organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Chloro-1-(4-methyl­phenyl­sulfon­yl)-1H-indole

aDepartment of Chemistry and Polymer Science, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
*Correspondence e-mail: hassam@sun.ac.za

(Received 15 October 2012; accepted 9 November 2012; online 17 November 2012)

In the title compound, C15H12ClNO2S, the indole ring is essentially planar (r.m.s. deviation = 0.0107 Å) and makes a dihedral angle of 85.01 (6)° with the benzene ring. In the crystal, three C—H⋯O hydrogen bonds result in a hydrogen-bonded spiral running parallel to the c axis.

Related literature

For background to the use of indoles as scaffolds in the synthesis of HIV-agents, see: Hassam et al. (2012[Hassam, M., Basson, A. E., Liotta, D. C., Morris, L., Otterlo, W. A. L. & Pelly, S. C. (2012). ACS Med. Chem. Lett. 3, 470-475.]). For the crystal structure of a closely related compound, see: Beddoes et al. (1986[Beddoes, R. L., Dalton, L., Joule, J. A., Mills, O. S., Street, J. D. & Watt, C. I. F. (1986). J. Chem. Soc. Perkin Trans 2, pp. 787-797.]).

[Scheme 1]

Experimental

Crystal data
  • C15H12ClNO2S

  • Mr = 305.77

  • Tetragonal, I 41 /a

  • a = 26.991 (7) Å

  • c = 7.8345 (19) Å

  • V = 5708 (2) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 0.41 mm−1

  • T = 111 K

  • 0.1 × 0.1 × 0.01 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.950, Tmax = 0.968

  • 17940 measured reflections

  • 3565 independent reflections

  • 2760 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.101

  • S = 1.06

  • 3565 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O2i 0.95 2.54 3.327 (2) 140
C4—H4⋯O1ii 0.95 2.49 3.192 (2) 131
C14—H14⋯O1iii 0.95 2.59 3.333 (2) 135
Symmetry codes: (i) [y-{\script{1\over 4}}, -x+{\script{3\over 4}}, z+{\script{3\over 4}}]; (ii) x, y, z+1; (iii) [-y+{\script{3\over 4}}, x+{\script{1\over 4}}, z+{\script{1\over 4}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]; Atwood & Barbour, 2003[Atwood, J. L. & Barbour, L. J. (2003). Cryst. Growth Des. 3, 3-8.]); software used to prepare material for publication: X-SEED.

Supporting information


Comment top

5-Chloroindole is frequently employed as a building block in the synthesis of various biologically active molecules (Hassam et al., 2012). For this communication, tosylation of 5-chloroindole was performed by deprotonation of the indole with sodium hydride, followed by the addition of tosyl chloride.

In the title molecule (Fig. 1), the indole ring is essentially planar (rmsd = 0.0107 Å) with Cl1 lying in its plane (deviation 0.008 (2) Å). The dihedral angle between the mean planes of the indole and benzene rings is 85.01 (6)°. The bond distances and angles in the title compound agree very well with the corresponding bond distances and angles reported for 1-phenylsulfonyl-indole (Beddoes et al., 1986). There are three C—H···O hydrogen bonds which connect four symmetry related molecules into a hydrogen bonded spiral that runs parallel to the c-axis (Table 1 and Fig. 2).

Related literature top

For background to the use of indoles as scaffolds in the synthesis of HIV-agents, see: Hassam et al. (2012). For the crystal structure of a closely related compound, see: Beddoes et al. (1986).

Experimental top

Sodium hydride (0.325 g, 14.1 mmol) was added to a solution of 5-chloroindole (1.00 g, 6.59 mmol) in dry THF (50 ml) at 273.15 K (ice bath). The reaction mixture was stirred at the same temperature for 10 min, followed by addition of tosyl chloride (4-methyl-benzene-1-sulfonyl chloride, 1.88 g, 9.86 mmol). The reaction mixture was then stirred at 273.15 K for 2 h. Water (25 ml) was added to the flask and the mixture was extracted with diethyl ether (2 x 25 ml). The organic layer was washed with brine (25 ml) and dried over anhydrous sodium sulfate. Solvent was removed under vacuum and the resulting residue was recrystallized from hexane and dichloromethane (4:1) to obtain the title compound as a colourless crystalline material (1.61 g, 80%).

Refinement top

The H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 and 0.98 Å, for aryl and methyl H-atoms, respectively. The Uiso(H) were allowed at 1.5Ueq(methyl C) or 1.2Ueq(aryl C).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001; Atwood & Barbour, 2003); software used to prepare material for publication: X-SEED (Barbour, 2001; Atwood & Barbour, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the C—-H···O hydrogen bonds (dotted lines) in the crystal structure of the title compound. H atoms non-participating in hydrogen- bonding were omitted for clarity.
5-Chloro-1-(4-methylphenylsulfonyl)-1H-indole top
Crystal data top
C15H12ClNO2SDx = 1.423 Mg m3
Mr = 305.77Melting point: 383 K
Tetragonal, I41/aMo Kα radiation, λ = 0.71073 Å
Hall symbol: -I 4adCell parameters from 3900 reflections
a = 26.991 (7) Åθ = 3.0–25.8°
c = 7.8345 (19) ŵ = 0.41 mm1
V = 5708 (2) Å3T = 111 K
Z = 16Plate, colourless
F(000) = 25280.1 × 0.1 × 0.01 mm
Data collection top
Bruker APEXII CCD
diffractometer
3565 independent reflections
Radiation source: fine-focus sealed tube, Bruker SMART APEXII2760 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
ϕ and ω scansθmax = 28.9°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 3626
Tmin = 0.950, Tmax = 0.968k = 3630
17940 measured reflectionsl = 109
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0395P)2 + 5.9559P]
where P = (Fo2 + 2Fc2)/3
3565 reflections(Δ/σ)max = 0.001
182 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
C15H12ClNO2SZ = 16
Mr = 305.77Mo Kα radiation
Tetragonal, I41/aµ = 0.41 mm1
a = 26.991 (7) ÅT = 111 K
c = 7.8345 (19) Å0.1 × 0.1 × 0.01 mm
V = 5708 (2) Å3
Data collection top
Bruker APEXII CCD
diffractometer
3565 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2760 reflections with I > 2σ(I)
Tmin = 0.950, Tmax = 0.968Rint = 0.038
17940 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.101H-atom parameters constrained
S = 1.06Δρmax = 0.31 e Å3
3565 reflectionsΔρmin = 0.36 e Å3
182 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.309589 (17)0.612848 (17)0.38622 (6)0.02904 (13)
Cl10.494357 (19)0.67701 (2)0.99440 (8)0.04639 (17)
C90.27756 (6)0.66717 (7)0.4379 (2)0.0244 (4)
N10.33623 (5)0.59487 (5)0.56768 (19)0.0257 (3)
O20.27557 (6)0.57429 (5)0.34641 (19)0.0423 (4)
C10.31014 (7)0.56870 (7)0.6945 (3)0.0306 (4)
H10.28050.55050.67620.037*
C50.44798 (7)0.65358 (7)0.8611 (3)0.0304 (4)
O10.34919 (5)0.62485 (6)0.27270 (16)0.0384 (3)
C40.41247 (7)0.62301 (7)0.9286 (2)0.0299 (4)
H40.41290.61431.04610.036*
C80.37656 (6)0.61872 (6)0.6465 (2)0.0223 (3)
C60.44862 (7)0.66693 (7)0.6895 (3)0.0321 (4)
H60.47410.68790.64770.039*
C70.41247 (7)0.64987 (7)0.5795 (2)0.0282 (4)
H70.41220.65910.46250.034*
C30.37571 (6)0.60502 (6)0.8196 (2)0.0245 (4)
C110.27459 (7)0.75507 (7)0.4642 (3)0.0324 (4)
H110.28980.78650.44960.039*
C100.30006 (7)0.71282 (7)0.4162 (2)0.0290 (4)
H100.33240.71510.36920.035*
C20.33347 (7)0.57340 (7)0.8452 (2)0.0306 (4)
H20.32380.55850.94990.037*
C120.22732 (7)0.75243 (7)0.5330 (2)0.0298 (4)
C140.23055 (7)0.66336 (7)0.5066 (3)0.0325 (4)
H140.21550.63190.52150.039*
C130.20586 (7)0.70613 (8)0.5533 (3)0.0343 (4)
H130.17350.70380.60020.041*
C150.19970 (8)0.79851 (8)0.5824 (3)0.0417 (5)
H15A0.18490.79400.69560.063*
H16B0.17350.80500.49870.063*
H17C0.22270.82660.58510.063*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0320 (3)0.0321 (3)0.0230 (2)0.00953 (18)0.00349 (18)0.00451 (18)
Cl10.0310 (3)0.0522 (3)0.0560 (3)0.0064 (2)0.0073 (2)0.0294 (3)
C90.0226 (8)0.0297 (9)0.0209 (8)0.0049 (7)0.0012 (7)0.0012 (7)
N10.0264 (8)0.0276 (8)0.0231 (7)0.0022 (6)0.0005 (6)0.0019 (6)
O20.0480 (9)0.0340 (8)0.0448 (9)0.0065 (6)0.0175 (7)0.0127 (7)
C10.0291 (10)0.0247 (9)0.0382 (10)0.0007 (7)0.0041 (8)0.0034 (8)
C50.0243 (9)0.0296 (9)0.0375 (10)0.0075 (7)0.0022 (8)0.0120 (8)
O10.0414 (8)0.0520 (9)0.0218 (6)0.0217 (7)0.0058 (6)0.0028 (6)
C40.0309 (10)0.0356 (10)0.0230 (9)0.0116 (8)0.0002 (7)0.0038 (8)
C80.0226 (8)0.0221 (8)0.0224 (8)0.0063 (6)0.0019 (7)0.0009 (6)
C60.0243 (9)0.0261 (9)0.0460 (11)0.0023 (7)0.0051 (8)0.0002 (8)
C70.0268 (9)0.0296 (9)0.0283 (9)0.0054 (7)0.0062 (7)0.0056 (7)
C30.0262 (9)0.0243 (8)0.0230 (8)0.0079 (7)0.0039 (7)0.0019 (7)
C110.0338 (10)0.0267 (9)0.0368 (11)0.0006 (8)0.0011 (8)0.0051 (8)
C100.0234 (9)0.0347 (10)0.0287 (9)0.0025 (7)0.0048 (7)0.0051 (8)
C20.0327 (10)0.0302 (10)0.0288 (10)0.0028 (7)0.0048 (8)0.0083 (8)
C120.0312 (10)0.0360 (10)0.0221 (9)0.0096 (8)0.0027 (7)0.0014 (8)
C140.0240 (9)0.0331 (10)0.0405 (11)0.0029 (7)0.0030 (8)0.0014 (8)
C130.0219 (9)0.0430 (11)0.0379 (11)0.0040 (8)0.0075 (8)0.0015 (9)
C150.0483 (13)0.0416 (12)0.0352 (11)0.0223 (10)0.0008 (9)0.0042 (9)
Geometric parameters (Å, º) top
S1—O21.4224 (15)C6—C71.381 (3)
S1—O11.4278 (15)C6—H60.9500
S1—N11.6654 (15)C7—H70.9500
S1—C91.7496 (18)C3—C21.438 (3)
Cl1—C51.7487 (19)C11—C101.383 (3)
C9—C141.382 (2)C11—C121.387 (3)
C9—C101.384 (3)C11—H110.9500
N1—C81.407 (2)C10—H100.9500
N1—C11.408 (2)C2—H20.9500
C1—C21.345 (3)C12—C131.387 (3)
C1—H10.9500C12—C151.501 (3)
C5—C41.371 (3)C14—C131.382 (3)
C5—C61.392 (3)C14—H140.9500
C4—C31.396 (3)C13—H130.9500
C4—H40.9500C15—H15A0.9800
C8—C71.386 (2)C15—H16B0.9800
C8—C31.406 (2)C15—H17C0.9800
O2—S1—O1120.84 (9)C8—C7—H7121.3
O2—S1—N1104.64 (8)C4—C3—C8119.13 (17)
O1—S1—N1105.94 (8)C4—C3—C2133.19 (17)
O2—S1—C9110.18 (9)C8—C3—C2107.68 (16)
O1—S1—C9108.90 (9)C10—C11—C12121.37 (18)
N1—S1—C9105.07 (8)C10—C11—H11119.3
C14—C9—C10121.13 (17)C12—C11—H11119.3
C14—C9—S1118.77 (14)C11—C10—C9118.83 (17)
C10—C9—S1120.05 (13)C11—C10—H10120.6
C8—N1—C1107.88 (14)C9—C10—H10120.6
C8—N1—S1125.11 (12)C1—C2—C3107.74 (16)
C1—N1—S1122.18 (13)C1—C2—H2126.1
C2—C1—N1109.77 (17)C3—C2—H2126.1
C2—C1—H1125.1C13—C12—C11118.36 (17)
N1—C1—H1125.1C13—C12—C15120.65 (18)
C4—C5—C6122.48 (18)C11—C12—C15120.98 (19)
C4—C5—Cl1119.19 (15)C9—C14—C13118.91 (18)
C6—C5—Cl1118.33 (15)C9—C14—H14120.5
C5—C4—C3118.06 (17)C13—C14—H14120.5
C5—C4—H4121.0C14—C13—C12121.40 (17)
C3—C4—H4121.0C14—C13—H13119.3
C7—C8—C3122.42 (17)C12—C13—H13119.3
C7—C8—N1130.71 (16)C12—C15—H15A109.5
C3—C8—N1106.86 (15)C12—C15—H16B109.5
C7—C6—C5120.51 (18)H15A—C15—H16B109.5
C7—C6—H6119.7C12—C15—H17C109.5
C5—C6—H6119.7H15A—C15—H17C109.5
C6—C7—C8117.39 (17)H16B—C15—H17C109.5
C6—C7—H7121.3
O2—S1—C9—C1427.82 (18)C5—C6—C7—C81.0 (3)
O1—S1—C9—C14162.50 (15)C3—C8—C7—C60.9 (3)
N1—S1—C9—C1484.38 (16)N1—C8—C7—C6178.52 (16)
O2—S1—C9—C10154.75 (15)C5—C4—C3—C80.1 (2)
O1—S1—C9—C1020.06 (17)C5—C4—C3—C2179.33 (18)
N1—S1—C9—C1093.06 (16)C7—C8—C3—C40.5 (3)
O2—S1—N1—C8172.54 (14)N1—C8—C3—C4179.06 (15)
O1—S1—N1—C843.81 (16)C7—C8—C3—C2179.10 (16)
C9—S1—N1—C871.38 (15)N1—C8—C3—C21.36 (18)
O2—S1—N1—C135.12 (16)C12—C11—C10—C90.0 (3)
O1—S1—N1—C1163.85 (14)C14—C9—C10—C110.2 (3)
C9—S1—N1—C180.95 (15)S1—C9—C10—C11177.58 (14)
C8—N1—C1—C22.7 (2)N1—C1—C2—C31.8 (2)
S1—N1—C1—C2159.19 (13)C4—C3—C2—C1179.22 (19)
C6—C5—C4—C30.2 (3)C8—C3—C2—C10.3 (2)
Cl1—C5—C4—C3179.67 (13)C10—C11—C12—C130.1 (3)
C1—N1—C8—C7178.07 (17)C10—C11—C12—C15179.14 (18)
S1—N1—C8—C722.5 (3)C10—C9—C14—C130.3 (3)
C1—N1—C8—C32.45 (18)S1—C9—C14—C13177.70 (15)
S1—N1—C8—C3158.06 (12)C9—C14—C13—C120.2 (3)
C4—C5—C6—C70.7 (3)C11—C12—C13—C140.0 (3)
Cl1—C5—C6—C7179.22 (14)C15—C12—C13—C14179.24 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O2i0.952.543.327 (2)140
C4—H4···O1ii0.952.493.192 (2)131
C14—H14···O1iii0.952.593.333 (2)135
C7—H7···O10.952.443.025 (2)120
C10—H10···O10.952.592.943 (2)102
Symmetry codes: (i) y1/4, x+3/4, z+3/4; (ii) x, y, z+1; (iii) y+3/4, x+1/4, z+1/4.

Experimental details

Crystal data
Chemical formulaC15H12ClNO2S
Mr305.77
Crystal system, space groupTetragonal, I41/a
Temperature (K)111
a, c (Å)26.991 (7), 7.8345 (19)
V3)5708 (2)
Z16
Radiation typeMo Kα
µ (mm1)0.41
Crystal size (mm)0.1 × 0.1 × 0.01
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.950, 0.968
No. of measured, independent and
observed [I > 2σ(I)] reflections
17940, 3565, 2760
Rint0.038
(sin θ/λ)max1)0.680
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.101, 1.06
No. of reflections3565
No. of parameters182
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.36

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001; Atwood & Barbour, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O2i0.952.543.327 (2)140.0
C4—H4···O1ii0.952.493.192 (2)131.0
C14—H14···O1iii0.952.593.333 (2)135.1
Symmetry codes: (i) y1/4, x+3/4, z+3/4; (ii) x, y, z+1; (iii) y+3/4, x+1/4, z+1/4.
 

Acknowledgements

MH thanks Professor Willem A. L. van Otterlo and Dr S. C. Pelly for their valuable input and research oversight. Stellenbosch University's Science Faculty is also acknowledged for providing laboratory space and financial research support (Subcommittee B). The South African National Research Foundation (NRF), Pretoria, is also acknowledged for providing some research funds.

References

First citationAtwood, J. L. & Barbour, L. J. (2003). Cryst. Growth Des. 3, 3–8.  Web of Science CrossRef CAS Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBeddoes, R. L., Dalton, L., Joule, J. A., Mills, O. S., Street, J. D. & Watt, C. I. F. (1986). J. Chem. Soc. Perkin Trans 2, pp. 787–797.  CSD CrossRef Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHassam, M., Basson, A. E., Liotta, D. C., Morris, L., Otterlo, W. A. L. & Pelly, S. C. (2012). ACS Med. Chem. Lett. 3, 470–475.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds