organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

9-(4-Meth­­oxy­phen­yl)anthracene

aCAS in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai-25, India, and bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai-25, India
*Correspondence e-mail: shirai2011@gmail.com

(Received 22 October 2012; accepted 16 November 2012; online 24 November 2012)

In the title compound, C21H16O, the dihedral angle between the anthracene ring system and the benzene ring is 74.3 (5)°. The anthracene ring system is essentially planar (r.m.s. deviation = 0.0257 Å) and the meth­oxy group lies in the plane of the benzene ring [C1—O1—C2—C7 torsion angle = 0.5 (2)°]. The crystal structure features ππ [centroid–centroid distance = 3.9487 (12) Å] and C–H⋯π inter­actions, forming a sheet running along the a-axis direction.

Related literature

For applications of anthracene, see: Bae et al. (2010[Bae, S. Y., Jung, K. H., Hoang, M. H., Kim, K. H., Lee, T. W., Cho, M. J., Jin, J., Lee, D. H., Chung, D. S., Park, C. E. & Choi, D. H. (2010). Synth. Met. 160, 1022-1029.]); Debbab et al. (2012[Debbab, A., Aly, A. H., Edrada-Ebel, R., Wray, V., Pretsch, A., Pescitelli, G., Kurtan, T. & Proksch, P. (2012). Eur. J. Org. Chem. pp. 1351-1359.]). For a related structure, see: Wang et al. (2008[Wang, L., You, W., Huang, W., Jiang, J.-C. & Yao, C. (2008). Acta Cryst. E64, o487.]).

[Scheme 1]

Experimental

Crystal data
  • C21H16O

  • Mr = 284.34

  • Monoclinic, P 21 /c

  • a = 13.5539 (5) Å

  • b = 15.0626 (5) Å

  • c = 7.6130 (2) Å

  • β = 99.219 (2)°

  • V = 1534.17 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.981, Tmax = 0.985

  • 14917 measured reflections

  • 3806 independent reflections

  • 2317 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.130

  • S = 1.02

  • 3806 reflections

  • 201 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.12 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg4 are the centroids of the C2–C7 and C16–C21 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯Cg4i 0.93 2.77 3.566 (2) 145
C11—H11⋯Cg1ii 0.93 2.87 3.724 (2) 154
C19—H19⋯Cg1iii 0.93 2.94 3.772 (2) 150
C21—H21⋯Cg4iv 0.93 2.88 3.711 (2) 150
Symmetry codes: (i) x, y, z-1; (ii) -x+1, -y, -z; (iii) -x+2, -y, -z+1; (iv) [x, -y-{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Anthracene is a solid polycyclic aromatic hydrocarbon consisting of three fused benzene rings. Its derivatives possess antimicrobial activity (Debbab et al., 2012). It is used in the production of dyes and organic semiconductors (Bae et al., 2010). In order to obtain detailed information on molecular conformations in the solid state, an X-ray crystallographic study of the title compound was carried out.

The anthracene ring system in the title molecule (Fig. 1) is essentially planar (rmsd = 0.0257 Å) and the methoxy group lies in the plane of the benzene ring with the torsion angle C1—O1—C2—C7 = 0.5 (2)°. The dihedral angle between the mean-planes of the anthracene and benzene rings is 74.3 (5)° showing that both the ring systems are almost perpendicular to each other. The bond lengths and angles in the title compound are comparable to those observed in a closely related compound (Wang et al., 2008).

The π···π electron interaction is observed between the rings (C9—C14) [at x, y, z] and (C9—C14) [at 1 - x, - y, 1 - z] with the centroid-centroid distance 3.9487 (12) Å. In addition, the crystal packing is stabilized by C–H···π (Table. 1) types of interaction.

Related literature top

For applications of anthracene, see: Bae et al. (2010); Debbab et al. (2012). For a related structure, see: Wang et al. (2008).

Experimental top

(4-Methoxyphenyl)(2-(phenyl(pivaloyloxy)methyl)phenyl)methyl)pivalate (0.5 g, 0.94 mmol) upon interaction with ZnBr2 (0.02 g, 0.13 mmol) followed by removal of solvent and column chromatographic purification (silica gel; hexane-ethyl acetate, 99:1) led to the isolation of product as a pale yellow solid (0.32 g, 87%). The compound was recrystalized from chloroform. Single crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of a solution of the title compound in acetone at room temperature.

Refinement top

All H atoms were fixed geometrically and allowed to ride on their parent C atoms, with C—H distances 0.93 and 0.96 Å for aryl and methyl H-atoms with Uiso(H) = 1.5Ueq(methyl-C) and 1.2Ueq(aryl-C).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the π···π and C—-H···π interactions (dotted lines) in the crystal structure of the title compound. H atoms non-participating in hydrogen-bonding were omitted for clarity.
9-(4-Methoxyphenyl)anthracene top
Crystal data top
C21H16OF(000) = 600
Mr = 284.34Dx = 1.231 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3806 reflections
a = 13.5539 (5) Åθ = 2.0–28.3°
b = 15.0626 (5) ŵ = 0.07 mm1
c = 7.6130 (2) ÅT = 293 K
β = 99.219 (2)°Block, colourless
V = 1534.17 (9) Å30.20 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker SMART APEXII area-detector
diffractometer
3806 independent reflections
Radiation source: fine-focus sealed tube2317 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ω and ϕ scansθmax = 28.3°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1816
Tmin = 0.981, Tmax = 0.985k = 1919
14917 measured reflectionsl = 1010
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.130 w = 1/[σ2(Fo2) + (0.0556P)2 + 0.1555P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
3806 reflectionsΔρmax = 0.14 e Å3
201 parametersΔρmin = 0.12 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.019 (2)
Crystal data top
C21H16OV = 1534.17 (9) Å3
Mr = 284.34Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.5539 (5) ŵ = 0.07 mm1
b = 15.0626 (5) ÅT = 293 K
c = 7.6130 (2) Å0.20 × 0.20 × 0.20 mm
β = 99.219 (2)°
Data collection top
Bruker SMART APEXII area-detector
diffractometer
3806 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2317 reflections with I > 2σ(I)
Tmin = 0.981, Tmax = 0.985Rint = 0.033
14917 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.130H-atom parameters constrained
S = 1.02Δρmax = 0.14 e Å3
3806 reflectionsΔρmin = 0.12 e Å3
201 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.84535 (8)0.16715 (6)0.12133 (14)0.0625 (3)
C50.75001 (9)0.00335 (9)0.24854 (16)0.0444 (3)
C80.71622 (11)0.06367 (9)0.38283 (16)0.0469 (3)
C40.73498 (10)0.08803 (9)0.25059 (19)0.0513 (4)
H40.70220.11270.33730.062*
C60.79836 (11)0.03687 (9)0.11597 (18)0.0543 (4)
H60.80910.09780.11120.065*
C20.81595 (9)0.10761 (9)0.00379 (17)0.0471 (3)
C170.78712 (11)0.10166 (9)0.51685 (17)0.0484 (3)
C90.61419 (11)0.08466 (10)0.37219 (18)0.0542 (4)
C30.76772 (11)0.14246 (9)0.12656 (19)0.0526 (4)
H30.75720.20340.13090.063*
C160.75482 (13)0.16124 (9)0.64257 (18)0.0571 (4)
C180.89164 (11)0.08456 (10)0.53287 (18)0.0553 (4)
H180.91440.04640.45210.066*
C140.58323 (13)0.14597 (11)0.4959 (2)0.0633 (4)
C70.83127 (11)0.01703 (9)0.00955 (18)0.0535 (4)
H70.86350.00740.09720.064*
C190.95862 (14)0.12230 (11)0.6623 (2)0.0687 (5)
H191.02640.11010.66900.082*
C150.65393 (14)0.18180 (10)0.6282 (2)0.0681 (5)
H150.63330.22080.70990.082*
C210.82821 (16)0.19878 (11)0.7773 (2)0.0730 (5)
H210.80800.23710.86050.088*
C100.53910 (12)0.04832 (12)0.2391 (2)0.0710 (5)
H100.55730.00770.15810.085*
C200.92599 (16)0.18010 (12)0.7871 (2)0.0772 (5)
H200.97230.20540.87650.093*
C10.89552 (14)0.13330 (12)0.2567 (2)0.0788 (5)
H1A0.85330.09120.32750.118*
H1B0.91100.18120.33090.118*
H1C0.95620.10460.20350.118*
C130.47972 (16)0.16896 (14)0.4771 (3)0.0847 (6)
H130.45870.20950.55550.102*
C110.44201 (14)0.07163 (15)0.2281 (3)0.0893 (6)
H110.39450.04680.14020.107*
C120.41231 (16)0.13311 (17)0.3484 (3)0.0960 (7)
H120.34540.14910.33860.115*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0721 (7)0.0500 (6)0.0713 (7)0.0036 (5)0.0293 (6)0.0138 (5)
C50.0457 (7)0.0464 (7)0.0423 (6)0.0033 (6)0.0101 (6)0.0003 (6)
C80.0587 (9)0.0420 (7)0.0433 (7)0.0043 (6)0.0183 (6)0.0026 (6)
C40.0539 (8)0.0488 (8)0.0546 (8)0.0021 (6)0.0190 (7)0.0041 (6)
C60.0739 (10)0.0397 (7)0.0537 (8)0.0032 (7)0.0235 (7)0.0027 (6)
C20.0444 (7)0.0456 (7)0.0526 (7)0.0043 (6)0.0112 (6)0.0073 (6)
C170.0664 (9)0.0384 (7)0.0439 (7)0.0020 (6)0.0198 (6)0.0027 (6)
C90.0628 (9)0.0552 (9)0.0485 (7)0.0108 (7)0.0207 (7)0.0060 (7)
C30.0572 (9)0.0384 (7)0.0645 (9)0.0013 (6)0.0169 (7)0.0005 (6)
C160.0865 (11)0.0409 (7)0.0494 (8)0.0037 (7)0.0269 (8)0.0005 (6)
C180.0656 (10)0.0521 (8)0.0504 (8)0.0068 (7)0.0163 (7)0.0022 (7)
C140.0776 (11)0.0613 (10)0.0580 (9)0.0177 (8)0.0322 (8)0.0073 (8)
C70.0692 (10)0.0459 (8)0.0507 (7)0.0032 (7)0.0258 (7)0.0015 (6)
C190.0736 (11)0.0719 (11)0.0605 (9)0.0202 (9)0.0111 (8)0.0043 (8)
C150.1015 (14)0.0520 (9)0.0599 (9)0.0122 (9)0.0405 (9)0.0029 (7)
C210.1192 (16)0.0489 (9)0.0561 (9)0.0182 (10)0.0303 (10)0.0120 (7)
C100.0626 (10)0.0904 (13)0.0613 (9)0.0193 (9)0.0136 (8)0.0032 (9)
C200.1028 (15)0.0692 (11)0.0601 (10)0.0349 (11)0.0147 (10)0.0097 (8)
C10.0935 (13)0.0728 (12)0.0811 (11)0.0002 (10)0.0480 (10)0.0192 (10)
C130.0924 (14)0.0910 (14)0.0807 (12)0.0338 (11)0.0441 (11)0.0065 (11)
C110.0623 (11)0.1274 (18)0.0782 (11)0.0241 (11)0.0109 (9)0.0017 (12)
C120.0735 (13)0.1313 (19)0.0882 (14)0.0398 (13)0.0287 (12)0.0091 (14)
Geometric parameters (Å, º) top
O1—C21.3704 (15)C18—H180.9300
O1—C11.4176 (18)C14—C151.384 (2)
C5—C61.3838 (17)C14—C131.430 (3)
C5—C41.3919 (18)C7—H70.9300
C5—C81.4935 (17)C19—C201.411 (2)
C8—C171.4063 (19)C19—H190.9300
C8—C91.408 (2)C15—H150.9300
C4—C31.3766 (19)C21—C201.345 (3)
C4—H40.9300C21—H210.9300
C6—C71.3813 (18)C10—C111.352 (2)
C6—H60.9300C10—H100.9300
C2—C31.3768 (18)C20—H200.9300
C2—C71.3818 (19)C1—H1A0.9600
C17—C181.426 (2)C1—H1B0.9600
C17—C161.4309 (19)C1—H1C0.9600
C9—C101.425 (2)C13—C121.341 (3)
C9—C141.429 (2)C13—H130.9300
C3—H30.9300C11—C121.406 (3)
C16—C151.389 (2)C11—H110.9300
C16—C211.426 (2)C12—H120.9300
C18—C191.353 (2)
C2—O1—C1117.58 (11)C6—C7—C2119.44 (12)
C6—C5—C4117.14 (12)C6—C7—H7120.3
C6—C5—C8120.68 (12)C2—C7—H7120.3
C4—C5—C8122.17 (11)C18—C19—C20120.22 (17)
C17—C8—C9120.07 (12)C18—C19—H19119.9
C17—C8—C5119.69 (12)C20—C19—H19119.9
C9—C8—C5120.21 (13)C14—C15—C16121.90 (14)
C3—C4—C5121.16 (12)C14—C15—H15119.1
C3—C4—H4119.4C16—C15—H15119.1
C5—C4—H4119.4C20—C21—C16121.62 (16)
C7—C6—C5122.23 (13)C20—C21—H21119.2
C7—C6—H6118.9C16—C21—H21119.2
C5—C6—H6118.9C11—C10—C9121.45 (17)
O1—C2—C3116.26 (12)C11—C10—H10119.3
O1—C2—C7124.36 (12)C9—C10—H10119.3
C3—C2—C7119.38 (12)C21—C20—C19120.27 (16)
C8—C17—C18122.87 (12)C21—C20—H20119.9
C8—C17—C16119.58 (13)C19—C20—H20119.9
C18—C17—C16117.54 (13)O1—C1—H1A109.5
C8—C9—C10122.52 (13)O1—C1—H1B109.5
C8—C9—C14119.77 (14)H1A—C1—H1B109.5
C10—C9—C14117.70 (14)O1—C1—H1C109.5
C4—C3—C2120.65 (13)H1A—C1—H1C109.5
C4—C3—H3119.7H1B—C1—H1C109.5
C2—C3—H3119.7C12—C13—C14121.20 (17)
C15—C16—C21122.17 (15)C12—C13—H13119.4
C15—C16—C17119.34 (15)C14—C13—H13119.4
C21—C16—C17118.48 (15)C10—C11—C12120.5 (2)
C19—C18—C17121.86 (14)C10—C11—H11119.7
C19—C18—H18119.1C12—C11—H11119.7
C17—C18—H18119.1C13—C12—C11120.56 (18)
C15—C14—C9119.31 (14)C13—C12—H12119.7
C15—C14—C13122.16 (16)C11—C12—H12119.7
C9—C14—C13118.53 (17)
C6—C5—C8—C1772.83 (17)C8—C17—C18—C19179.58 (13)
C4—C5—C8—C17106.98 (15)C16—C17—C18—C190.5 (2)
C6—C5—C8—C9105.19 (16)C8—C9—C14—C152.0 (2)
C4—C5—C8—C974.99 (17)C10—C9—C14—C15179.23 (14)
C6—C5—C4—C30.5 (2)C8—C9—C14—C13177.33 (14)
C8—C5—C4—C3179.30 (13)C10—C9—C14—C131.4 (2)
C4—C5—C6—C70.3 (2)C5—C6—C7—C20.1 (2)
C8—C5—C6—C7179.51 (13)O1—C2—C7—C6179.96 (13)
C1—O1—C2—C3179.79 (13)C3—C2—C7—C60.3 (2)
C1—O1—C2—C70.5 (2)C17—C18—C19—C200.3 (2)
C9—C8—C17—C18178.74 (12)C9—C14—C15—C161.3 (2)
C5—C8—C17—C180.71 (19)C13—C14—C15—C16178.05 (15)
C9—C8—C17—C160.35 (19)C21—C16—C15—C14179.21 (14)
C5—C8—C17—C16178.38 (11)C17—C16—C15—C140.3 (2)
C17—C8—C9—C10179.89 (13)C15—C16—C21—C20178.28 (15)
C5—C8—C9—C101.9 (2)C17—C16—C21—C200.7 (2)
C17—C8—C9—C141.2 (2)C8—C9—C10—C11177.86 (16)
C5—C8—C9—C14176.82 (12)C14—C9—C10—C110.9 (2)
C5—C4—C3—C20.3 (2)C16—C21—C20—C190.1 (3)
O1—C2—C3—C4179.78 (13)C18—C19—C20—C210.6 (2)
C7—C2—C3—C40.1 (2)C15—C14—C13—C12179.66 (18)
C8—C17—C16—C151.1 (2)C9—C14—C13—C121.0 (3)
C18—C17—C16—C15178.03 (13)C9—C10—C11—C120.2 (3)
C8—C17—C16—C21179.92 (12)C14—C13—C12—C110.0 (3)
C18—C17—C16—C210.94 (19)C10—C11—C12—C130.6 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg4 are the centroids of the C2–C7 and C16–C21 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C7—H7···Cg4i0.932.773.566 (2)145
C11—H11···Cg1ii0.932.873.724 (2)154
C19—H19···Cg1iii0.932.943.772 (2)150
C21—H21···Cg4iv0.932.883.711 (2)150
Symmetry codes: (i) x, y, z1; (ii) x+1, y, z; (iii) x+2, y, z+1; (iv) x, y1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC21H16O
Mr284.34
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)13.5539 (5), 15.0626 (5), 7.6130 (2)
β (°) 99.219 (2)
V3)1534.17 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.981, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
14917, 3806, 2317
Rint0.033
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.130, 1.02
No. of reflections3806
No. of parameters201
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.12

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 2012), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg4 are the centroids of the C2–C7 and C16–C21 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C7—H7···Cg4i0.932.773.566 (2)145
C11—H11···Cg1ii0.932.873.724 (2)154
C19—H19···Cg1iii0.932.943.772 (2)150
C21—H21···Cg4iv0.932.883.711 (2)150
Symmetry codes: (i) x, y, z1; (ii) x+1, y, z; (iii) x+2, y, z+1; (iv) x, y1/2, z1/2.
 

Acknowledgements

The authors thank the TBI X-ray facility, CAS in Crystallography and Biophysics, University of Madras, India, for the data collection. VS and DV also thank the UGC SAP for financial support.

References

First citationBae, S. Y., Jung, K. H., Hoang, M. H., Kim, K. H., Lee, T. W., Cho, M. J., Jin, J., Lee, D. H., Chung, D. S., Park, C. E. & Choi, D. H. (2010). Synth. Met. 160, 1022–1029.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDebbab, A., Aly, A. H., Edrada-Ebel, R., Wray, V., Pretsch, A., Pescitelli, G., Kurtan, T. & Proksch, P. (2012). Eur. J. Org. Chem. pp. 1351–1359.  Web of Science CrossRef Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, L., You, W., Huang, W., Jiang, J.-C. & Yao, C. (2008). Acta Cryst. E64, o487.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds