organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4′-Methyl-1H-14′,19′-dioxa-4′-aza­spiro­[indole-3,5′-tetra­cyclo­[18.4.0.02,6.08,13]tetra­cosa­ne]-1′(24′),8′,10′,12′,20′,22′-hexa­ene-2,7′(3H)-dione

aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: shirai2011@gmail.com

(Received 23 October 2012; accepted 8 November 2012; online 14 November 2012)

In the title compound, C29H28N2O4, the indoline ring system is essentially planar, with a maximum deviation of 0.027 (2) Å; the carbonyl O atom lies 0.102 (1) Å out of the least-squares plane of the indole ring. The pyrrolidine ring adopts a C-envelope conformation, with a C atom displaced by 0.643 (2) Å from the mean plane formed by the remaining ring atoms. The pyrrolidine ring makes a dihedral angle of 86.1 (8)° with the indoline ring system. In the crystal, N—H⋯O hydrogen bonds result in the formation of cyclic centrosymmetric dimers [R22(8)]. C—H⋯π inter­actions also occur, leading to a chain along the b-axis direction. There is a rather weak ππ electron inter­action between the pyrrazole and benzene rings, with a centroid–centroid distance of 3.765 (1) Å.

Related literature

For background to natural and synthetic pharmacologically active pyrrolidines, see: Waldmann (1995[Waldmann, H. (1995). Synlett, pp. 133-141.]). For related structures, see: Ganesh et al. (2012[Ganesh, G., Yuvaraj, P. S., Govindan, E., Reddy, B. S. R. & SubbiahPandi, A. (2012). Acta Cryst. E68, o2902-o2903.]); Narayanan et al. (2012[Narayanan, S., Srinivasan, T., Purushothaman, S., Raghunathan, R. & Velmurugan, D. (2012). Acta Cryst. E68, o3345.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C29H28N2O4

  • Mr = 468.53

  • Triclinic, [P \overline 1]

  • a = 9.4223 (3) Å

  • b = 10.5115 (3) Å

  • c = 14.1754 (5) Å

  • α = 70.235 (2)°

  • β = 87.309 (3)°

  • γ = 69.065 (2)°

  • V = 1229.67 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.25 × 0.22 × 0.19 mm

Data collection
  • Bruker APEXII CCD area detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) Tmin = 0.979, Tmax = 0.984

  • 22180 measured reflections

  • 5998 independent reflections

  • 4260 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.147

  • S = 1.01

  • 5998 reflections

  • 317 parameters

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg4 is the centroid of the C14–C19 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O2i 0.86 1.96 2.8105 (17) 170
C26—H26⋯Cg4ii 0.93 2.91 3.617 (3) 134
Symmetry codes: (i) -x, -y+2, -z+1; (ii) -x, -y+2, -z.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 2012)[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]; software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Highly functionalized pyrrolidines have gained much interest in the past few years as they constitute main structural unit of many natural and synthetic pharmacologically active compounds (Waldmann, 1995). In continuation of our work on the crystal structure analysis of spiro-pyrrolidine derivatives (Narayanan et al., 2012), the crystal structure of the title compound has been carried out and the results are presented here.

The bond lengths and angles in the title molecule (Fig. 1) are within normal ranges and comparable to those found in a related structure (Ganesh et al., 2012). The indoline ring system (C4–C11/N2) is essentially planar, with maximum deviation of 0.027 (2) Å for atom C5; O2 lies 0.102 (1) Å out of the leastsquares plane of the indole ring. The pyrrolidine ring (C1–C4/N1) adopts a C1-envelop conformation with C1 0.643 (2) Å displaced from the mean-plane formed by the remaining ring atoms. The pyrrolidine ring makes a dihedral angle of 86.1 (8)° with the indoline ring system. The dihedral angle between the mean-planes of the pyrrolidine ring and the benzene ring (C24—C29) is 64.1 (1)°.

The crystal packing is stabilized by N—H···O, C—H···π and ππ interactions. N2—H2A···O2 hydrogen bonding results in a cyclic centrosymmetric dimer in R22(8) ring motif (Bernstein et al., 1995). There is a rather weak ππ electron interaction between the centroids of the pyrrazole (N2/C4/C5/C6/C11) and benzene (C14—C19) rings (Cg2···Cg4, respectively) with the centroid-centroid distance 3.765 (1) Å.

Related literature top

For background to natural and synthetic pharmacologically active pyrrolidines, see: Waldmann (1995). For related structures, see: Ganesh et al. (2012); Narayanan et al. (2012). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

A mixture of isatin (150 mg, 1 mmol), sarcosine (90 mg, 1 mmol) and (4E)-12,17-dioxatricyclo[16.4.0.06,11]docosa-1(22),4,6,8,10,18, 20-heptaen-3-one (300 mg 1.0 mmol) in toluene (20 ml) was refluxed under Dean-Stark reaction condition until the disappearance of starting materials as evidenced by TLC. The reaction mixture was concentrated in vacuo and extracted with water (50 ml) and dichloromethane (2x50 ml). The organic layer was washed with brine solution, dried with anhydrous sodium sulfate and concentrated in vacuo. The residue was purified by column chromatography with hexane-ethylacetate (9:1) mixture to yield macrocycle in good yields. The product was dissolved in ethylacetate and heated for two minutes. The resulting solution was subjected to crystallization by slow evaporation of the solvent resulting in single crystals suitable for XRD studies.

Refinement top

All H atoms were fixed geometrically and allowed to ride on their parent C atoms, with N—H = 0.86 Å and C—H distances in the range 0.93–0.98 Å with Uiso(H) = 1.5Ueq(methyl C) and 1.2Ueq(non-methyl C/N).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids drawn at the 30% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. The crystal structure showing the formation of the centrosymmetric R22(8) dimer;; H atoms not involved in hydrogen bonding have been omitted for clarity. The dashed lines indicate hydrogen bonds. The atoms marked with an asterisk (*) are at the symmetry position (-x, 2 - y, 1 - z).
4'-Methyl-1H-14',19'-dioxa-4'-azaspiro[indole-3,5'- tetracyclo[18.4.0.02,6.08,13]tetracosane]-1'(24'),8',10',12',20',22'- hexaene-2,7'(3H)-dione top
Crystal data top
C29H28N2O4Z = 2
Mr = 468.53F(000) = 496
Triclinic, P1Dx = 1.265 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.4223 (3) ÅCell parameters from 5998 reflections
b = 10.5115 (3) Åθ = 1.5–28.3°
c = 14.1754 (5) ŵ = 0.09 mm1
α = 70.235 (2)°T = 293 K
β = 87.309 (3)°Block, colorless
γ = 69.065 (2)°0.25 × 0.22 × 0.19 mm
V = 1229.67 (7) Å3
Data collection top
Bruker APEXII CCD area detector
diffractometer
5998 independent reflections
Radiation source: fine-focus sealed tube4260 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω and ϕ scansθmax = 28.3°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
h = 1212
Tmin = 0.979, Tmax = 0.984k = 1312
22180 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.147H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0689P)2 + 0.3628P]
where P = (Fo2 + 2Fc2)/3
5998 reflections(Δ/σ)max < 0.001
317 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C29H28N2O4γ = 69.065 (2)°
Mr = 468.53V = 1229.67 (7) Å3
Triclinic, P1Z = 2
a = 9.4223 (3) ÅMo Kα radiation
b = 10.5115 (3) ŵ = 0.09 mm1
c = 14.1754 (5) ÅT = 293 K
α = 70.235 (2)°0.25 × 0.22 × 0.19 mm
β = 87.309 (3)°
Data collection top
Bruker APEXII CCD area detector
diffractometer
5998 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
4260 reflections with I > 2σ(I)
Tmin = 0.979, Tmax = 0.984Rint = 0.027
22180 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.147H-atom parameters constrained
S = 1.01Δρmax = 0.47 e Å3
5998 reflectionsΔρmin = 0.27 e Å3
317 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.44418 (17)0.81009 (18)0.29447 (12)0.0442 (4)
H1A0.39460.74140.32560.053*
H1B0.55020.75750.28830.053*
C20.36234 (16)0.91660 (17)0.19251 (11)0.0390 (3)
H20.42310.97630.16170.047*
C30.21938 (15)1.01176 (16)0.22618 (10)0.0348 (3)
H30.14900.95920.24380.042*
C40.27685 (16)1.01883 (17)0.32641 (11)0.0363 (3)
C50.16358 (16)0.99095 (17)0.40634 (11)0.0388 (3)
C60.16331 (17)1.21653 (18)0.38333 (11)0.0413 (3)
C70.1279 (2)1.3514 (2)0.39076 (15)0.0548 (4)
H70.05381.38440.43140.066*
C80.2075 (2)1.4365 (2)0.33506 (16)0.0624 (5)
H80.18611.52840.33830.075*
C90.3177 (2)1.3870 (2)0.27514 (16)0.0591 (5)
H90.37001.44560.23890.071*
C100.35165 (19)1.25080 (19)0.26815 (13)0.0483 (4)
H100.42611.21770.22770.058*
C110.27254 (16)1.16546 (17)0.32249 (11)0.0391 (3)
C120.4820 (2)0.8338 (2)0.45746 (14)0.0600 (5)
H12A0.42540.77300.48910.090*
H12B0.46610.90540.48860.090*
H12C0.58860.77560.46480.090*
C130.13484 (17)1.15881 (17)0.14799 (11)0.0410 (3)
C140.01066 (18)1.25884 (17)0.17087 (12)0.0431 (4)
C150.0379 (2)1.4067 (2)0.13226 (14)0.0559 (5)
H150.03311.43880.09360.067*
C160.1679 (3)1.5065 (2)0.15010 (19)0.0705 (6)
H160.18571.60520.12240.085*
C170.2714 (3)1.4584 (2)0.20962 (18)0.0714 (6)
H170.35741.52530.22380.086*
C180.2492 (2)1.3136 (2)0.24813 (15)0.0605 (5)
H180.32011.28260.28780.073*
C190.12012 (18)1.21319 (18)0.22752 (13)0.0465 (4)
C200.2101 (2)1.0135 (2)0.29678 (16)0.0590 (5)
H20A0.30311.06610.25230.071*
H20B0.23211.02240.36230.071*
C210.1499 (2)0.8579 (2)0.30534 (19)0.0699 (6)
H21A0.04740.81330.33820.084*
H21B0.21220.81030.34880.084*
C220.1449 (3)0.8287 (4)0.2094 (2)0.0923 (8)
H22A0.12260.72570.22630.111*
H22B0.24660.87900.17510.111*
C230.0380 (3)0.8677 (3)0.13700 (17)0.0814 (7)
H23A0.04340.83530.08120.098*
H23B0.06840.97240.11050.098*
C240.2312 (2)0.78928 (19)0.11634 (12)0.0484 (4)
C250.2379 (3)0.7110 (2)0.05322 (15)0.0645 (5)
H250.16130.67530.05130.077*
C260.3570 (3)0.6860 (2)0.00634 (15)0.0742 (7)
H260.36130.63250.04760.089*
C270.4695 (3)0.7399 (2)0.00493 (15)0.0709 (6)
H270.54940.72410.04580.085*
C280.4633 (2)0.8177 (2)0.05755 (13)0.0553 (5)
H280.53960.85440.05770.066*
C290.34579 (18)0.84291 (17)0.12054 (11)0.0424 (4)
N10.43033 (14)0.90587 (15)0.35091 (10)0.0425 (3)
N20.10136 (15)1.11034 (15)0.43241 (10)0.0443 (3)
H2A0.03221.12020.47400.053*
O10.18613 (16)1.19738 (15)0.06779 (9)0.0620 (4)
O20.13719 (13)0.87891 (13)0.44025 (9)0.0485 (3)
O30.09428 (12)1.06941 (13)0.25689 (11)0.0578 (3)
O40.11530 (14)0.80546 (15)0.18039 (10)0.0580 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0335 (7)0.0489 (9)0.0462 (9)0.0082 (6)0.0004 (6)0.0184 (7)
C20.0332 (7)0.0465 (8)0.0389 (8)0.0142 (6)0.0068 (6)0.0173 (6)
C30.0308 (6)0.0425 (8)0.0331 (7)0.0142 (6)0.0034 (5)0.0146 (6)
C40.0322 (7)0.0450 (8)0.0327 (7)0.0149 (6)0.0035 (5)0.0138 (6)
C50.0373 (7)0.0472 (9)0.0332 (7)0.0164 (6)0.0040 (6)0.0145 (6)
C60.0411 (8)0.0470 (9)0.0372 (8)0.0161 (6)0.0008 (6)0.0155 (7)
C70.0540 (10)0.0516 (10)0.0590 (11)0.0134 (8)0.0004 (8)0.0249 (9)
C80.0652 (12)0.0455 (10)0.0748 (13)0.0191 (9)0.0087 (10)0.0177 (9)
C90.0566 (10)0.0537 (11)0.0650 (12)0.0298 (9)0.0047 (9)0.0060 (9)
C100.0421 (8)0.0575 (10)0.0457 (9)0.0239 (7)0.0010 (7)0.0118 (8)
C110.0362 (7)0.0476 (9)0.0349 (7)0.0173 (6)0.0013 (6)0.0131 (6)
C120.0524 (10)0.0723 (13)0.0457 (10)0.0122 (9)0.0117 (8)0.0177 (9)
C130.0430 (8)0.0452 (9)0.0363 (8)0.0167 (7)0.0014 (6)0.0146 (7)
C140.0421 (8)0.0417 (8)0.0416 (8)0.0087 (6)0.0092 (6)0.0149 (7)
C150.0617 (11)0.0467 (10)0.0551 (10)0.0153 (8)0.0118 (8)0.0146 (8)
C160.0753 (14)0.0438 (10)0.0839 (15)0.0058 (10)0.0191 (12)0.0251 (10)
C170.0628 (12)0.0596 (13)0.0836 (15)0.0037 (10)0.0081 (11)0.0403 (11)
C180.0449 (9)0.0651 (12)0.0643 (12)0.0035 (8)0.0008 (8)0.0303 (10)
C190.0382 (8)0.0463 (9)0.0491 (9)0.0060 (7)0.0055 (7)0.0181 (7)
C200.0375 (8)0.0751 (13)0.0644 (12)0.0230 (8)0.0119 (8)0.0223 (10)
C210.0538 (11)0.0755 (14)0.0874 (16)0.0374 (10)0.0172 (10)0.0230 (12)
C220.0600 (13)0.130 (2)0.128 (2)0.0507 (15)0.0145 (14)0.078 (2)
C230.0672 (13)0.122 (2)0.0594 (13)0.0371 (14)0.0041 (10)0.0318 (13)
C240.0565 (10)0.0463 (9)0.0401 (8)0.0138 (7)0.0013 (7)0.0165 (7)
C250.0839 (14)0.0582 (11)0.0545 (11)0.0209 (10)0.0098 (10)0.0262 (9)
C260.1009 (17)0.0651 (13)0.0479 (11)0.0059 (12)0.0087 (11)0.0327 (10)
C270.0766 (14)0.0761 (14)0.0452 (10)0.0013 (11)0.0078 (9)0.0313 (10)
C280.0539 (10)0.0605 (11)0.0422 (9)0.0077 (8)0.0070 (7)0.0206 (8)
C290.0443 (8)0.0416 (8)0.0350 (8)0.0073 (6)0.0018 (6)0.0144 (6)
N10.0336 (6)0.0514 (8)0.0397 (7)0.0111 (5)0.0009 (5)0.0163 (6)
N20.0459 (7)0.0519 (8)0.0399 (7)0.0203 (6)0.0139 (6)0.0205 (6)
O10.0688 (8)0.0641 (8)0.0401 (7)0.0195 (7)0.0096 (6)0.0077 (6)
O20.0527 (7)0.0497 (7)0.0469 (6)0.0241 (5)0.0162 (5)0.0168 (5)
O30.0342 (6)0.0485 (7)0.0844 (9)0.0120 (5)0.0118 (6)0.0192 (6)
O40.0540 (7)0.0760 (9)0.0608 (8)0.0331 (6)0.0075 (6)0.0345 (7)
Geometric parameters (Å, º) top
C1—N11.453 (2)C15—C161.377 (3)
C1—C21.526 (2)C15—H150.9300
C1—H1A0.9700C16—C171.380 (3)
C1—H1B0.9700C16—H160.9300
C2—C291.517 (2)C17—C181.372 (3)
C2—C31.530 (2)C17—H170.9300
C2—H20.9800C18—C191.392 (2)
C3—C131.515 (2)C18—H180.9300
C3—C41.5778 (19)C19—O31.356 (2)
C3—H30.9800C20—O31.426 (2)
C4—N11.4707 (18)C20—C211.490 (3)
C4—C111.509 (2)C20—H20A0.9700
C4—C51.547 (2)C20—H20B0.9700
C5—O21.2227 (19)C21—C221.488 (4)
C5—N21.350 (2)C21—H21A0.9700
C6—C71.376 (2)C21—H21B0.9700
C6—C111.388 (2)C22—C231.466 (4)
C6—N21.405 (2)C22—H22A0.9700
C7—C81.390 (3)C22—H22B0.9700
C7—H70.9300C23—O41.425 (2)
C8—C91.379 (3)C23—H23A0.9700
C8—H80.9300C23—H23B0.9700
C9—C101.388 (3)C24—O41.387 (2)
C9—H90.9300C24—C251.392 (2)
C10—C111.382 (2)C24—C291.397 (2)
C10—H100.9300C25—C261.375 (3)
C12—N11.457 (2)C25—H250.9300
C12—H12A0.9600C26—C271.372 (3)
C12—H12B0.9600C26—H260.9300
C12—H12C0.9600C27—C281.381 (3)
C13—O11.211 (2)C27—H270.9300
C13—C141.500 (2)C28—C291.397 (2)
C14—C151.390 (2)C28—H280.9300
C14—C191.398 (2)N2—H2A0.8600
N1—C1—C2102.16 (13)C15—C16—H16120.4
N1—C1—H1A111.3C17—C16—H16120.4
C2—C1—H1A111.3C18—C17—C16121.00 (19)
N1—C1—H1B111.3C18—C17—H17119.5
C2—C1—H1B111.3C16—C17—H17119.5
H1A—C1—H1B109.2C17—C18—C19119.7 (2)
C29—C2—C1113.37 (13)C17—C18—H18120.2
C29—C2—C3119.52 (12)C19—C18—H18120.2
C1—C2—C3100.36 (12)O3—C19—C18123.51 (17)
C29—C2—H2107.6O3—C19—C14116.14 (14)
C1—C2—H2107.6C18—C19—C14120.32 (17)
C3—C2—H2107.6O3—C20—C21106.46 (15)
C13—C3—C2115.22 (12)O3—C20—H20A110.4
C13—C3—C4114.19 (12)C21—C20—H20A110.4
C2—C3—C4104.28 (11)O3—C20—H20B110.4
C13—C3—H3107.6C21—C20—H20B110.4
C2—C3—H3107.6H20A—C20—H20B108.6
C4—C3—H3107.6C22—C21—C20116.2 (2)
N1—C4—C11113.80 (12)C22—C21—H21A108.2
N1—C4—C5114.13 (12)C20—C21—H21A108.2
C11—C4—C5101.31 (12)C22—C21—H21B108.2
N1—C4—C3103.47 (11)C20—C21—H21B108.2
C11—C4—C3116.05 (12)H21A—C21—H21B107.4
C5—C4—C3108.39 (11)C23—C22—C21119.24 (19)
O2—C5—N2126.42 (14)C23—C22—H22A107.5
O2—C5—C4125.33 (14)C21—C22—H22A107.5
N2—C5—C4108.24 (13)C23—C22—H22B107.5
C7—C6—C11122.42 (16)C21—C22—H22B107.5
C7—C6—N2128.30 (16)H22A—C22—H22B107.0
C11—C6—N2109.27 (14)O4—C23—C22112.6 (2)
C6—C7—C8117.32 (18)O4—C23—H23A109.1
C6—C7—H7121.3C22—C23—H23A109.1
C8—C7—H7121.3O4—C23—H23B109.1
C9—C8—C7121.11 (18)C22—C23—H23B109.1
C9—C8—H8119.4H23A—C23—H23B107.8
C7—C8—H8119.4O4—C24—C25119.57 (17)
C8—C9—C10120.86 (18)O4—C24—C29119.84 (14)
C8—C9—H9119.6C25—C24—C29120.44 (18)
C10—C9—H9119.6C26—C25—C24120.5 (2)
C11—C10—C9118.67 (17)C26—C25—H25119.7
C11—C10—H10120.7C24—C25—H25119.7
C9—C10—H10120.7C27—C26—C25120.12 (19)
C10—C11—C6119.61 (16)C27—C26—H26119.9
C10—C11—C4131.19 (15)C25—C26—H26119.9
C6—C11—C4109.15 (13)C26—C27—C28119.6 (2)
N1—C12—H12A109.5C26—C27—H27120.2
N1—C12—H12B109.5C28—C27—H27120.2
H12A—C12—H12B109.5C27—C28—C29122.0 (2)
N1—C12—H12C109.5C27—C28—H28119.0
H12A—C12—H12C109.5C29—C28—H28119.0
H12B—C12—H12C109.5C28—C29—C24117.34 (16)
O1—C13—C14119.75 (15)C28—C29—C2116.07 (15)
O1—C13—C3120.24 (14)C24—C29—C2126.43 (14)
C14—C13—C3119.99 (13)C1—N1—C12115.49 (14)
C15—C14—C19118.30 (16)C1—N1—C4108.59 (11)
C15—C14—C13117.35 (16)C12—N1—C4116.17 (13)
C19—C14—C13124.35 (14)C5—N2—C6111.76 (13)
C16—C15—C14121.4 (2)C5—N2—H2A124.1
C16—C15—H15119.3C6—N2—H2A124.1
C14—C15—H15119.3C19—O3—C20121.51 (14)
C15—C16—C17119.2 (2)C24—O4—C23117.83 (15)
N1—C1—C2—C29174.22 (12)C14—C15—C16—C171.6 (3)
N1—C1—C2—C345.56 (14)C15—C16—C17—C182.3 (3)
C29—C2—C3—C1374.68 (18)C16—C17—C18—C190.4 (3)
C1—C2—C3—C13160.78 (13)C17—C18—C19—O3175.51 (17)
C29—C2—C3—C4159.35 (13)C17—C18—C19—C142.3 (3)
C1—C2—C3—C434.82 (14)C15—C14—C19—O3175.02 (14)
C13—C3—C4—N1138.67 (13)C13—C14—C19—O34.5 (2)
C2—C3—C4—N112.05 (15)C15—C14—C19—C182.9 (2)
C13—C3—C4—C1113.29 (17)C13—C14—C19—C18177.56 (15)
C2—C3—C4—C11113.32 (14)O3—C20—C21—C2273.7 (2)
C13—C3—C4—C599.82 (14)C20—C21—C22—C2368.2 (3)
C2—C3—C4—C5133.56 (13)C21—C22—C23—O454.5 (4)
N1—C4—C5—O251.95 (19)O4—C24—C25—C26175.97 (17)
C11—C4—C5—O2174.67 (14)C29—C24—C25—C260.4 (3)
C3—C4—C5—O262.75 (18)C24—C25—C26—C270.8 (3)
N1—C4—C5—N2127.34 (14)C25—C26—C27—C280.8 (3)
C11—C4—C5—N24.62 (15)C26—C27—C28—C290.4 (3)
C3—C4—C5—N2117.96 (13)C27—C28—C29—C241.6 (3)
C11—C6—C7—C80.6 (3)C27—C28—C29—C2174.00 (16)
N2—C6—C7—C8179.12 (15)O4—C24—C29—C28177.14 (15)
C6—C7—C8—C90.2 (3)C25—C24—C29—C281.6 (2)
C7—C8—C9—C100.5 (3)O4—C24—C29—C22.0 (3)
C8—C9—C10—C110.1 (3)C25—C24—C29—C2173.54 (16)
C9—C10—C11—C60.8 (2)C1—C2—C29—C2891.08 (17)
C9—C10—C11—C4176.26 (15)C3—C2—C29—C28150.90 (15)
C7—C6—C11—C101.1 (2)C1—C2—C29—C2484.06 (19)
N2—C6—C11—C10178.63 (13)C3—C2—C29—C2434.0 (2)
C7—C6—C11—C4176.56 (14)C2—C1—N1—C12172.65 (14)
N2—C6—C11—C43.68 (16)C2—C1—N1—C440.12 (15)
N1—C4—C11—C1054.8 (2)C11—C4—N1—C1144.11 (13)
C5—C4—C11—C10177.73 (15)C5—C4—N1—C1100.27 (15)
C3—C4—C11—C1065.1 (2)C3—C4—N1—C117.30 (16)
N1—C4—C11—C6127.89 (13)C11—C4—N1—C1283.73 (18)
C5—C4—C11—C64.94 (14)C5—C4—N1—C1231.89 (19)
C3—C4—C11—C6112.18 (14)C3—C4—N1—C12149.46 (14)
C2—C3—C13—O14.4 (2)O2—C5—N2—C6176.50 (14)
C4—C3—C13—O1116.34 (16)C4—C5—N2—C62.78 (17)
C2—C3—C13—C14177.33 (13)C7—C6—N2—C5179.74 (16)
C4—C3—C13—C1461.97 (17)C11—C6—N2—C50.52 (17)
O1—C13—C14—C1534.4 (2)C18—C19—O3—C2010.7 (3)
C3—C13—C14—C15143.95 (15)C14—C19—O3—C20167.11 (16)
O1—C13—C14—C19145.16 (17)C21—C20—O3—C19171.34 (17)
C3—C13—C14—C1936.5 (2)C25—C24—O4—C2356.2 (3)
C19—C14—C15—C161.0 (3)C29—C24—O4—C23128.2 (2)
C13—C14—C15—C16179.46 (16)C22—C23—O4—C24157.44 (19)
Hydrogen-bond geometry (Å, º) top
Cg4 is the centroid of the C14–C19 ring.
D—H···AD—HH···AD···AD—H···A
N2—H2A···O2i0.861.962.8105 (17)170
C26—H26···Cg4ii0.932.913.617 (3)134
Symmetry codes: (i) x, y+2, z+1; (ii) x, y+2, z.

Experimental details

Crystal data
Chemical formulaC29H28N2O4
Mr468.53
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.4223 (3), 10.5115 (3), 14.1754 (5)
α, β, γ (°)70.235 (2), 87.309 (3), 69.065 (2)
V3)1229.67 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.25 × 0.22 × 0.19
Data collection
DiffractometerBruker APEXII CCD area detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2008)
Tmin, Tmax0.979, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
22180, 5998, 4260
Rint0.027
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.147, 1.01
No. of reflections5998
No. of parameters317
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.47, 0.27

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 2012), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg4 is the centroid of the C14–C19 ring.
D—H···AD—HH···AD···AD—H···A
N2—H2A···O2i0.861.962.8105 (17)169.9
C26—H26···Cg4ii0.932.913.617 (3)134
Symmetry codes: (i) x, y+2, z+1; (ii) x, y+2, z.
 

Acknowledgements

The authors thank the TBI X-ray facility, CAS in Crystallography and Biophysics, University of Madras, India, for the data collection. SN thanks the University Grant Commission (UGC), Government of India, New Delhi, for a Meritorious Fellowship under the SAP programme.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGanesh, G., Yuvaraj, P. S., Govindan, E., Reddy, B. S. R. & SubbiahPandi, A. (2012). Acta Cryst. E68, o2902–o2903.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationNarayanan, S., Srinivasan, T., Purushothaman, S., Raghunathan, R. & Velmurugan, D. (2012). Acta Cryst. E68, o3345.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWaldmann, H. (1995). Synlett, pp. 133–141.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds