organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Hy­dr­oxy-5-[(E)-2-methyl­benzyl­­idene]-8-(2-methyl­phen­yl)-9-phenyl-3,10-di­aza­hexa­cyclo­[10.7.1.13,7.02,11.07,11.016,20]henicosa-1(20),12,14,16,18-pentaen-6-one

aDepartment of Chemistry, College of Sciences, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia, bSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and cDepartment of Physics, The Madura College, Madurai 625 011, India
*Correspondence e-mail: ambujasureshj@yahoo.com

(Received 24 October 2012; accepted 10 November 2012; online 17 November 2012)

In the title compound, C40H34N2O2, the central piperidine ring adopts a half-chair conformation and the fused pyrrolidine rings adopt twisted envelope (with the C atom bearing the methylphenyl ring as the flap atom) and envelope (with the C atom bound to the N atom, common to the pyridinone and pyrrolidine rings being the flap atom) conformations. The mol­ecular structure features weak intra­molecular N—H⋯O and C—H⋯O inter­actions. In the crystal, O—H⋯O hydrogen bonds generate a C(7) chain along the b-axis direction. C—H⋯O inter­actions also occur.

Related literature

For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For similar structures, see: Kumar et al. (2010[Kumar, R. S., Osman, H., Abdul Rahim, A. S., Hemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o3045.], 2011[Kumar, R. S., Osman, H., Rahim, A. S. A., Hemamalini, M. & Fun, H.-K. (2011). Acta Cryst. E67, o2881-o2882.], 2012[Kumar, R. S., Osman, H., Almansour, A. I., Arshad, S. & Razak, I. A. (2012). Acta Cryst. E68, o2094-o2095.]). For the importance of pyrrolidine, see: Asano et al. (2000[Asano, N., Nash, R. J., Molyneux, R. J. & Fleet, G. W. J. (2000). Tetrahedron Asymmetry, 11, 1645-1680.]); Shorvon (2001[Shorvon, S. (2001). Lancet, 358, 1885-92.]); Watson et al. (2001[Watson, A. A., Fleet, G. W. J., Asano, N., Molyneux, R. J. & Nash, R. J. (2001). Phytochemistry, 56, 265-295.]); Winchester & Fleet (1992[Winchester, B. & Fleet, G. W. J. (1992). Glycobiology, 2, 199-210.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C40H34N2O2

  • Mr = 574.69

  • Monoclinic, P 21 /c

  • a = 14.0679 (2) Å

  • b = 7.7245 (1) Å

  • c = 26.9686 (3) Å

  • β = 92.596 (1)°

  • V = 2927.60 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.21 × 0.15 × 0.13 mm

Data collection
  • Bruker Kappa APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.973, Tmax = 0.978

  • 33520 measured reflections

  • 8777 independent reflections

  • 6575 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.137

  • S = 1.02

  • 8777 reflections

  • 404 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1i 0.82 2.02 2.7828 (15) 155
C1—H1A⋯O2ii 0.97 2.46 3.3040 (16) 145
C57—H57B⋯O1 0.96 2.59 3.3859 (18) 141
N2—H2A⋯O2 0.92 (2) 2.27 (2) 2.8016 (18) 117 (2)
Symmetry codes: (i) x, y-1, z; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The pyrrolidine ring system has been the subject of research for more than three decades. Many natural and synthetic compounds with pyrrolidine moieties have received much attention because of their remarkable biological properties (Shorvon, 2001; Watson et al., 2001; Asano et al., 2000; Winchester et al., 1992). Recognizing the importance of such compounds in drug discovery and as a part of our ongoing research in the construction of novel heterocycles, has prompted us to investigate the 1,3-dipolar cycloaddition of bisarylmethylidene pyridinones with azomethine ylide generated in situ from acenaphthenequinone and proline, we and report the crystal structure of the resulting pyrrolidine cyclo-adduct in this paper.

In the title compound,C40H34N2 O2, the piperidine ring (N1/C1—C4/C9) adopts a half-chair conformation [Q = 0.6188 (2) Å, θ = 142.52 (2)°, ϕ = 123.6 (2)°; Cremer & Pople, 1975] which is in close agreement with those of the other related structures (Kumar et al. 2010; Kumar et al.2011; Kumar et al. 2012). The two fused pyrrolidine rings with atom sequences (N1/C4/C7—C9) and (N2/C4—C7), adopt a twisted envelope conformation (C9 atom as the flap) and an envelope conformation (C5 atom as the flap) respectively. The puckering parameters are Q = 0.4648 (15) Å, ϕ =325.20 (19)° for the N1/C4/C7—C9) pyrrolidine ring and Q = 0.3918 (16) Å, ϕ = 77.9 (2)° for the (N2/C4—C7) pyrrolidine ring. In the structure, the aryl ring C22—C27 is not coplanar with the mean plane of the piperidone ring [torsion angle C1—C2—C21—C22 is 5.77 (3)] °, which is due to non-bonded interactions between one of the ortho H atoms in the aryl ring and the equatorial H atom at the 2-position of the piperidone ring (H12A/H1A or H1B).

The molecular structure features weak intra-molecular N—H···O and C—H···O interactions. Intermolecular O2—H2···O1 bonds form an infinite one-dimensional chain parallel to the b axis, in a C11(7) motif (Bernstein et al., 1995).

Related literature top

For hydrogen-bond motifs, see: Bernstein et al. (1995). For similar structures, see: Kumar et al. (2010, 2011, 2012). For the importance of pyrrolidine, see: Asano et al. (2000); Shorvon (2001); Watson et al. (2001); Winchester & Fleet (1992). For puckering parameters, see: Cremer & Pople (1975).

Experimental top

A mixture of 3,5-bis[(E)-(2-methylphenyl)methylidene]tetrahydro-4(1H)-pyridinone (1 mmol), acenaphthenequinone (1 mmol), and phenylglycine (1 mmol) were dissolved in methanol (5 ml) and refluxed in a water bath for 1 h. After completion of the reaction as evident from TLC, the mixture was poured into water (50 ml). The precipitated solid was filtered and washed with water to obtain the product which was further purified by recrystallization from ethyl acetate. Yield 89%, melting point 212–213°C

Refinement top

H atoms were placed at calculated positions and allowed to ride on their carrier atoms with C—H = 0.93–0.97 Å and O—H = 0.82 Å. Uiso = 1.2Ueq(C) for CH CH2 groups and Uiso = 1.5Ueq(C) for OH and CH3 groups.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. A packing diagram viewed roughly down the a-axis, showing the H-bond motif C11(7).
2-Hydroxy-5-[(E)-2-methylbenzylidene]-8-(2-methylphenyl)-9-phenyl- 3,10-diazahexacyclo[10.7.1.13,7.02,11.07,11.016,20]henicosa- 1(20),12,14,16,18-pentaen-6-one top
Crystal data top
C40H34N2O2F(000) = 1216
Mr = 574.69Dx = 1.304 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2000 reflections
a = 14.0679 (2) Åθ = 2–31°
b = 7.7245 (1) ŵ = 0.08 mm1
c = 26.9686 (3) ÅT = 293 K
β = 92.596 (1)°Block, colourless
V = 2927.60 (7) Å30.21 × 0.15 × 0.13 mm
Z = 4
Data collection top
Bruker Kappa APEXII
diffractometer
8777 independent reflections
Radiation source: fine-focus sealed tube6575 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
Detector resolution: 0.2 pixels mm-1θmax = 30.4°, θmin = 1.5°
ω and ϕ scansh = 2019
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1010
Tmin = 0.973, Tmax = 0.978l = 3838
33520 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0605P)2 + 1.2845P]
where P = (Fo2 + 2Fc2)/3
8777 reflections(Δ/σ)max < 0.001
404 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C40H34N2O2V = 2927.60 (7) Å3
Mr = 574.69Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.0679 (2) ŵ = 0.08 mm1
b = 7.7245 (1) ÅT = 293 K
c = 26.9686 (3) Å0.21 × 0.15 × 0.13 mm
β = 92.596 (1)°
Data collection top
Bruker Kappa APEXII
diffractometer
8777 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
6575 reflections with I > 2σ(I)
Tmin = 0.973, Tmax = 0.978Rint = 0.047
33520 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.137H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.48 e Å3
8777 reflectionsΔρmin = 0.27 e Å3
404 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
H2A0.1618 (13)0.048 (3)0.1407 (7)0.021 (5)*
C10.08779 (9)0.3112 (2)0.19923 (5)0.0140 (3)
H1A0.09480.36960.23070.017*
H1B0.14850.25870.18970.017*
C20.06395 (9)0.4456 (2)0.16030 (5)0.0138 (3)
C30.03856 (9)0.4691 (2)0.14943 (4)0.0130 (3)
C40.10336 (9)0.31845 (19)0.16240 (5)0.0120 (3)
C50.20821 (9)0.34675 (19)0.15125 (5)0.0123 (3)
H50.20920.39250.11740.015*
C60.24693 (9)0.1597 (2)0.14945 (5)0.0136 (3)
H60.26090.11740.18330.016*
C70.07621 (9)0.15392 (19)0.13098 (5)0.0116 (3)
C80.00249 (9)0.06007 (19)0.16306 (5)0.0124 (3)
C90.07764 (9)0.2551 (2)0.21505 (5)0.0139 (3)
H9A0.12410.17250.22820.017*
H9B0.07400.35150.23790.017*
C100.08848 (9)0.0412 (2)0.12769 (5)0.0135 (3)
C110.06725 (9)0.1136 (2)0.08159 (5)0.0133 (3)
C120.02524 (9)0.18289 (19)0.08079 (5)0.0127 (3)
C130.05395 (10)0.2586 (2)0.03803 (5)0.0167 (3)
H130.11410.30780.03670.020*
C140.01019 (11)0.2604 (2)0.00437 (5)0.0202 (3)
H140.00960.30980.03360.024*
C150.10010 (10)0.1918 (2)0.00362 (5)0.0196 (3)
H150.13970.19380.03220.024*
C160.13281 (10)0.1180 (2)0.04057 (5)0.0163 (3)
C170.22466 (10)0.0493 (2)0.04838 (5)0.0201 (3)
H170.27120.05150.02280.024*
C180.24517 (10)0.0208 (2)0.09376 (6)0.0206 (3)
H180.30580.06450.09810.025*
C190.17692 (10)0.0282 (2)0.13393 (5)0.0170 (3)
H190.19170.07900.16390.020*
C210.12729 (9)0.5353 (2)0.13163 (5)0.0152 (3)
H210.10160.60460.10740.018*
C220.23170 (9)0.5386 (2)0.13336 (5)0.0159 (3)
C230.27629 (10)0.5428 (2)0.17870 (5)0.0184 (3)
H230.23990.52960.20810.022*
C240.37414 (10)0.5663 (2)0.18048 (6)0.0233 (3)
H240.40260.57300.21090.028*
C250.42886 (10)0.5797 (2)0.13671 (6)0.0257 (4)
H250.49440.59430.13760.031*
C260.38589 (10)0.5714 (2)0.09141 (6)0.0235 (3)
H260.42350.57810.06220.028*
C270.28759 (10)0.5533 (2)0.08876 (5)0.0181 (3)
C280.24307 (11)0.5548 (3)0.03907 (5)0.0240 (3)
H28A0.29170.54020.01330.036*
H28B0.19790.46200.03760.036*
H28C0.21120.66330.03460.036*
C510.26791 (9)0.4681 (2)0.18393 (5)0.0144 (3)
C520.28521 (10)0.4299 (2)0.23427 (5)0.0195 (3)
H520.25720.33230.24760.023*
C530.34327 (11)0.5341 (3)0.26488 (6)0.0245 (4)
H530.35480.50500.29810.029*
C540.38370 (11)0.6815 (2)0.24562 (6)0.0242 (3)
H540.42160.75330.26590.029*
C550.36716 (10)0.7212 (2)0.19578 (6)0.0215 (3)
H550.39420.82060.18300.026*
C560.31087 (9)0.6156 (2)0.16419 (5)0.0162 (3)
C570.30179 (10)0.6591 (2)0.10950 (5)0.0214 (3)
H57A0.33320.76710.10370.032*
H57B0.23570.66860.09930.032*
H57C0.33070.56920.09080.032*
C610.33606 (9)0.1507 (2)0.11991 (5)0.0140 (3)
C620.42569 (10)0.1631 (2)0.14398 (5)0.0176 (3)
H620.43070.16910.17840.021*
C630.50781 (10)0.1664 (2)0.11694 (6)0.0216 (3)
H630.56720.17500.13340.026*
C640.50103 (10)0.1570 (2)0.06563 (6)0.0222 (3)
H640.55580.15910.04750.027*
C650.41180 (10)0.1444 (2)0.04118 (5)0.0211 (3)
H650.40690.13820.00670.025*
C660.33007 (10)0.1409 (2)0.06832 (5)0.0176 (3)
H660.27080.13190.05180.021*
N10.01604 (8)0.17311 (17)0.20624 (4)0.0136 (2)
N20.16681 (8)0.06105 (18)0.12630 (4)0.0148 (2)
O10.06835 (7)0.60208 (15)0.13039 (4)0.0166 (2)
O20.03037 (7)0.09871 (14)0.18344 (3)0.0162 (2)
H20.02980.17270.16160.024*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0134 (5)0.0153 (7)0.0134 (6)0.0008 (5)0.0025 (4)0.0012 (5)
C20.0136 (5)0.0135 (7)0.0143 (6)0.0004 (5)0.0016 (4)0.0029 (5)
C30.0138 (5)0.0159 (7)0.0092 (5)0.0001 (5)0.0002 (4)0.0025 (5)
C40.0118 (5)0.0132 (7)0.0108 (5)0.0000 (5)0.0002 (4)0.0006 (5)
C50.0117 (5)0.0135 (7)0.0119 (5)0.0002 (5)0.0002 (4)0.0007 (5)
C60.0121 (5)0.0158 (7)0.0127 (5)0.0008 (5)0.0003 (4)0.0000 (5)
C70.0116 (5)0.0122 (7)0.0109 (5)0.0004 (5)0.0007 (4)0.0009 (5)
C80.0134 (5)0.0130 (7)0.0109 (5)0.0002 (5)0.0014 (4)0.0005 (5)
C90.0143 (5)0.0166 (7)0.0109 (5)0.0003 (5)0.0005 (4)0.0016 (5)
C100.0137 (5)0.0126 (7)0.0142 (6)0.0008 (5)0.0003 (4)0.0016 (5)
C110.0148 (5)0.0131 (7)0.0121 (5)0.0010 (5)0.0004 (4)0.0024 (5)
C120.0146 (5)0.0121 (7)0.0115 (5)0.0012 (5)0.0006 (4)0.0021 (5)
C130.0171 (6)0.0188 (8)0.0143 (6)0.0002 (6)0.0027 (5)0.0002 (6)
C140.0259 (7)0.0240 (9)0.0109 (6)0.0033 (7)0.0018 (5)0.0017 (6)
C150.0239 (7)0.0224 (8)0.0122 (6)0.0059 (6)0.0034 (5)0.0011 (6)
C160.0173 (6)0.0162 (7)0.0151 (6)0.0025 (6)0.0021 (5)0.0039 (6)
C170.0159 (6)0.0220 (9)0.0218 (7)0.0012 (6)0.0048 (5)0.0062 (6)
C180.0147 (6)0.0216 (8)0.0255 (7)0.0025 (6)0.0006 (5)0.0049 (6)
C190.0169 (6)0.0167 (7)0.0175 (6)0.0023 (6)0.0038 (5)0.0022 (6)
C210.0137 (6)0.0158 (7)0.0163 (6)0.0006 (6)0.0020 (4)0.0006 (6)
C220.0138 (6)0.0144 (7)0.0197 (6)0.0007 (6)0.0016 (5)0.0003 (6)
C230.0178 (6)0.0180 (8)0.0198 (6)0.0013 (6)0.0033 (5)0.0000 (6)
C240.0186 (6)0.0236 (9)0.0282 (7)0.0004 (6)0.0080 (5)0.0007 (7)
C250.0138 (6)0.0261 (9)0.0373 (9)0.0003 (6)0.0031 (6)0.0000 (7)
C260.0167 (6)0.0239 (9)0.0293 (8)0.0004 (6)0.0043 (5)0.0018 (7)
C270.0163 (6)0.0163 (8)0.0215 (7)0.0008 (6)0.0004 (5)0.0009 (6)
C280.0237 (7)0.0296 (10)0.0187 (7)0.0060 (7)0.0003 (5)0.0008 (7)
C510.0117 (5)0.0157 (7)0.0158 (6)0.0001 (5)0.0009 (4)0.0035 (5)
C520.0183 (6)0.0236 (8)0.0165 (6)0.0053 (6)0.0004 (5)0.0009 (6)
C530.0227 (7)0.0336 (10)0.0170 (6)0.0058 (7)0.0006 (5)0.0054 (7)
C540.0197 (6)0.0270 (9)0.0256 (7)0.0039 (7)0.0016 (5)0.0110 (7)
C550.0174 (6)0.0176 (8)0.0296 (8)0.0025 (6)0.0007 (5)0.0030 (7)
C560.0127 (5)0.0156 (7)0.0203 (6)0.0012 (6)0.0015 (5)0.0012 (6)
C570.0201 (6)0.0212 (8)0.0227 (7)0.0030 (6)0.0003 (5)0.0056 (6)
C610.0123 (5)0.0129 (7)0.0167 (6)0.0017 (5)0.0001 (4)0.0000 (5)
C620.0157 (6)0.0200 (8)0.0169 (6)0.0008 (6)0.0013 (5)0.0001 (6)
C630.0126 (6)0.0255 (9)0.0265 (7)0.0003 (6)0.0011 (5)0.0006 (7)
C640.0159 (6)0.0252 (9)0.0260 (7)0.0004 (6)0.0064 (5)0.0039 (7)
C650.0205 (6)0.0260 (9)0.0172 (6)0.0006 (7)0.0038 (5)0.0035 (6)
C660.0148 (6)0.0221 (8)0.0158 (6)0.0006 (6)0.0002 (5)0.0023 (6)
N10.0140 (5)0.0158 (6)0.0109 (5)0.0001 (5)0.0009 (4)0.0016 (5)
N20.0119 (5)0.0143 (6)0.0183 (5)0.0006 (5)0.0005 (4)0.0024 (5)
O10.0160 (4)0.0152 (5)0.0188 (5)0.0001 (4)0.0024 (3)0.0014 (4)
O20.0228 (5)0.0121 (5)0.0137 (4)0.0018 (4)0.0008 (4)0.0007 (4)
Geometric parameters (Å, º) top
C1—N11.4750 (18)C21—C221.4720 (18)
C1—C21.524 (2)C21—H210.9300
C1—H1A0.9700C22—C231.3997 (19)
C1—H1B0.9700C22—C271.4113 (19)
C2—C211.3451 (19)C23—C241.3916 (19)
C2—C31.4956 (17)C23—H230.9300
C3—O11.2303 (18)C24—C251.384 (2)
C3—C41.510 (2)C24—H240.9300
C4—C51.5343 (17)C25—C261.389 (2)
C4—C91.5598 (18)C25—H250.9300
C4—C71.565 (2)C26—C271.3950 (19)
C5—C511.5146 (19)C26—H260.9300
C5—C61.546 (2)C27—C281.505 (2)
C5—H50.9800C28—H28A0.9600
C6—N21.4757 (18)C28—H28B0.9600
C6—C611.5173 (18)C28—H28C0.9600
C6—H60.9800C51—C521.3997 (19)
C7—N21.4730 (17)C51—C561.405 (2)
C7—C121.5192 (18)C52—C531.391 (2)
C7—C81.6082 (18)C52—H520.9300
C8—O21.4131 (17)C53—C541.384 (3)
C8—N11.4747 (17)C53—H530.9300
C8—C101.5133 (18)C54—C551.388 (2)
C9—N11.4718 (17)C54—H540.9300
C9—H9A0.9700C55—C561.399 (2)
C9—H9B0.9700C55—H550.9300
C10—C191.3721 (18)C56—C571.512 (2)
C10—C111.4073 (18)C57—H57A0.9600
C11—C121.4082 (18)C57—H57B0.9600
C11—C161.4083 (18)C57—H57C0.9600
C12—C131.3703 (18)C61—C661.3921 (18)
C13—C141.4241 (19)C61—C621.3951 (18)
C13—H130.9300C62—C631.3940 (19)
C14—C151.372 (2)C62—H620.9300
C14—H140.9300C63—C641.385 (2)
C15—C161.417 (2)C63—H630.9300
C15—H150.9300C64—C651.395 (2)
C16—C171.421 (2)C64—H640.9300
C17—C181.380 (2)C65—C661.3910 (19)
C17—H170.9300C65—H650.9300
C18—C191.416 (2)C66—H660.9300
C18—H180.9300N2—H2A0.93 (2)
C19—H190.9300O2—H20.8200
N1—C1—C2114.20 (10)C18—C19—H19120.7
N1—C1—H1A108.7C2—C21—C22128.81 (13)
C2—C1—H1A108.7C2—C21—H21115.6
N1—C1—H1B108.7C22—C21—H21115.6
C2—C1—H1B108.7C23—C22—C27119.23 (13)
H1A—C1—H1B107.6C23—C22—C21121.02 (13)
C21—C2—C3116.37 (12)C27—C22—C21119.51 (12)
C21—C2—C1125.87 (12)C24—C23—C22121.09 (14)
C3—C2—C1117.52 (12)C24—C23—H23119.5
O1—C3—C2122.21 (13)C22—C23—H23119.5
O1—C3—C4121.78 (12)C25—C24—C23119.56 (14)
C2—C3—C4116.00 (12)C25—C24—H24120.2
C3—C4—C5114.87 (12)C23—C24—H24120.2
C3—C4—C9106.86 (10)C24—C25—C26119.97 (14)
C5—C4—C9119.19 (10)C24—C25—H25120.0
C3—C4—C7111.75 (10)C26—C25—H25120.0
C5—C4—C7102.88 (10)C25—C26—C27121.44 (14)
C9—C4—C7100.20 (11)C25—C26—H26119.3
C51—C5—C4119.13 (11)C27—C26—H26119.3
C51—C5—C6114.20 (11)C26—C27—C22118.67 (13)
C4—C5—C6102.49 (11)C26—C27—C28119.89 (13)
C51—C5—H5106.7C22—C27—C28121.42 (12)
C4—C5—H5106.7C27—C28—H28A109.5
C6—C5—H5106.7C27—C28—H28B109.5
N2—C6—C61112.81 (11)H28A—C28—H28B109.5
N2—C6—C5103.45 (10)C27—C28—H28C109.5
C61—C6—C5111.10 (12)H28A—C28—H28C109.5
N2—C6—H6109.8H28B—C28—H28C109.5
C61—C6—H6109.8C52—C51—C56118.67 (13)
C5—C6—H6109.8C52—C51—C5120.07 (13)
N2—C7—C12111.75 (10)C56—C51—C5121.18 (12)
N2—C7—C4104.53 (10)C53—C52—C51121.65 (15)
C12—C7—C4117.16 (12)C53—C52—H52119.2
N2—C7—C8116.49 (12)C51—C52—H52119.2
C12—C7—C8103.71 (10)C54—C53—C52119.58 (15)
C4—C7—C8103.41 (10)C54—C53—H53120.2
O2—C8—N1104.98 (10)C52—C53—H53120.2
O2—C8—C10113.56 (12)C53—C54—C55119.42 (15)
N1—C8—C10115.24 (11)C53—C54—H54120.3
O2—C8—C7112.30 (10)C55—C54—H54120.3
N1—C8—C7105.94 (11)C54—C55—C56121.76 (16)
C10—C8—C7104.74 (10)C54—C55—H55119.1
N1—C9—C4103.36 (10)C56—C55—H55119.1
N1—C9—H9A111.1C55—C56—C51118.88 (13)
C4—C9—H9A111.1C55—C56—C57118.99 (14)
N1—C9—H9B111.1C51—C56—C57122.07 (13)
C4—C9—H9B111.1C56—C57—H57A109.5
H9A—C9—H9B109.1C56—C57—H57B109.5
C19—C10—C11119.56 (12)H57A—C57—H57B109.5
C19—C10—C8131.59 (12)C56—C57—H57C109.5
C11—C10—C8108.84 (11)H57A—C57—H57C109.5
C10—C11—C12113.44 (12)H57B—C57—H57C109.5
C10—C11—C16123.08 (12)C66—C61—C62118.77 (12)
C12—C11—C16123.47 (13)C66—C61—C6120.88 (12)
C13—C12—C11118.88 (12)C62—C61—C6120.24 (12)
C13—C12—C7131.88 (12)C63—C62—C61120.72 (13)
C11—C12—C7109.24 (11)C63—C62—H62119.6
C12—C13—C14118.67 (13)C61—C62—H62119.6
C12—C13—H13120.7C64—C63—C62120.04 (13)
C14—C13—H13120.7C64—C63—H63120.0
C15—C14—C13122.37 (13)C62—C63—H63120.0
C15—C14—H14118.8C63—C64—C65119.74 (13)
C13—C14—H14118.8C63—C64—H64120.1
C14—C15—C16120.16 (13)C65—C64—H64120.1
C14—C15—H15119.9C66—C65—C64120.01 (13)
C16—C15—H15119.9C66—C65—H65120.0
C11—C16—C15116.39 (13)C64—C65—H65120.0
C11—C16—C17116.23 (13)C65—C66—C61120.73 (13)
C15—C16—C17127.38 (13)C65—C66—H66119.6
C18—C17—C16120.37 (13)C61—C66—H66119.6
C18—C17—H17119.8C9—N1—C8103.62 (10)
C16—C17—H17119.8C9—N1—C1108.17 (12)
C17—C18—C19122.17 (13)C8—N1—C1116.07 (10)
C17—C18—H18118.9C7—N2—C6111.07 (11)
C19—C18—H18118.9C7—N2—H2A108.8 (11)
C10—C19—C18118.53 (13)C6—N2—H2A111.1 (11)
C10—C19—H19120.7C8—O2—H2109.5
N1—C1—C2—C21149.63 (14)C12—C11—C16—C152.2 (2)
N1—C1—C2—C324.42 (17)C10—C11—C16—C171.9 (2)
C21—C2—C3—O126.7 (2)C12—C11—C16—C17177.20 (14)
C1—C2—C3—O1158.71 (13)C14—C15—C16—C112.5 (2)
C21—C2—C3—C4152.30 (13)C14—C15—C16—C17176.78 (16)
C1—C2—C3—C422.32 (17)C11—C16—C17—C181.6 (2)
O1—C3—C4—C51.50 (18)C15—C16—C17—C18179.11 (16)
C2—C3—C4—C5179.52 (11)C16—C17—C18—C190.3 (3)
O1—C3—C4—C9136.12 (13)C11—C10—C19—C181.5 (2)
C2—C3—C4—C944.91 (15)C8—C10—C19—C18177.39 (15)
O1—C3—C4—C7115.20 (14)C17—C18—C19—C101.9 (2)
C2—C3—C4—C763.77 (14)C3—C2—C21—C22179.94 (14)
C3—C4—C5—C5172.82 (15)C1—C2—C21—C225.8 (3)
C9—C4—C5—C5155.89 (19)C2—C21—C22—C2341.3 (2)
C7—C4—C5—C51165.51 (12)C2—C21—C22—C27144.41 (17)
C3—C4—C5—C6160.01 (11)C27—C22—C23—C241.9 (2)
C9—C4—C5—C671.28 (15)C21—C22—C23—C24172.40 (15)
C7—C4—C5—C638.34 (12)C22—C23—C24—C252.3 (3)
C51—C5—C6—N2166.72 (10)C23—C24—C25—C260.7 (3)
C4—C5—C6—N236.46 (12)C24—C25—C26—C271.4 (3)
C51—C5—C6—C6171.98 (14)C25—C26—C27—C221.7 (3)
C4—C5—C6—C61157.77 (10)C25—C26—C27—C28176.57 (17)
C3—C4—C7—N2149.97 (11)C23—C22—C27—C260.1 (2)
C5—C4—C7—N226.21 (13)C21—C22—C27—C26174.49 (15)
C9—C4—C7—N297.13 (11)C23—C22—C27—C28178.19 (16)
C3—C4—C7—C1225.69 (15)C21—C22—C27—C283.8 (2)
C5—C4—C7—C1298.08 (12)C4—C5—C51—C5263.48 (18)
C9—C4—C7—C12138.59 (11)C6—C5—C51—C5257.98 (16)
C3—C4—C7—C887.65 (12)C4—C5—C51—C56119.80 (14)
C5—C4—C7—C8148.58 (10)C6—C5—C51—C56118.73 (14)
C9—C4—C7—C825.25 (12)C56—C51—C52—C530.2 (2)
N2—C7—C8—O21.91 (16)C5—C51—C52—C53177.00 (14)
C12—C7—C8—O2125.13 (11)C51—C52—C53—C541.3 (2)
C4—C7—C8—O2112.11 (12)C52—C53—C54—C551.2 (2)
N2—C7—C8—N1115.97 (12)C53—C54—C55—C560.3 (2)
C12—C7—C8—N1120.81 (11)C54—C55—C56—C511.8 (2)
C4—C7—C8—N11.96 (13)C54—C55—C56—C57175.45 (14)
N2—C7—C8—C10121.77 (12)C52—C51—C56—C551.7 (2)
C12—C7—C8—C101.45 (14)C5—C51—C56—C55178.49 (13)
C4—C7—C8—C10124.21 (11)C52—C51—C56—C57175.45 (13)
C3—C4—C9—N171.24 (13)C5—C51—C56—C571.3 (2)
C5—C4—C9—N1156.48 (12)N2—C6—C61—C6633.4 (2)
C7—C4—C9—N145.38 (13)C5—C6—C61—C6682.26 (17)
O2—C8—C10—C1957.4 (2)N2—C6—C61—C62150.62 (14)
N1—C8—C10—C1963.8 (2)C5—C6—C61—C6293.74 (16)
C7—C8—C10—C19179.77 (16)C66—C61—C62—C630.3 (2)
O2—C8—C10—C11123.63 (13)C6—C61—C62—C63175.75 (15)
N1—C8—C10—C11115.22 (13)C61—C62—C63—C640.2 (3)
C7—C8—C10—C110.75 (15)C62—C63—C64—C650.1 (3)
C19—C10—C11—C12178.83 (14)C63—C64—C65—C660.1 (3)
C8—C10—C11—C120.32 (17)C64—C65—C66—C610.3 (3)
C19—C10—C11—C160.4 (2)C62—C61—C66—C650.4 (2)
C8—C10—C11—C16179.54 (13)C6—C61—C66—C65175.66 (15)
C10—C11—C12—C13179.37 (14)C4—C9—N1—C848.13 (13)
C16—C11—C12—C130.2 (2)C4—C9—N1—C175.60 (12)
C10—C11—C12—C71.34 (17)O2—C8—N1—C988.49 (12)
C16—C11—C12—C7179.45 (13)C10—C8—N1—C9145.81 (12)
N2—C7—C12—C1354.6 (2)C7—C8—N1—C930.52 (13)
C4—C7—C12—C1366.0 (2)O2—C8—N1—C1153.10 (11)
C8—C7—C12—C13179.16 (16)C10—C8—N1—C127.41 (16)
N2—C7—C12—C11124.59 (13)C7—C8—N1—C187.88 (13)
C4—C7—C12—C11114.86 (13)C2—C1—N1—C952.05 (14)
C8—C7—C12—C111.68 (15)C2—C1—N1—C863.82 (15)
C11—C12—C13—C141.5 (2)C12—C7—N2—C6124.29 (12)
C7—C12—C13—C14177.57 (15)C4—C7—N2—C63.38 (14)
C12—C13—C14—C151.2 (2)C8—C7—N2—C6116.76 (13)
C13—C14—C15—C161.0 (3)C61—C6—N2—C7140.82 (12)
C10—C11—C16—C15178.67 (14)C5—C6—N2—C720.68 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.822.022.7828 (15)155
C1—H1A···O2ii0.972.463.3040 (16)145
C57—H57B···O10.962.593.3859 (18)141
N2—H2A···O20.92 (2)2.27 (2)2.8016 (18)117 (2)
Symmetry codes: (i) x, y1, z; (ii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC40H34N2O2
Mr574.69
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)14.0679 (2), 7.7245 (1), 26.9686 (3)
β (°) 92.596 (1)
V3)2927.60 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.21 × 0.15 × 0.13
Data collection
DiffractometerBruker Kappa APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.973, 0.978
No. of measured, independent and
observed [I > 2σ(I)] reflections
33520, 8777, 6575
Rint0.047
(sin θ/λ)max1)0.711
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.137, 1.02
No. of reflections8777
No. of parameters404
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.48, 0.27

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.822.022.7828 (15)155
C1—H1A···O2ii0.972.463.3040 (16)145
C57—H57B···O10.962.593.3859 (18)141
N2—H2A···O20.92 (2)2.27 (2)2.8016 (18)117 (2)
Symmetry codes: (i) x, y1, z; (ii) x, y+1/2, z+1/2.
 

Acknowledgements

This project was supported by the Research Center, College of Science, King Saud University.

References

First citationAsano, N., Nash, R. J., Molyneux, R. J. & Fleet, G. W. J. (2000). Tetrahedron Asymmetry, 11, 1645–1680.  Web of Science CrossRef CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.  CrossRef CAS Web of Science Google Scholar
First citationKumar, R. S., Osman, H., Abdul Rahim, A. S., Hemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o3045.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKumar, R. S., Osman, H., Rahim, A. S. A., Hemamalini, M. & Fun, H.-K. (2011). Acta Cryst. E67, o2881–o2882.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKumar, R. S., Osman, H., Almansour, A. I., Arshad, S. & Razak, I. A. (2012). Acta Cryst. E68, o2094–o2095.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShorvon, S. (2001). Lancet, 358, 1885–92.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWatson, A. A., Fleet, G. W. J., Asano, N., Molyneux, R. J. & Nash, R. J. (2001). Phytochemistry, 56, 265–295.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWinchester, B. & Fleet, G. W. J. (1992). Glycobiology, 2, 199–210.  CrossRef PubMed CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds