Br6]2- (Althaus et al., 1999), [Ph2Sb2I6]2- (Breunig et al., 1999) and [Ph2Bi2Br6]2- (James et al., 1999) form analogous structures. Addition of a further halide ion results in structures of the [RX3E(µ-X)EX3R]3- type such as [Ph2Sb2Cl7]3- and [Ph2Sb2Br7]3- (Sheldrick & Martin, 1992). The highest aggregation is found in [{PhSbI(µ2-I)}44-I)]- (von Seyerl et al., 1986), which features an I4 square with Sb atoms on the edges and another I atom in the centre of the square. In all organohaloarsenate(III), -antimonate(III) and -bismuthate(III) structures, bonds to bridging halide ligands are considerably longer than bonds to terminal halide ligands and bridging halide ligands are coordinated cis to one another.

In the title compound, the acidity of the aryldichloroarsine is enhanced by the electron-withdrawing, positively charged pyridinio substituent, so that a ψ-octahedral structure similar to the one encountered in [RBr2As(µ-Br2)AsBr2R]2- or [PhCl2Sb(µ-Cl)2SbCl2Ph]2- becomes possible: As is coordinated axially to the organic substituent and equatorially to four chloride ligands, two bridging and two terminal. The terminal chloride ligands are located cis to one another and connected to As by short bonds, while the bridging chloride ligands are much more distant from the As centre. In contrast to in the compounds cited above, these bridging chloride ligands do not link to the same organoarsenic unit, but to two different arsenic atoms, thus forming a polymeric chain running along the crystallographic a axis (cf. Figure 1).

The nitrogen atom on the pyridine ring forms an N—H···O hydrogen bond to a co-crystallized water molecule. The two O—H bonds of this water molecule in turn form O—H···Cl hydrogen bonds to two bridging chloride ions on a neighboring polymeric chain. Through the intermediary of the intervening water molecules, each chain thus acts as a hydrogen bond donor towards the neighbouring chains in the [011] and [011] directions and as a hydrogen bond acceptor towards the neighbouring chains in the [011] and [011] directions (cf. Figure 2). It is the lack of centrosymmetry in the hydrogen bonding pattern that accounts for the non-centrosymmetric crystal structure and space group.

The arsenic atom, the pyridinium ring and the oxygen atom of the water molecule all lie in the same mirror plane (Wyckoff position 2 b). The displacement ellipsoids on the pyridinium ring suggest a slight disorder about this mirror plane, but refining this disorder did not improve the quality of the structural model significantly. The bridging chlorine atom (Cl2) lies on a twofold axis (Wyckoff position 2a).

Related literature top

For the synthesis, see: Binz & von Schickh (1936). For monomeric and oligomeric monoorganohaloarsenates(III) with tetracoordinate arsenic, see: Grewe et al. (1998). For homologous monoorganohaloantimonate(III)/-bismuthate(III) structures, see: Althaus et al. (1999); Breunig et al. (1992, 1999, 2010); Hall & Sowerby (1988); James et al. (1999); Preut et al. (1987); Sheldrick & Martin (1992); von Seyerl et al. (1986). For organoarsenic functionalized metal oxide clusters, see: Breen, Clérac et al. (2012); Breen, Zhang et al. (2012); Onet et al. (2011); Zhang et al. (2012).

Experimental top

The synthesis reported by Binz & von Schickh (1936) was slightly modified as follows: 3-aminopyridine (20 mmol, 1.882 g) was dissolved in conc. HCl (32%, 15 ml) and As2O3 (20 mmol, 3.957 g) and CuCl (2 mmol, 0.198 g) were added to the solution. The solution was cooled in an ice bath to -5 °C. NaNO2 (30 mmol, 2.07 g) was dissolved in water (3 ml) and slowly added to the solution while keeping the temperature below 0 °C. The reaction mixture was then stirred at 35 °C for 8 h. After cooling to r.t. the precipitate was filtered off and washed with 1-molar HCl solution (2 × 20 ml). The filtrate was cooled to -20 °C and after 7 days the product was obtained in the form of large colourless needles.

Refinement top

H atoms on the pyridine aromatic ring were positioned geometrically and refined using a riding model with C—H distances constrained to 0.95 Å and the N—H distance constrained to 0.88 Å. Uiso for these hydrogen atoms was constrained to Uiso(H) = 1.2 Ueq(C or N). Restraints were applied to the O1—H1 distance and the H1—O1—H1 angle and Uiso was constrained to Uiso(H1) = 1.5 Ueq(O1). The anisotropic displacement parameters of the atoms in the aromatic ring indicate a slight disorder around the mirror plane, but refining this disorder did not improve the structural model significantly.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. Polymeric [C5H5NAsCl3] chain with O—H···Cl hydrogen bonds to neighbouring water molecules, showing the labelling scheme in the asymmetric unit. Thermal displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are indicated by dashed lines. Colour code: H white, C grey, N blue, O red, Cl green, As teal.
[Figure 2] Fig. 2. Four neighbouring chains and their hydrogen bond interactions. Thermal displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are indicated by dashed lines. Colour code: H white, C grey, N blue, O red, Cl green, As teal.
catena-Poly[[[dichlorido(pyridin-1-ium-3-yl)arsenic(III)]-µ-chlorido] monohydrate] top
Crystal data top
[AsCl3(C5H5N)]·H2ODx = 1.987 Mg m3
Mr = 278.39Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Im2aCell parameters from 2911 reflections
a = 8.2107 (9) Åθ = 2.8–28.2°
b = 8.5812 (9) ŵ = 4.46 mm1
c = 13.2046 (14) ÅT = 200 K
V = 930.37 (17) Å3Block, colourless
Z = 40.5 × 0.2 × 0.2 mm
F(000) = 544
Data collection top
Bruker SMART APEX CCD
diffractometer
1184 independent reflections
Radiation source: fine-focus sealed tube1167 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.068
ϕ and ω scansθmax = 28.2°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
h = 1010
Tmin = 0.341, Tmax = 0.469k = 119
3423 measured reflectionsl = 1317
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.078 w = 1/[σ2(Fo2) + (0.0554P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
1184 reflectionsΔρmax = 1.14 e Å3
66 parametersΔρmin = 1.28 e Å3
3 restraintsAbsolute structure: Flack (1983), 529 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.006 (12)
Crystal data top
[AsCl3(C5H5N)]·H2OV = 930.37 (17) Å3
Mr = 278.39Z = 4
Orthorhombic, Im2aMo Kα radiation
a = 8.2107 (9) ŵ = 4.46 mm1
b = 8.5812 (9) ÅT = 200 K
c = 13.2046 (14) Å0.5 × 0.2 × 0.2 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
1184 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
1167 reflections with I > 2σ(I)
Tmin = 0.341, Tmax = 0.469Rint = 0.068
3423 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.032H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.078Δρmax = 1.14 e Å3
S = 1.10Δρmin = 1.28 e Å3
1184 reflectionsAbsolute structure: Flack (1983), 529 Friedel pairs
66 parametersAbsolute structure parameter: 0.006 (12)
3 restraints
Special details top

Experimental. R(int) was 0.0767 before and 0.0385 after correction. The Ratio of minimum to maximum transmission is 0.7260. The λ/2 correction factor is 0.0015.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
As10.75000.27357 (4)0.63175 (3)0.01702 (14)
Cl10.55187 (9)0.36810 (11)0.73375 (6)0.0270 (2)
Cl20.50000.15046 (13)0.50000.0229 (2)
N30.75000.5797 (5)0.3838 (3)0.0215 (8)
H30.75000.56900.31750.026*
C10.75000.4632 (5)0.5450 (3)0.0187 (8)
C20.75000.4508 (5)0.4411 (3)0.0201 (8)
H20.75000.35090.41000.024*
C40.75000.7237 (6)0.4225 (4)0.0291 (11)
H40.75000.81170.37880.035*
C50.75000.7435 (6)0.5249 (4)0.0402 (14)
H50.75000.84500.55360.048*
C60.75000.6127 (6)0.5865 (4)0.0333 (12)
H60.75000.62500.65800.040*
O10.75000.0724 (4)0.3215 (2)0.0242 (7)
H10.672 (2)0.093 (6)0.358 (2)0.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
As10.0145 (2)0.0197 (2)0.0169 (2)0.0000.0000.00251 (18)
Cl10.0210 (3)0.0386 (5)0.0213 (4)0.0061 (3)0.0042 (3)0.0002 (3)
Cl20.0192 (5)0.0278 (6)0.0219 (5)0.0000.0024 (4)0.000
N30.0224 (19)0.025 (2)0.0172 (15)0.0000.0000.0015 (14)
C10.0204 (19)0.018 (2)0.0173 (19)0.0000.0000.0001 (16)
C20.0194 (19)0.017 (2)0.024 (2)0.0000.0000.0017 (16)
C40.034 (3)0.021 (2)0.032 (2)0.0000.0000.0019 (18)
C50.072 (4)0.014 (3)0.034 (3)0.0000.0000.003 (2)
C60.058 (4)0.025 (3)0.017 (2)0.0000.0000.0035 (18)
O10.0180 (15)0.0329 (19)0.0218 (15)0.0000.0000.0053 (14)
Geometric parameters (Å, º) top
As1—C11.990 (4)C2—H20.9500
As1—Cl12.2624 (8)C4—C51.363 (7)
As1—Cl22.8907 (5)C4—H40.9500
N3—C41.337 (7)C5—C61.386 (7)
N3—C21.340 (6)C5—H50.9500
N3—H30.8800C6—H60.9500
C1—C21.377 (6)O1—H10.818 (17)
C1—C61.395 (7)
C1—As1—Cl192.83 (9)N3—C2—C1119.9 (4)
C1—As1—Cl287.28 (9)N3—C2—H2120.0
Cl1—As1—Cl1i91.95 (4)C1—C2—H2120.0
Cl1—As1—Cl2ii179.25 (3)N3—C4—C5119.6 (5)
Cl1—As1—Cl288.78 (2)N3—C4—H4120.2
Cl2ii—As1—Cl290.49 (2)C5—C4—H4120.2
As1iii—Cl2—As1137.13 (5)C4—C5—C6118.7 (4)
C4—N3—C2123.2 (4)C4—C5—H5120.6
C4—N3—H3118.4C6—C5—H5120.6
C2—N3—H3118.4C5—C6—C1121.0 (4)
C2—C1—C6117.5 (4)C5—C6—H6119.5
C2—C1—As1120.7 (3)C1—C6—H6119.5
C6—C1—As1121.8 (3)
C1—As1—Cl2—As1iii26.08 (9)C6—C1—C2—N30.000 (2)
Cl1—As1—Cl2—As1iii66.82 (2)As1—C1—C2—N3180.000 (1)
Cl2ii—As1—Cl2—As1iii113.33 (2)C2—N3—C4—C50.000 (2)
Cl1—As1—C1—C2133.95 (2)N3—C4—C5—C60.000 (2)
Cl2—As1—C1—C245.308 (11)C4—C5—C6—C10.000 (2)
Cl1—As1—C1—C646.05 (2)C2—C1—C6—C50.000 (2)
Cl2—As1—C1—C6134.692 (12)As1—C1—C6—C5180.000 (2)
C4—N3—C2—C10.000 (2)
Symmetry codes: (i) x+3/2, y, z; (ii) x+1/2, y, z+1; (iii) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···Cl20.82 (2)2.40 (2)3.197 (2)165 (3)
N3—H3···O1iv0.881.842.711173
Symmetry code: (iv) x+3/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[AsCl3(C5H5N)]·H2O
Mr278.39
Crystal system, space groupOrthorhombic, Im2a
Temperature (K)200
a, b, c (Å)8.2107 (9), 8.5812 (9), 13.2046 (14)
V3)930.37 (17)
Z4
Radiation typeMo Kα
µ (mm1)4.46
Crystal size (mm)0.5 × 0.2 × 0.2
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1997)
Tmin, Tmax0.341, 0.469
No. of measured, independent and
observed [I > 2σ(I)] reflections
3423, 1184, 1167
Rint0.068
(sin θ/λ)max1)0.665
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.078, 1.10
No. of reflections1184
No. of parameters66
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.14, 1.28
Absolute structureFlack (1983), 529 Friedel pairs
Absolute structure parameter0.006 (12)

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS (Sheldrick, 2008), SHELXL (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009).

Selected bond lengths (Å) top
As1—Cl12.2624 (8)As1—Cl22.8907 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···Cl20.818 (17)2.40 (2)3.197 (2)165 (3)
N3—H3···O1i0.881.842.711173.2
Symmetry code: (i) x+3/2, y+1/2, z+1/2.
 

Acknowledgements

The authors thank the Science Foundation Ireland (SFI,06/RFP/CHE173 and 08/IN.1/I2047)for financial support.

References

First citationAlthaus, H., Breunig, H. J. & Lork, E. (1999). Chem. Commun. pp. 1971–1972.  Web of Science CSD CrossRef Google Scholar
First citationBinz, A. & von Schickh, O. (1936). German Patent DE 633867.  Google Scholar
First citationBreen, J. M., Clérac, R., Zhang, L., Cloonan, S. M., Kennedy, E., Feeney, M., McCabe, T., Willams, D. C. & Schmitt, W. (2012). Dalton Trans. 41, 2918–2926.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBreen, J. M., Zhang, L., Clement, R. & Schmitt, W. (2012). Inorg. Chem. 51, 19–21.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBreunig, H. J., Denker, M. & Lork, E. (1999). Z. Anorg. Allg. Chem. 625, 117–120.  CrossRef CAS Google Scholar
First citationBreunig, H. J., Ebert, K. H., Gülec, S., Dräger, M., Sowerby, D. B., Begley, M. J. & Behrens, U. (1992). J. Organomet. Chem. 427, 39–48.  CSD CrossRef CAS Web of Science Google Scholar
First citationBreunig, H. J., Koehne, T., Lork, E., Moldovan, O., Poveleit, J. & Raţ, C. I. (2010). Z. Naturforsch. Teil B, 65, 1245–1248.  CAS Google Scholar
First citationBruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGrewe, S., Häusler, T., Mannel, M., Rossenbeck, B. & Sheldrick, W. S. (1998). Z. Anorg. Allg. Chem. 624, 613–619.  CrossRef CAS Google Scholar
First citationHall, M. & Sowerby, D. B. (1988). J. Organomet. Chem. 347, 59–70.  CSD CrossRef CAS Web of Science Google Scholar
First citationJames, S. C., Norman, N. C. & Orpen, A. G. (1999). J. Chem. Soc. Dalton Trans. pp. 2837–2843.  Web of Science CSD CrossRef Google Scholar
First citationOnet, C. I., Zhang, L., Clérac, R., Jean-Denis, J. B., Feeney, M., McCabe, T. & Schmitt, W. (2011). Inorg. Chem. 50, 604–613.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationPreut, H., Huber, F. & Alonzo, G. (1987). Acta Cryst. C43, 46–48.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSeyerl, J. von, Scheidsteger, O., Berke, H. & Huttner, G. (1986). J. Organomet. Chem. 311, 85–89.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, W. S. & Martin, C. (1992). Z. Naturforsch. Teil B, 47, 919–924.  CAS Google Scholar
First citationZhang, L., Clérac, R., Heijboer, P. & Schmitt, W. (2012). Angew. Chem. Int. Ed. 51, 3007–3011.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 12| December 2012| Pages m1437-m1438
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds