organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 12| December 2012| Pages o3290-o3291

11-Hy­dr­oxy-9-[1-(4-methyl­phen­yl)-4-oxo-3-phenyl­azetidin-2-yl]-18-oxo-10-oxa-2-aza­penta­cyclo­[9.7.0.01,8.02,6.012,17]octa­deca-12,14,16-triene-8-carbo­nitrile

aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: shirai2011@gmail.com

(Received 12 October 2012; accepted 26 October 2012; online 7 November 2012)

In the title compound, C33H29N3O5, the four-membered ring of the β-lactam fragment is essentially planar (r.m.s. deviation = 0.0122 Å), with the carbonyl O atom displaced from this ring by 0.856 (9) Å. The mean planes of the meth­oxy­phenyl and phenyl rings are inclined at dihedral angles 85.10 (7) and 21.56 (14)°, respectively, with respect to the mean plane of the four-membered ring. The pyrrolidine rings adopt envelope conformations with C atoms lying 0.535 (4) and 0.519 (4) Å out of the planes formed by the remaining ring atoms. The furan ring also adopts an envelope conformation with a C atom 0.560 (3) Å out of the plane formed by the remaining ring atoms. The nine-membered indene ring is almost planar (r.m.s. deviation = 0.0240 Å), with the carbonyl O atom displaced by 0.145 (3) Å from this ring. The mol­ecular structure is stabilized by a strong intra­molecular O—H⋯N hydrogen bond and the crystal structure is consolidated by C—H⋯O hydrogen bonds.

Related literature

For general background to β-lactams, see: Brakhage (1998[Brakhage, A. A. (1998). Microbiol. Mol. Biol. Rev. 62, 547-585.]). For a related structure, see: Sundaramoorthy et al. (2012[Sundaramoorthy, S., Rajesh, R., Raghunathan, R. & Velmurugan, D. (2012). Acta Cryst. E68, o2200-o2201.]).

[Scheme 1]

Experimental

Crystal data
  • C33H29N3O5

  • Mr = 547.59

  • Orthorhombic, P 21 21 21

  • a = 10.2874 (16) Å

  • b = 14.138 (3) Å

  • c = 18.866 (3) Å

  • V = 2743.9 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Bruker SMART APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.973, Tmax = 0.982

  • 14810 measured reflections

  • 6406 independent reflections

  • 4551 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.123

  • S = 1.00

  • 6406 reflections

  • 375 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10⋯O2i 0.98 2.43 3.337 (3) 154
C13—H13A⋯O2i 0.97 2.41 3.321 (3) 156
C29—H29⋯O4i 0.93 2.55 3.228 (3) 130
O4—H4A⋯N2 0.93 (3) 1.84 (3) 2.602 (3) 137 (3)
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The most commonly used β-lactam antibiotics for the therapy of infectious diseases are penicillin and cephalosporin (Brakhage, 1998). In view of potential applications, the crystal structure determination of the titled β-lactam derivative was carried out that is reported in this artiucle.

In the title compound (Fig. 1), the four membered ring of the β-lactam fragment (N1/C8–C10) is essentially planar (rmsd = 0.0122 Å) with O1 displaced from this ring by 0.856 (9) Å. The mean-planes of the benzene rings C2–C7 and C27–C32 are inclined at dihedral angles 85.10 (7) and 21.56 (14)°, respectively, with respect to the mean-plane of the four membered ring (N1/C8–C10).

The pyrrolidine rings (N1/C14–C17) and (N2/C12–C14/C18) adopt C16- and C13-envelope conformations with C16 and C13 atoms lying 0.535 (4) and 0.519 (4) Å, respectively, out of the planes formed by the remaining ring atoms. The furan ring (O3/C11/C12/C18/C19) also adopts a C11-envelope conformation with C11 atom 0.560 (3) Å out of the plane formed by the remaining ring atoms. The nine membered indene ring (C18–C26) is almost planar (rmsd = 0.0240 Å) with O5 displaced by 0.145 (3)Å from this ring.

The molecular structure of the title compound is stabilized by a strong intramolecular hydrogen bond O4—H4A···N2 (Table 1). The crystal structure is consolidated by intermolecular C—H···O hydrogen bonds (Tab. 1 & Fig. 2).

Related literature top

For general background to β-lactams, see: Brakhage (1998). For a related structure, see: Sundaramoorthy et al. (2012).

Experimental top

A reaction mixture of 2-(hydroxy(1-(4-methoxyphenyl)-4-oxo-3-phenylazetidin -2-yl)methyl)acrylonitrile (1.0 mmol), ninhydrine (1.1 mmol) and proline (1.1 mmol) was refluxed in methanol (20 ml) until completion of the reaction was evidenced by TLC analysis. After completion of the reaction the solvent was evaporated under reduced pressure. The crude reaction mixture was dissolved in dichloromethane (2 x 50 ml) and washed with water followed by brine solution. The organic layer was separated and dried over sodium sulfate. After filteration and evaporation of the organic solvent was carried out under reduced pressure. The product was separated by column chromatography using hexane and ethyl acetate (4:6) as an eluent to give a colorless solid. The product was dissolved in chloroform (3 ml) and heated for two minutes. The resulting solution was subjected to crystallization by slow evaporation of the solvent resulting in single crystals suitable for X-ray crystallographic studies.

Refinement top

All H atoms bonded to C-atoms were positioned geometrically and refined using a riding model, with C—H = 0.93, 0.96, 0.97 and 0.98 Å, for aryl, methyl, methylene and methine H-atoms, respectively. The Uiso(H) were allowed at 1.5Ueq(C methyl) or 1.2Ueq(C non-methyl). The hydroxy H-atom was located from a difference map and was alloewed to refine freely. An absolute structure was not established due to insufficient anomalous dispersion effects. Therefore, 2699 Friedel pairs of reflections were merged.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids drawn at the 30% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed down a axis. H-atoms not involved in H-bonds have been excluded for clarity.
11-Hydroxy-9-[1-(4-methylphenyl)-4-oxo-3-phenylazetidin-2-yl]-18-oxo-10-oxa- 2-azapentacyclo[9.7.0.01,8.02,6.012,17]octadeca-12,14,16-triene-8- carbonitrile top
Crystal data top
C33H29N3O5F(000) = 1152
Mr = 547.59Dx = 1.326 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 6406 reflections
a = 10.2874 (16) Åθ = 1.8–28.0°
b = 14.138 (3) ŵ = 0.09 mm1
c = 18.866 (3) ÅT = 293 K
V = 2743.9 (8) Å3Block, colourless
Z = 40.30 × 0.25 × 0.20 mm
Data collection top
Bruker SMART APEXII area-detector
diffractometer
6406 independent reflections
Radiation source: fine-focus sealed tube4551 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ω and ϕ scansθmax = 28.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 713
Tmin = 0.973, Tmax = 0.982k = 1818
14810 measured reflectionsl = 2423
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0605P)2 + 0.2909P]
where P = (Fo2 + 2Fc2)/3
6406 reflections(Δ/σ)max < 0.001
375 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C33H29N3O5V = 2743.9 (8) Å3
Mr = 547.59Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 10.2874 (16) ŵ = 0.09 mm1
b = 14.138 (3) ÅT = 293 K
c = 18.866 (3) Å0.30 × 0.25 × 0.20 mm
Data collection top
Bruker SMART APEXII area-detector
diffractometer
6406 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
4551 reflections with I > 2σ(I)
Tmin = 0.973, Tmax = 0.982Rint = 0.034
14810 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.123H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.25 e Å3
6406 reflectionsΔρmin = 0.16 e Å3
375 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5616 (4)0.7130 (2)0.3845 (2)0.1143 (16)
H1A0.64950.71150.40160.171*
H1B0.53560.77750.37700.171*
H1C0.55620.67890.34070.171*
C20.4988 (2)0.57555 (16)0.45053 (11)0.0485 (6)
C30.6029 (2)0.52399 (16)0.42370 (12)0.0491 (5)
H30.66240.55270.39350.059*
C40.6177 (2)0.42957 (16)0.44211 (12)0.0456 (5)
H40.68740.39510.42430.055*
C50.5287 (2)0.38631 (14)0.48714 (9)0.0364 (4)
C60.4241 (2)0.43760 (16)0.51336 (11)0.0461 (5)
H60.36360.40870.54290.055*
C70.4105 (3)0.53205 (17)0.49536 (13)0.0538 (6)
H70.34120.56670.51360.065*
C80.6046 (2)0.21567 (16)0.47055 (11)0.0394 (5)
C90.5463 (2)0.14150 (15)0.52086 (10)0.0386 (5)
H90.61200.10860.54930.046*
C100.4835 (2)0.22795 (14)0.56050 (10)0.0363 (4)
H100.38840.22770.55710.044*
C110.5303 (2)0.25097 (16)0.63567 (10)0.0394 (5)
H110.52250.31940.64290.047*
C120.4597 (2)0.19991 (15)0.69836 (10)0.0384 (5)
C130.3429 (2)0.25415 (18)0.72944 (12)0.0486 (6)
H13A0.29130.28270.69210.058*
H13B0.28800.21250.75720.058*
C140.4057 (2)0.32998 (17)0.77630 (12)0.0510 (6)
H140.42820.38560.74780.061*
C150.3287 (3)0.3600 (2)0.84225 (15)0.0708 (8)
H15A0.34890.42470.85530.085*
H15B0.23590.35470.83400.085*
C160.3722 (4)0.2922 (2)0.89897 (15)0.0761 (9)
H16A0.32320.23360.89670.091*
H16B0.36190.31970.94570.091*
C170.5135 (4)0.2754 (2)0.88228 (13)0.0788 (10)
H17A0.56750.32200.90600.095*
H17B0.53980.21290.89780.095*
C180.5657 (2)0.20575 (15)0.75882 (10)0.0402 (5)
C190.6952 (2)0.22920 (17)0.71836 (11)0.0452 (5)
C200.5949 (2)0.11036 (17)0.79611 (10)0.0456 (5)
C210.7328 (2)0.08641 (17)0.78283 (11)0.0482 (6)
C220.7901 (2)0.15161 (18)0.73715 (12)0.0491 (6)
C230.9189 (3)0.1410 (2)0.71638 (14)0.0692 (8)
H230.95760.18380.68550.083*
C240.9880 (3)0.0645 (3)0.74306 (16)0.0816 (9)
H241.07440.05630.72990.098*
C250.9311 (3)0.0003 (3)0.78893 (17)0.0795 (9)
H250.98000.05000.80610.095*
C260.8033 (3)0.00942 (19)0.80953 (14)0.0639 (7)
H260.76510.03400.84010.077*
C270.4551 (2)0.07495 (14)0.48296 (10)0.0392 (5)
C280.3612 (2)0.10843 (16)0.43596 (11)0.0434 (5)
H280.35410.17320.42840.052*
C290.2783 (2)0.04784 (17)0.40026 (12)0.0515 (6)
H290.21630.07180.36920.062*
C300.2885 (3)0.04835 (18)0.41119 (14)0.0614 (7)
H300.23320.08950.38730.074*
C310.3803 (3)0.08373 (18)0.45731 (14)0.0678 (8)
H310.38620.14860.46480.081*
C320.4644 (3)0.02266 (16)0.49279 (12)0.0546 (6)
H320.52720.04710.52320.066*
C330.4248 (2)0.10128 (17)0.67921 (11)0.0453 (5)
N10.54457 (16)0.28914 (12)0.50512 (8)0.0385 (4)
N20.5264 (2)0.28416 (13)0.80428 (10)0.0507 (5)
N30.3949 (2)0.02553 (16)0.66654 (12)0.0653 (6)
O10.4773 (2)0.67002 (12)0.43580 (11)0.0735 (6)
O20.67202 (16)0.21280 (12)0.41786 (9)0.0542 (4)
O30.66478 (15)0.22531 (11)0.64393 (7)0.0463 (4)
O40.7423 (2)0.31898 (13)0.73731 (10)0.0601 (5)
O50.51536 (18)0.06443 (13)0.82903 (9)0.0626 (5)
H4A0.679 (3)0.335 (2)0.7702 (17)0.076 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.151 (4)0.0565 (19)0.136 (3)0.018 (2)0.072 (3)0.040 (2)
C20.0609 (15)0.0398 (11)0.0449 (12)0.0010 (11)0.0029 (11)0.0046 (9)
C30.0504 (14)0.0484 (13)0.0483 (12)0.0070 (11)0.0073 (11)0.0095 (10)
C40.0416 (13)0.0462 (12)0.0490 (12)0.0032 (10)0.0024 (10)0.0061 (10)
C50.0401 (11)0.0389 (10)0.0302 (9)0.0009 (9)0.0017 (9)0.0016 (8)
C60.0495 (14)0.0436 (12)0.0453 (11)0.0018 (10)0.0096 (10)0.0053 (10)
C70.0576 (15)0.0469 (13)0.0569 (14)0.0086 (11)0.0116 (12)0.0016 (11)
C80.0322 (10)0.0483 (12)0.0378 (10)0.0010 (10)0.0003 (9)0.0014 (9)
C90.0412 (11)0.0396 (11)0.0351 (10)0.0050 (9)0.0026 (9)0.0026 (8)
C100.0394 (11)0.0368 (10)0.0327 (9)0.0013 (9)0.0003 (8)0.0035 (8)
C110.0420 (12)0.0413 (11)0.0348 (10)0.0033 (9)0.0035 (9)0.0030 (8)
C120.0450 (12)0.0366 (11)0.0336 (9)0.0028 (9)0.0017 (9)0.0003 (8)
C130.0480 (14)0.0573 (14)0.0406 (11)0.0020 (11)0.0004 (10)0.0001 (10)
C140.0569 (15)0.0469 (13)0.0491 (12)0.0064 (11)0.0008 (11)0.0037 (10)
C150.0767 (19)0.0723 (18)0.0634 (16)0.0013 (16)0.0074 (14)0.0204 (15)
C160.114 (3)0.0599 (17)0.0547 (15)0.0283 (17)0.0223 (16)0.0133 (13)
C170.121 (3)0.075 (2)0.0403 (13)0.0251 (19)0.0113 (16)0.0136 (13)
C180.0483 (13)0.0414 (11)0.0311 (9)0.0035 (10)0.0034 (9)0.0005 (9)
C190.0500 (13)0.0498 (13)0.0357 (10)0.0089 (11)0.0074 (10)0.0028 (9)
C200.0567 (15)0.0481 (13)0.0319 (10)0.0025 (11)0.0041 (10)0.0023 (9)
C210.0567 (15)0.0495 (13)0.0386 (11)0.0023 (11)0.0093 (10)0.0012 (10)
C220.0466 (14)0.0635 (15)0.0371 (10)0.0009 (11)0.0088 (10)0.0039 (10)
C230.0532 (17)0.101 (2)0.0531 (14)0.0014 (16)0.0042 (13)0.0038 (15)
C240.0574 (18)0.121 (3)0.0660 (17)0.0263 (19)0.0088 (15)0.0056 (19)
C250.076 (2)0.084 (2)0.0776 (19)0.0295 (18)0.0236 (17)0.0081 (17)
C260.077 (2)0.0542 (15)0.0610 (15)0.0083 (14)0.0172 (15)0.0064 (13)
C270.0474 (12)0.0361 (10)0.0342 (10)0.0048 (9)0.0024 (9)0.0014 (8)
C280.0452 (13)0.0392 (11)0.0459 (11)0.0036 (10)0.0009 (10)0.0013 (10)
C290.0522 (14)0.0528 (14)0.0494 (13)0.0003 (11)0.0089 (11)0.0015 (11)
C300.0813 (19)0.0471 (14)0.0558 (14)0.0145 (13)0.0054 (14)0.0070 (11)
C310.109 (2)0.0323 (12)0.0621 (15)0.0002 (14)0.0115 (16)0.0003 (11)
C320.0758 (17)0.0388 (12)0.0491 (12)0.0119 (12)0.0102 (12)0.0030 (10)
C330.0511 (14)0.0466 (13)0.0382 (10)0.0049 (10)0.0031 (10)0.0017 (10)
N10.0413 (10)0.0396 (9)0.0345 (8)0.0001 (8)0.0041 (7)0.0040 (7)
N20.0653 (13)0.0451 (10)0.0416 (9)0.0050 (10)0.0082 (9)0.0075 (8)
N30.0829 (17)0.0497 (13)0.0633 (13)0.0155 (12)0.0078 (12)0.0038 (11)
O10.0946 (15)0.0422 (9)0.0838 (12)0.0107 (10)0.0267 (12)0.0173 (9)
O20.0499 (10)0.0567 (10)0.0560 (10)0.0011 (8)0.0167 (8)0.0038 (8)
O30.0413 (9)0.0605 (10)0.0371 (8)0.0055 (7)0.0031 (6)0.0063 (7)
O40.0670 (12)0.0543 (10)0.0590 (10)0.0237 (9)0.0130 (10)0.0045 (9)
O50.0707 (12)0.0609 (11)0.0563 (9)0.0074 (10)0.0027 (9)0.0211 (8)
Geometric parameters (Å, º) top
C1—O11.434 (4)C15—H15B0.9700
C1—H1A0.9600C16—C171.506 (5)
C1—H1B0.9600C16—H16A0.9700
C1—H1C0.9600C16—H16B0.9700
C2—O11.382 (3)C17—N21.483 (3)
C2—C71.385 (3)C17—H17A0.9700
C2—C31.391 (3)C17—H17B0.9700
C3—C41.388 (3)C18—N21.459 (3)
C3—H30.9300C18—C201.550 (3)
C4—C51.391 (3)C18—C191.571 (3)
C4—H40.9300C19—O41.405 (3)
C5—C61.388 (3)C19—O31.440 (2)
C5—N11.424 (3)C19—C221.511 (3)
C6—C71.385 (3)C20—O51.215 (3)
C6—H60.9300C20—C211.480 (4)
C7—H70.9300C21—C221.393 (3)
C8—O21.213 (2)C21—C261.402 (3)
C8—N11.373 (3)C22—C231.390 (4)
C8—C91.536 (3)C23—C241.388 (4)
C9—C271.509 (3)C23—H230.9300
C9—C101.572 (3)C24—C251.385 (5)
C9—H90.9800C24—H240.9300
C10—N11.495 (2)C25—C261.377 (4)
C10—C111.533 (3)C25—H250.9300
C10—H100.9800C26—H260.9300
C11—O31.439 (3)C27—C281.394 (3)
C11—C121.564 (3)C27—C321.396 (3)
C11—H110.9800C28—C291.384 (3)
C12—C331.484 (3)C28—H280.9300
C12—C131.541 (3)C29—C301.380 (3)
C12—C181.581 (3)C29—H290.9300
C13—C141.532 (3)C30—C311.378 (4)
C13—H13A0.9700C30—H300.9300
C13—H13B0.9700C31—C321.394 (4)
C14—N21.497 (3)C31—H310.9300
C14—C151.535 (4)C32—H320.9300
C14—H140.9800C33—N31.140 (3)
C15—C161.505 (4)O4—H4A0.93 (3)
C15—H15A0.9700
O1—C1—H1A109.5C17—C16—H16A111.0
O1—C1—H1B109.5C15—C16—H16B111.0
H1A—C1—H1B109.5C17—C16—H16B111.0
O1—C1—H1C109.5H16A—C16—H16B109.0
H1A—C1—H1C109.5N2—C17—C16106.3 (2)
H1B—C1—H1C109.5N2—C17—H17A110.5
O1—C2—C7116.5 (2)C16—C17—H17A110.5
O1—C2—C3123.8 (2)N2—C17—H17B110.5
C7—C2—C3119.6 (2)C16—C17—H17B110.5
C4—C3—C2119.8 (2)H17A—C17—H17B108.7
C4—C3—H3120.1N2—C18—C20116.61 (16)
C2—C3—H3120.1N2—C18—C19111.12 (18)
C3—C4—C5120.2 (2)C20—C18—C19103.89 (18)
C3—C4—H4119.9N2—C18—C12105.82 (17)
C5—C4—H4119.9C20—C18—C12114.56 (17)
C6—C5—C4119.87 (19)C19—C18—C12104.23 (15)
C6—C5—N1120.51 (18)O4—C19—O3110.96 (17)
C4—C5—N1119.61 (18)O4—C19—C22111.93 (19)
C7—C6—C5119.7 (2)O3—C19—C22109.98 (19)
C7—C6—H6120.2O4—C19—C18111.07 (19)
C5—C6—H6120.2O3—C19—C18106.35 (17)
C6—C7—C2120.7 (2)C22—C19—C18106.31 (18)
C6—C7—H7119.6O5—C20—C21127.6 (2)
C2—C7—H7119.6O5—C20—C18124.5 (2)
O2—C8—N1132.2 (2)C21—C20—C18107.93 (19)
O2—C8—C9135.0 (2)C22—C21—C26121.1 (2)
N1—C8—C992.72 (15)C22—C21—C20111.0 (2)
C27—C9—C8112.06 (16)C26—C21—C20127.8 (2)
C27—C9—C10117.04 (18)C23—C22—C21120.4 (2)
C8—C9—C1085.62 (15)C23—C22—C19128.9 (2)
C27—C9—H9113.1C21—C22—C19110.6 (2)
C8—C9—H9113.1C24—C23—C22118.1 (3)
C10—C9—H9113.1C24—C23—H23121.0
N1—C10—C11113.07 (16)C22—C23—H23121.0
N1—C10—C986.83 (14)C25—C24—C23121.4 (3)
C11—C10—C9118.45 (17)C25—C24—H24119.3
N1—C10—H10112.1C23—C24—H24119.3
C11—C10—H10112.1C26—C25—C24121.2 (3)
C9—C10—H10112.1C26—C25—H25119.4
O3—C11—C10110.40 (17)C24—C25—H25119.4
O3—C11—C12104.37 (16)C25—C26—C21117.7 (3)
C10—C11—C12117.12 (17)C25—C26—H26121.1
O3—C11—H11108.2C21—C26—H26121.1
C10—C11—H11108.2C28—C27—C32117.9 (2)
C12—C11—H11108.2C28—C27—C9121.37 (18)
C33—C12—C13111.82 (19)C32—C27—C9120.69 (19)
C33—C12—C11111.20 (17)C29—C28—C27121.8 (2)
C13—C12—C11114.83 (18)C29—C28—H28119.1
C33—C12—C18113.06 (18)C27—C28—H28119.1
C13—C12—C18103.73 (16)C30—C29—C28119.4 (2)
C11—C12—C18101.59 (16)C30—C29—H29120.3
C14—C13—C12103.85 (19)C28—C29—H29120.3
C14—C13—H13A111.0C31—C30—C29120.3 (2)
C12—C13—H13A111.0C31—C30—H30119.9
C14—C13—H13B111.0C29—C30—H30119.9
C12—C13—H13B111.0C30—C31—C32120.3 (2)
H13A—C13—H13B109.0C30—C31—H31119.9
N2—C14—C13104.49 (18)C32—C31—H31119.9
N2—C14—C15105.2 (2)C31—C32—C27120.4 (2)
C13—C14—C15116.4 (2)C31—C32—H32119.8
N2—C14—H14110.1C27—C32—H32119.8
C13—C14—H14110.1N3—C33—C12177.5 (3)
C15—C14—H14110.1C8—N1—C5131.91 (16)
C16—C15—C14104.3 (2)C8—N1—C1094.77 (16)
C16—C15—H15A110.9C5—N1—C10132.56 (16)
C14—C15—H15A110.9C18—N2—C17123.04 (19)
C16—C15—H15B110.9C18—N2—C14110.58 (16)
C14—C15—H15B110.9C17—N2—C14108.1 (2)
H15A—C15—H15B108.9C2—O1—C1116.7 (2)
C15—C16—C17103.8 (2)C11—O3—C19107.76 (16)
C15—C16—H16A111.0C19—O4—H4A98 (2)
O1—C2—C3—C4179.2 (2)O5—C20—C21—C265.0 (4)
C7—C2—C3—C40.2 (4)C18—C20—C21—C26176.2 (2)
C2—C3—C4—C50.2 (4)C26—C21—C22—C230.7 (4)
C3—C4—C5—C60.4 (3)C20—C21—C22—C23178.5 (2)
C3—C4—C5—N1179.5 (2)C26—C21—C22—C19178.0 (2)
C4—C5—C6—C71.1 (3)C20—C21—C22—C192.8 (3)
N1—C5—C6—C7179.9 (2)O4—C19—C22—C2356.9 (3)
C5—C6—C7—C21.1 (4)O3—C19—C22—C2366.9 (3)
O1—C2—C7—C6179.8 (2)C18—C19—C22—C23178.4 (2)
C3—C2—C7—C60.5 (4)O4—C19—C22—C21121.6 (2)
O2—C8—C9—C2760.9 (3)O3—C19—C22—C21114.6 (2)
N1—C8—C9—C27115.56 (18)C18—C19—C22—C210.2 (2)
O2—C8—C9—C10178.4 (3)C21—C22—C23—C240.7 (4)
N1—C8—C9—C101.89 (15)C19—C22—C23—C24177.7 (2)
C27—C9—C10—N1110.83 (17)C22—C23—C24—C250.2 (4)
C8—C9—C10—N11.73 (14)C23—C24—C25—C260.4 (5)
C27—C9—C10—C11134.57 (19)C24—C25—C26—C210.4 (4)
C8—C9—C10—C11112.87 (18)C22—C21—C26—C250.2 (4)
N1—C10—C11—O368.3 (2)C20—C21—C26—C25178.9 (2)
C9—C10—C11—O331.1 (2)C8—C9—C27—C2846.0 (3)
N1—C10—C11—C12172.52 (17)C10—C9—C27—C2850.6 (3)
C9—C10—C11—C1288.1 (2)C8—C9—C27—C32132.5 (2)
O3—C11—C12—C3385.7 (2)C10—C9—C27—C32130.9 (2)
C10—C11—C12—C3336.7 (3)C32—C27—C28—C290.6 (3)
O3—C11—C12—C13146.07 (18)C9—C27—C28—C29179.1 (2)
C10—C11—C12—C1391.5 (2)C27—C28—C29—C300.1 (4)
O3—C11—C12—C1834.9 (2)C28—C29—C30—C310.1 (4)
C10—C11—C12—C18157.24 (18)C29—C30—C31—C320.6 (4)
C33—C12—C13—C14154.06 (18)C30—C31—C32—C271.1 (4)
C11—C12—C13—C1478.0 (2)C28—C27—C32—C311.1 (4)
C18—C12—C13—C1431.9 (2)C9—C27—C32—C31179.6 (2)
C12—C13—C14—N233.1 (2)O2—C8—N1—C57.9 (4)
C12—C13—C14—C15148.5 (2)C9—C8—N1—C5168.7 (2)
N2—C14—C15—C1626.4 (3)O2—C8—N1—C10178.6 (2)
C13—C14—C15—C1688.7 (3)C9—C8—N1—C101.98 (16)
C14—C15—C16—C1735.1 (3)C6—C5—N1—C8153.4 (2)
C15—C16—C17—N231.0 (3)C4—C5—N1—C825.6 (3)
C33—C12—C18—N2140.51 (18)C6—C5—N1—C1014.0 (3)
C13—C12—C18—N219.2 (2)C4—C5—N1—C10167.0 (2)
C11—C12—C18—N2100.25 (19)C11—C10—N1—C8117.73 (19)
C33—C12—C18—C2010.6 (3)C9—C10—N1—C81.94 (15)
C13—C12—C18—C20110.7 (2)C11—C10—N1—C571.6 (3)
C11—C12—C18—C20129.86 (18)C9—C10—N1—C5168.7 (2)
C33—C12—C18—C19102.2 (2)C20—C18—N2—C170.3 (3)
C13—C12—C18—C19136.46 (18)C19—C18—N2—C17119.0 (3)
C11—C12—C18—C1917.0 (2)C12—C18—N2—C17128.4 (2)
N2—C18—C19—O41.3 (2)C20—C18—N2—C14130.1 (2)
C20—C18—C19—O4124.83 (18)C19—C18—N2—C14111.1 (2)
C12—C18—C19—O4114.88 (18)C12—C18—N2—C141.5 (2)
N2—C18—C19—O3119.50 (18)C16—C17—N2—C18116.3 (3)
C20—C18—C19—O3114.33 (18)C16—C17—N2—C1414.6 (3)
C12—C18—C19—O36.0 (2)C13—C14—N2—C1821.7 (2)
N2—C18—C19—C22123.32 (19)C15—C14—N2—C18144.8 (2)
C20—C18—C19—C222.8 (2)C13—C14—N2—C17115.7 (2)
C12—C18—C19—C22123.13 (17)C15—C14—N2—C177.4 (3)
N2—C18—C20—O563.0 (3)C7—C2—O1—C1174.6 (3)
C19—C18—C20—O5174.4 (2)C3—C2—O1—C16.1 (4)
C12—C18—C20—O561.4 (3)C10—C11—O3—C19167.85 (16)
N2—C18—C20—C21118.1 (2)C12—C11—O3—C1941.2 (2)
C19—C18—C20—C214.5 (2)O4—C19—O3—C1191.4 (2)
C12—C18—C20—C21117.51 (19)C22—C19—O3—C11144.18 (19)
O5—C20—C21—C22174.1 (2)C18—C19—O3—C1129.5 (2)
C18—C20—C21—C224.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···O2i0.982.433.337 (3)154
C13—H13A···O2i0.972.413.321 (3)156
C29—H29···O4i0.932.553.228 (3)130
O4—H4A···N20.93 (3)1.84 (3)2.602 (3)137 (3)
Symmetry code: (i) x1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC33H29N3O5
Mr547.59
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)10.2874 (16), 14.138 (3), 18.866 (3)
V3)2743.9 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerBruker SMART APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.973, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
14810, 6406, 4551
Rint0.034
(sin θ/λ)max1)0.660
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.123, 1.00
No. of reflections6406
No. of parameters375
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.25, 0.16

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···O2i0.982.433.337 (3)154
C13—H13A···O2i0.972.413.321 (3)156
C29—H29···O4i0.932.553.228 (3)130
O4—H4A···N20.93 (3)1.84 (3)2.602 (3)137 (3)
Symmetry code: (i) x1/2, y+1/2, z+1.
 

Acknowledgements

The authors thank the TBI X-ray facility, CAS in Crystallography and Biophysics, University of Madras, India, for the data collection and TS thanks the DST for an Inspire fellowship.

References

First citationBrakhage, A. A. (1998). Microbiol. Mol. Biol. Rev. 62, 547–585.  Web of Science CAS PubMed Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSundaramoorthy, S., Rajesh, R., Raghunathan, R. & Velmurugan, D. (2012). Acta Cryst. E68, o2200–o2201.  CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 12| December 2012| Pages o3290-o3291
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds