organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Allyl-6-nitro-1H-indazole

aLaboratoire de Chimie Organique Hétérocyclique URAC21, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat, Morocco, bLaboratoire de Chimie de Coordination, route de Narbonne, 31077 Toulouse, France, and cLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: n_elbrahmi@yahoo.fr

(Received 20 October 2012; accepted 9 November 2012; online 17 November 2012)

The fused five- and six-membered rings in the title mol­ecule, C10H9N3O2, are essentially coplanar, the largest deviation from the mean plane being 0.012 (1) Å for the C atom linked to the nitro group. The fused-ring system makes a dihedral angle of 11.34 (6)° with the nitro group, leading to a syn-periplanar conformation. The plane through the atoms forming the allyl group is nearly perpendicular to the indazole fused-ring system, as indicated by the dihedral angle of 73.3 (5)°. In the crystal, each mol­ecule is linked to its symmetry equivalent about the center of inversion by pairs of non-classical C—H⋯O hydrogen bonds, forming an extended tape motif parallel to the (-12-1) plane.

Related literature

For the pharmacological and biochemical properties of substituted indazoles, see: Saczewski et al. (2008[Saczewski, F., Kornicka, A., Rybczyn'ska, A., Hudson, A. L., Miao, S. S., Gdaniec, M., Boblewski, K. & Lehmann, A. (2008). J. Med. Chem. 51, 3599-3608.]); Jones et al. (2009[Jones, L. H., Allan, G., Barba, O., Burt, C., Corbau, R., Dupont, T., Knöchel, T., Irving, S., Middleton, D. S., Mowbray, C. E., Perros, M., Ringrose, H., Swain, N. A., Webster, R., Westby, M. & Phillips, C. (2009). J. Med. Chem. 52, 1219-1223.]); Bouissane et al. (2006[Bouissane, L., El Kazzouli, S., Léonce, S., Pfeiffer, B., Rakib, E. M., Khouili, M. & Guillaumet, G. (2006). Bioorg. Med. Chem. 14, 1078-1088.]). For compounds with similar structures, see: El Brahmi et al. (2009[El Brahmi, N., Mohamed, B., Essassi, E. M., Zouihri, H. & Ng, S. W. (2009). Acta Cryst. E65, o2320.], 2011[El Brahmi, N., Benchidmi, M., Essassi, E. M., Ladeira, S. & Ng, S. W. (2011). Acta Cryst. E67, o3260.]).

[Scheme 1]

Experimental

Crystal data
  • C10H9N3O2

  • Mr = 203.20

  • Triclinic, [P \overline 1]

  • a = 4.3630 (16) Å

  • b = 8.3245 (7) Å

  • c = 13.541 (5) Å

  • α = 95.647 (2)°

  • β = 98.46 (2)°

  • γ = 97.770 (2)°

  • V = 478.5 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.38 × 0.29 × 0.27 mm

Data collection
  • Bruker Kappa APEXII Quazar area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.957, Tmax = 0.997

  • 8258 measured reflections

  • 2109 independent reflections

  • 1675 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.100

  • S = 1.06

  • 2109 reflections

  • 136 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O1i 0.93 2.51 3.3973 (17) 160
C8—H8A⋯O1i 0.97 2.53 3.4475 (19) 157
C2—H2⋯O2ii 0.93 2.66 3.3911 (17) 136
Symmetry codes: (i) -x, -y, -z; (ii) -x+2, -y+1, -z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al. 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Indazole derivatives constitute an exciting heterocyclic family because of their important biological activities. Thus substituted indazoles are generally found to be of pharmaceutical interest in a variety of therapeutic areas (Saczewski et al., 2008, Jones et al., 2009) and with significant cytotoxicities against human (colon and prostate) and murine (leukemia) cell lines (Bouissane et al., 2006).

The plot of the structure of the title compound shows the indazole ring system is linked to a C3H5 chain and to a nitro group (Fig.1). The fused-ring system is essentially planar, with a maximum deviation of 0.012 (1) Å for C1. The allyl group is nearly perpendicular to indazole plane as indicated by the torsion angle of C9 C8 N2 N3 = 88.35 (18)°. Moreover, the dihedral angle of 11.34 (6)° between the fused ring system and the nitro group lead to a synperiplanar conformation. The structure of the 1-Allyl-6-nitro-indazole is similar to that reported for the following molecules: 1-allyl-3-chloro-6-nitro-1H-indazole and 3-bromo-6-nitro-1-(prop-2-ynyl)-1H-indazole (El Brahmi et al. 2009, 2011).

In the crystal, each molecule and its symmetry equivalent through the inversion center are linked by C6–H6···O1, C8–H8B···O1 and C2–H2···O2, non-classical hydrogen bonds, which results in an extended tape motif parallel to the plane (-1 2 -1) as shown in Fig.2.

Related literature top

For the pharmacological and biochemical properties of substituted indazoles, see: Saczewski et al. (2008); Jones et al. (2009); Bouissane et al. (2006). For compounds with similar structures, see: El Brahmi et al. (2009, 2011).

Experimental top

6-nitroindazole (5 mmol) and allyl bromide (10 mmol) were reacted in THF (40 ml) in the presence of potassium carbonate (10 mmol) and tetra-n-butylammonium bromide (0.5 mmol). The mixture was stirred for 24 h, filtered, and the THF removed under vacuum. The product was separated by chromatography on silica gel with a hexane:ethyl acetate (9:1) solvent system. The compound was obtained as yellow crystals in 68% yield.

Refinement top

H atoms were located in a difference map and treated as riding with N—H = 0.86 Å, C—H = 0.93 Å (aromatic), and C—H = 0.97 Å (methylene). with Uiso(H) = 1.2 Ueq (aromatic, methylene).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al. 2008); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. H atoms are represented as small circles.
[Figure 2] Fig. 2. The title molecule and its symmetry equivalent through the inversion center linked by hydrogen bonds and building extended tape motifs parallel to the plane (-1 2 -1).
1-Allyl-6-nitro-1H-indazole top
Crystal data top
C10H9N3O2Z = 2
Mr = 203.20F(000) = 212
Triclinic, P1Dx = 1.410 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 4.3630 (16) ÅCell parameters from 2109 reflections
b = 8.3245 (7) Åθ = 3.7–27.1°
c = 13.541 (5) ŵ = 0.10 mm1
α = 95.647 (2)°T = 296 K
β = 98.46 (2)°Block, yellow
γ = 97.770 (2)°0.38 × 0.29 × 0.27 mm
V = 478.5 (3) Å3
Data collection top
Bruker Kappa APEXII Quazar area-detector
diffractometer
2109 independent reflections
Radiation source: microfocus sealed tube1675 reflections with I > 2σ(I)
Multilayer optics monochromatorRint = 0.021
ϕ and ω scansθmax = 27.1°, θmin = 3.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 55
Tmin = 0.957, Tmax = 0.997k = 1010
8258 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: difference Fourier map
wR(F2) = 0.100H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0593P)2 + 0.0394P]
where P = (Fo2 + 2Fc2)/3
2109 reflections(Δ/σ)max < 0.001
136 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C10H9N3O2γ = 97.770 (2)°
Mr = 203.20V = 478.5 (3) Å3
Triclinic, P1Z = 2
a = 4.3630 (16) ÅMo Kα radiation
b = 8.3245 (7) ŵ = 0.10 mm1
c = 13.541 (5) ÅT = 296 K
α = 95.647 (2)°0.38 × 0.29 × 0.27 mm
β = 98.46 (2)°
Data collection top
Bruker Kappa APEXII Quazar area-detector
diffractometer
2109 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
1675 reflections with I > 2σ(I)
Tmin = 0.957, Tmax = 0.997Rint = 0.021
8258 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.100H-atom parameters constrained
S = 1.06Δρmax = 0.18 e Å3
2109 reflectionsΔρmin = 0.20 e Å3
136 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5250 (3)0.28071 (13)0.07294 (8)0.0285 (3)
C20.7333 (3)0.42576 (14)0.10756 (9)0.0336 (3)
H20.84930.47670.06390.040*
C30.7649 (3)0.49196 (14)0.20582 (9)0.0347 (3)
H30.90010.58870.22970.042*
C40.5890 (3)0.41073 (13)0.26971 (9)0.0296 (3)
C50.3813 (3)0.26597 (13)0.23161 (8)0.0269 (3)
C60.3433 (3)0.19722 (13)0.13128 (8)0.0279 (3)
H60.20530.10200.10610.034*
C70.5573 (3)0.43449 (15)0.37259 (9)0.0357 (3)
H70.66690.52140.41820.043*
C80.0238 (3)0.06785 (15)0.31003 (9)0.0337 (3)
H8A0.10830.04160.24470.040*
H8B0.11040.08820.35950.040*
C90.1822 (3)0.07536 (15)0.33350 (11)0.0430 (3)
H90.32880.10400.29420.052*
C100.1274 (4)0.16305 (18)0.40592 (12)0.0599 (4)
H10A0.23690.25550.41670.072*
H10B0.02960.13440.44880.072*
N10.5029 (2)0.21201 (12)0.03272 (7)0.0335 (3)
N20.2434 (2)0.21521 (11)0.30948 (7)0.0306 (2)
N30.3528 (3)0.31791 (12)0.39570 (7)0.0360 (3)
O10.2915 (2)0.09935 (12)0.06728 (7)0.0468 (3)
O20.6971 (3)0.26879 (12)0.08121 (7)0.0515 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0332 (6)0.0299 (5)0.0236 (6)0.0101 (5)0.0050 (5)0.0012 (4)
C20.0385 (7)0.0296 (6)0.0340 (6)0.0042 (5)0.0099 (5)0.0051 (5)
C30.0399 (7)0.0263 (5)0.0361 (7)0.0005 (5)0.0068 (5)0.0003 (5)
C40.0342 (6)0.0265 (5)0.0271 (6)0.0064 (5)0.0028 (5)0.0015 (4)
C50.0279 (5)0.0280 (5)0.0255 (6)0.0073 (4)0.0036 (4)0.0031 (4)
C60.0290 (6)0.0276 (5)0.0257 (6)0.0046 (4)0.0018 (4)0.0008 (4)
C70.0429 (7)0.0339 (6)0.0266 (6)0.0020 (5)0.0029 (5)0.0044 (5)
C80.0300 (6)0.0421 (6)0.0261 (6)0.0028 (5)0.0041 (5)0.0023 (5)
C90.0370 (7)0.0356 (7)0.0521 (8)0.0037 (5)0.0074 (6)0.0032 (6)
C100.0817 (12)0.0388 (7)0.0518 (9)0.0053 (8)0.0079 (8)0.0024 (7)
N10.0409 (6)0.0351 (5)0.0263 (5)0.0117 (4)0.0070 (4)0.0021 (4)
N20.0343 (5)0.0336 (5)0.0223 (5)0.0018 (4)0.0048 (4)0.0005 (4)
N30.0426 (6)0.0387 (6)0.0240 (5)0.0034 (5)0.0036 (4)0.0031 (4)
O10.0512 (6)0.0529 (6)0.0297 (5)0.0007 (5)0.0020 (4)0.0088 (4)
O20.0659 (7)0.0549 (6)0.0364 (5)0.0031 (5)0.0255 (5)0.0017 (4)
Geometric parameters (Å, º) top
C1—C61.3706 (16)C7—H70.9300
C1—C21.4036 (17)C8—N21.4522 (15)
C1—N11.4720 (15)C8—C91.4942 (18)
C2—C31.3691 (17)C8—H8A0.9700
C2—H20.9300C8—H8B0.9700
C3—C41.4016 (16)C9—C101.309 (2)
C3—H30.9300C9—H90.9300
C4—C51.4087 (15)C10—H10A0.9711
C4—C71.4174 (17)C10—H10B0.9983
C5—N21.3631 (14)N1—O21.2203 (13)
C5—C61.3985 (16)N1—O11.2256 (14)
C6—H60.9300N2—N31.3605 (14)
C7—N31.3204 (16)
C6—C1—C2124.41 (11)C4—C7—H7124.2
C6—C1—N1117.64 (10)N2—C8—C9112.95 (10)
C2—C1—N1117.95 (10)N2—C8—H8A109.0
C3—C2—C1119.75 (11)C9—C8—H8A109.0
C3—C2—H2120.1N2—C8—H8B109.0
C1—C2—H2120.1C9—C8—H8B109.0
C2—C3—C4118.53 (11)H8A—C8—H8B107.8
C2—C3—H3120.7C10—C9—C8124.06 (14)
C4—C3—H3120.7C10—C9—H9118.0
C3—C4—C5119.81 (11)C8—C9—H9118.0
C3—C4—C7136.30 (11)C9—C10—H10A119.9
C5—C4—C7103.89 (10)C9—C10—H10B119.2
N2—C5—C6130.53 (10)H10A—C10—H10B120.9
N2—C5—C4106.94 (10)O2—N1—O1123.28 (10)
C6—C5—C4122.53 (10)O2—N1—C1118.53 (10)
C1—C6—C5114.96 (10)O1—N1—C1118.18 (10)
C1—C6—H6122.5N3—N2—C5111.12 (10)
C5—C6—H6122.5N3—N2—C8120.52 (9)
N3—C7—C4111.61 (11)C5—N2—C8128.23 (9)
N3—C7—H7124.2C7—N3—N2106.44 (10)
C6—C1—C2—C30.27 (18)N2—C8—C9—C10125.37 (14)
N1—C1—C2—C3178.80 (10)C6—C1—N1—O2168.29 (10)
C1—C2—C3—C40.77 (17)C2—C1—N1—O210.84 (16)
C2—C3—C4—C51.17 (16)C6—C1—N1—O111.05 (16)
C2—C3—C4—C7178.55 (13)C2—C1—N1—O1169.83 (10)
C3—C4—C5—N2179.75 (10)C6—C5—N2—N3178.95 (11)
C7—C4—C5—N20.45 (12)C4—C5—N2—N30.67 (12)
C3—C4—C5—C60.59 (16)C6—C5—N2—C83.07 (19)
C7—C4—C5—C6179.21 (10)C4—C5—N2—C8176.55 (11)
C2—C1—C6—C50.84 (16)C9—C8—N2—N388.19 (13)
N1—C1—C6—C5178.23 (9)C9—C8—N2—C587.34 (14)
N2—C5—C6—C1179.17 (10)C4—C7—N3—N20.31 (14)
C4—C5—C6—C10.40 (15)C5—N2—N3—C70.62 (13)
C3—C4—C7—N3179.84 (13)C8—N2—N3—C7176.85 (10)
C5—C4—C7—N30.09 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O1i0.932.513.3973 (17)160
C8—H8A···O1i0.972.533.4475 (19)157
C2—H2···O2ii0.932.663.3911 (17)136
Symmetry codes: (i) x, y, z; (ii) x+2, y+1, z.

Experimental details

Crystal data
Chemical formulaC10H9N3O2
Mr203.20
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)4.3630 (16), 8.3245 (7), 13.541 (5)
α, β, γ (°)95.647 (2), 98.46 (2), 97.770 (2)
V3)478.5 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.38 × 0.29 × 0.27
Data collection
DiffractometerBruker Kappa APEXII Quazar area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.957, 0.997
No. of measured, independent and
observed [I > 2σ(I)] reflections
8258, 2109, 1675
Rint0.021
(sin θ/λ)max1)0.641
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.100, 1.06
No. of reflections2109
No. of parameters136
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.20

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al. 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O1i0.932.513.3973 (17)160.0
C8—H8A···O1i0.972.533.4475 (19)157.3
C2—H2···O2ii0.932.663.3911 (17)135.7
Symmetry codes: (i) x, y, z; (ii) x+2, y+1, z.
 

References

First citationBouissane, L., El Kazzouli, S., Léonce, S., Pfeiffer, B., Rakib, E. M., Khouili, M. & Guillaumet, G. (2006). Bioorg. Med. Chem. 14, 1078–1088.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEl Brahmi, N., Benchidmi, M., Essassi, E. M., Ladeira, S. & Ng, S. W. (2011). Acta Cryst. E67, o3260.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEl Brahmi, N., Mohamed, B., Essassi, E. M., Zouihri, H. & Ng, S. W. (2009). Acta Cryst. E65, o2320.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJones, L. H., Allan, G., Barba, O., Burt, C., Corbau, R., Dupont, T., Knöchel, T., Irving, S., Middleton, D. S., Mowbray, C. E., Perros, M., Ringrose, H., Swain, N. A., Webster, R., Westby, M. & Phillips, C. (2009). J. Med. Chem. 52, 1219–1223.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSaczewski, F., Kornicka, A., Rybczyn'ska, A., Hudson, A. L., Miao, S. S., Gdaniec, M., Boblewski, K. & Lehmann, A. (2008). J. Med. Chem. 51, 3599–3608.  Web of Science PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds