organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4′-Methyl-14′,19′-dioxa-4′-aza­spiro­[ace­naphthyl­ene-1,5′-tetra­cyclo­[18.4.0.02,6.08,13]tetra­cosa­ne]-1′(24′),8′,10′,12′,20′,22′-hexa­ene-2,7′(1H)-dione

aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: shirai2011@gmail.com

(Received 26 October 2012; accepted 8 November 2012; online 14 November 2012)

In the title compound, C33H29NO4, the acenaphthyl­ene ring system is essentially planar (r.m.s. deviation = 0.0290 Å). The pyrrolidine ring adopts a C-envelope conformation with a C atom displaced by 0.671 (2) Å from the mean-plane formed by the remaining ring atoms. The pyrrolidine ring is fused to acenaphthyl­ene ring system making a dihedral angle of 88.0 (7)°. In the crystal, mol­ecules are linked into R22(9) dimers via C—H⋯N and C—H⋯O hydrogen bonds. Two C atoms act as donors to the same O atom acceptor, resulting in the formation of R21(7) ring motifs. These two motifs combine to form hydrogen-bonded sheets running along the a- and b-axis directions.

Related literature

For background to natural and synthetic pharmacologically active pyrrolidines, see: Waldmann (1995[Waldmann, H. (1995). Synlett, pp. 133-141.]). For related structures, see: Augustine et al. (2010[Augustine, T., Vithiya, S. M., Ignacimuthu, S. & Ramkumar, V. (2010). Acta Cryst. E66, o3002.]); Narayanan et al. (2012[Narayanan, S., Srinivasan, T., Purushothaman, S., Raghunathan, R. & Velmurugan, D. (2012). Acta Cryst. E68, o3345.]). For graph-set motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C33H29NO4

  • Mr = 503.57

  • Monoclinic, P 21 /c

  • a = 11.248 (2) Å

  • b = 16.609 (3) Å

  • c = 14.037 (3) Å

  • β = 92.965 (6)°

  • V = 2618.8 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.25 × 0.22 × 0.19 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.979, Tmax = 0.984

  • 24740 measured reflections

  • 6363 independent reflections

  • 4183 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.128

  • S = 1.01

  • 6363 reflections

  • 345 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯N1i 0.93 2.62 3.535 (3) 167
C15—H15⋯O1i 0.93 2.50 3.414 (2) 168
C27—H27B⋯O2ii 0.97 2.48 3.403 (2) 158
C29—H29⋯O2ii 0.93 2.57 3.450 (2) 159
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Highly functionalized pyrrolidines have gained much interest in the past few years as they constitute the main structural element of many natural and synthetic pharmacologically active compounds (Waldmann, 1995). In continuation of our work on the crystal structure analysis of spiro-pyrrolidine derivatives (Narayanan et al., 2012), the crystal structure of the title compound has been carried out and the results are presented here.

The bond lengths and angles in the title molecule (Fig. 1) are within normal ranges and comparable to those found in closely related structures (Narayanan et al., 2012; Augustine et al., 2010). The acenaphthylene ring system (C4–C15) is essentially planar (rmsd 0.0290 Å). The pyrrolidine ring (C1–C4/N1) adopts a C4-envelop conformation with C4 0.671 (2) Å displaced from the mean-plane formed by the remaining ring atoms. The pyrrolidine ring is fused to acenaphthylene ring system; the dihedral angle between these two ring systems being 88.0 (7)°.

The molecules are linked into dimers via C9—H9···N1 and C15—H15···O1 hydrogen bonds with the graph-set motif R22(9) (Bernstein et al., 1995). Similarly, atoms C27 and C29 act as donors to form bifurcated hydrogen bonds with atom O2 as an acceptor, resulting in the formation of R21(7) ring motif. These two motifs combine to form a hydrogen-bonded molecular ribbons running along the a and b-axes.

Related literature top

For background to natural and synthetic pharmacologically active pyrrolidines, see: Waldmann (1995). For related structures, see: Augustine et al. (2010); Narayanan et al. (2012). For graph-set motifs, see: Bernstein et al. (1995).

Experimental top

A mixture of acenaphthylene-1,2-dione (182 mg, 1 mmol), sarcosine (90 mg, 1 mmol) and (4E)-12,17-dioxatricyclo[16.4.0.06,11]docosa -1(22),4,6,8,10,18,20-heptaen-3-one (300 mg 1.0 mmol) in toluene (20 ml) was refluxed under Dean-Stark reaction condition until the disappearance of starting materials as evidenced by TLC. The reaction mixture was concentrated in vacuo and extracted with water (50 ml) and dichloromethane (2x50 ml). The organic layer was washed with brine solution, dried with anhydrous sodium sulfate and concentrated in vacuo. The residue was purified by column chromatography with hexane-ethylacetate (9:1) mixture to yield macrocycle in good yields. The product was dissolved in chloroform and heated for two minutes. The resulting solution was subjected to crystallization by slow evaporation of the solvent resulting in single crystals suitable for XRD studies.

Refinement top

All H atoms were fixed geometrically and allowed to ride on their parent C atoms, with C—H distances fixed in the range 0.93–0.98 Å with Uiso(H) = 1.5Ueq(C) for methyl H 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids drawn at the 30% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. The crystal structure showing C—H···N and C—H···O hydrogen bonds (dashed lines); H atoms not involved in hydrogen bonding have been omitted for clarity. Symmetry codes: i - x, - 1/2 + y, 1/2 - z; ii 1 - x, 1/2 + y, 1/2 - z.
[Figure 3] Fig. 3. Molecular packing of the title compound, showing hydrogen bonds resulting in molecular ribbons running along the a and the b axes. H atoms not involved in hydrogen bonds have been omitted for clarity.
4'-Methyl-14',19'-dioxa-4'-azaspiro[acenaphthylene-1,5'- tetracyclo[18.4.0.02,6.08,13]tetracosane]-1'(24'),8',10',12',20',22'- hexaene-2,7'(1H)-dione top
Crystal data top
C33H29NO4F(000) = 1064
Mr = 503.57Dx = 1.277 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6363 reflections
a = 11.248 (2) Åθ = 1.8–28.3°
b = 16.609 (3) ŵ = 0.08 mm1
c = 14.037 (3) ÅT = 293 K
β = 92.965 (6)°Block, colorless
V = 2618.8 (9) Å30.25 × 0.22 × 0.19 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
6363 independent reflections
Radiation source: fine-focus sealed tube4183 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ω and ϕ scansθmax = 28.3°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1414
Tmin = 0.979, Tmax = 0.984k = 2119
24740 measured reflectionsl = 1818
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.128 w = 1/[σ2(Fo2) + (0.0523P)2 + 0.572P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
6363 reflectionsΔρmax = 0.22 e Å3
345 parametersΔρmin = 0.21 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0125 (10)
Crystal data top
C33H29NO4V = 2618.8 (9) Å3
Mr = 503.57Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.248 (2) ŵ = 0.08 mm1
b = 16.609 (3) ÅT = 293 K
c = 14.037 (3) Å0.25 × 0.22 × 0.19 mm
β = 92.965 (6)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
6363 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
4183 reflections with I > 2σ(I)
Tmin = 0.979, Tmax = 0.984Rint = 0.035
24740 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.128H-atom parameters constrained
S = 1.01Δρmax = 0.22 e Å3
6363 reflectionsΔρmin = 0.21 e Å3
345 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.23872 (16)0.09798 (10)0.09848 (11)0.0548 (4)
H1A0.25550.15420.08610.066*
H1B0.22400.07060.03800.066*
C20.34391 (14)0.05856 (9)0.15621 (10)0.0447 (4)
H20.35670.00560.12760.054*
C30.29234 (12)0.04354 (8)0.25405 (9)0.0358 (3)
H30.29700.09360.29110.043*
C40.16007 (13)0.02549 (8)0.22597 (10)0.0407 (3)
C50.08158 (14)0.03292 (9)0.31428 (12)0.0487 (4)
C60.02699 (14)0.04693 (10)0.32978 (14)0.0580 (5)
C70.04217 (18)0.07611 (14)0.39953 (19)0.0829 (7)
H70.06390.04390.44990.100*
C80.0792 (2)0.15770 (18)0.3916 (3)0.1069 (10)
H80.12440.17920.43910.128*
C90.0513 (2)0.20604 (16)0.3171 (3)0.1046 (10)
H90.08000.25850.31420.126*
C100.02022 (18)0.17780 (11)0.24486 (19)0.0766 (6)
C110.05975 (15)0.09741 (10)0.25487 (14)0.0569 (5)
C120.13465 (14)0.06061 (9)0.19125 (12)0.0488 (4)
C130.16914 (19)0.10407 (10)0.11489 (14)0.0652 (5)
H130.21890.08120.07140.078*
C140.1285 (2)0.18403 (12)0.10263 (18)0.0841 (7)
H140.15150.21280.04980.101*
C150.0580 (2)0.22028 (12)0.1642 (2)0.0908 (8)
H150.03400.27330.15380.109*
C160.02011 (19)0.08788 (12)0.10598 (16)0.0748 (6)
H16A0.01510.04050.06670.112*
H16B0.01050.13490.06650.112*
H16C0.04150.08650.15080.112*
C170.35059 (13)0.02308 (8)0.31245 (10)0.0392 (3)
C180.33202 (13)0.02667 (8)0.41733 (10)0.0402 (3)
C190.29524 (16)0.09961 (10)0.45511 (13)0.0562 (4)
H190.28010.14310.41460.067*
C200.28089 (18)0.10834 (12)0.55164 (15)0.0695 (5)
H200.25420.15690.57570.083*
C210.30611 (18)0.04520 (13)0.61134 (13)0.0671 (5)
H210.29850.05150.67660.081*
C220.34253 (16)0.02753 (11)0.57657 (12)0.0561 (4)
H220.35980.06990.61830.067*
C230.35360 (13)0.03799 (9)0.47915 (10)0.0413 (3)
C240.41564 (17)0.17608 (10)0.50022 (12)0.0553 (4)
H24A0.48000.16370.54650.066*
H24B0.34590.19090.53410.066*
C250.45091 (18)0.24358 (11)0.43577 (13)0.0621 (5)
H25A0.51060.22390.39410.075*
H25B0.48680.28630.47450.075*
C260.34744 (18)0.27817 (11)0.37493 (13)0.0642 (5)
H26A0.28020.24190.37760.077*
H26B0.32440.32910.40230.077*
C270.37315 (18)0.29175 (9)0.27161 (13)0.0589 (5)
H27A0.31240.32620.24170.071*
H27B0.44950.31840.26760.071*
C280.47683 (15)0.18063 (9)0.19420 (11)0.0476 (4)
C290.58811 (16)0.21697 (11)0.19675 (13)0.0592 (5)
H290.59770.26880.22100.071*
C300.68444 (17)0.17641 (13)0.16345 (14)0.0694 (5)
H300.75870.20110.16550.083*
C310.67185 (18)0.10011 (14)0.12739 (14)0.0694 (5)
H310.73700.07310.10460.083*
C320.56117 (17)0.06348 (12)0.12523 (12)0.0591 (5)
H320.55310.01160.10090.071*
C330.46186 (15)0.10206 (10)0.15840 (10)0.0468 (4)
N10.13583 (12)0.09043 (7)0.15743 (9)0.0472 (3)
O10.07071 (12)0.09415 (7)0.35944 (9)0.0664 (4)
O20.40539 (11)0.07668 (7)0.27515 (8)0.0599 (3)
O30.39011 (10)0.10797 (6)0.43954 (7)0.0497 (3)
O40.37498 (10)0.21578 (7)0.22268 (8)0.0569 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0767 (12)0.0497 (9)0.0371 (8)0.0005 (8)0.0065 (8)0.0038 (7)
C20.0589 (10)0.0389 (8)0.0367 (7)0.0005 (7)0.0053 (7)0.0021 (6)
C30.0430 (8)0.0286 (7)0.0356 (7)0.0007 (5)0.0004 (6)0.0025 (5)
C40.0445 (8)0.0300 (7)0.0467 (8)0.0009 (6)0.0044 (6)0.0016 (6)
C50.0404 (8)0.0408 (8)0.0647 (10)0.0051 (6)0.0028 (7)0.0039 (8)
C60.0360 (8)0.0512 (10)0.0865 (13)0.0024 (7)0.0001 (8)0.0147 (9)
C70.0502 (11)0.0831 (15)0.1170 (18)0.0046 (10)0.0184 (11)0.0275 (13)
C80.0591 (14)0.0902 (19)0.172 (3)0.0192 (13)0.0140 (16)0.057 (2)
C90.0675 (15)0.0611 (15)0.183 (3)0.0210 (12)0.0202 (17)0.0360 (17)
C100.0598 (12)0.0417 (10)0.1246 (19)0.0126 (9)0.0300 (12)0.0176 (12)
C110.0439 (9)0.0383 (9)0.0863 (13)0.0032 (7)0.0180 (9)0.0071 (8)
C120.0512 (9)0.0337 (8)0.0596 (10)0.0002 (7)0.0158 (7)0.0022 (7)
C130.0867 (14)0.0409 (9)0.0656 (11)0.0041 (9)0.0182 (10)0.0117 (8)
C140.1166 (19)0.0401 (11)0.0908 (15)0.0066 (11)0.0411 (14)0.0164 (11)
C150.1038 (18)0.0339 (10)0.128 (2)0.0062 (11)0.0552 (16)0.0039 (13)
C160.0739 (13)0.0638 (12)0.0828 (14)0.0077 (10)0.0346 (11)0.0002 (10)
C170.0404 (8)0.0318 (7)0.0451 (8)0.0005 (6)0.0007 (6)0.0023 (6)
C180.0384 (8)0.0376 (8)0.0442 (8)0.0039 (6)0.0023 (6)0.0070 (6)
C190.0613 (11)0.0435 (9)0.0634 (11)0.0025 (8)0.0003 (8)0.0111 (8)
C200.0752 (13)0.0629 (12)0.0709 (13)0.0046 (10)0.0097 (10)0.0294 (10)
C210.0765 (13)0.0773 (13)0.0482 (10)0.0074 (10)0.0096 (9)0.0210 (10)
C220.0633 (11)0.0628 (11)0.0420 (9)0.0085 (8)0.0010 (8)0.0034 (8)
C230.0405 (8)0.0422 (8)0.0410 (8)0.0047 (6)0.0005 (6)0.0050 (6)
C240.0724 (11)0.0472 (9)0.0457 (9)0.0012 (8)0.0037 (8)0.0094 (7)
C250.0727 (12)0.0509 (10)0.0621 (11)0.0082 (9)0.0020 (9)0.0078 (8)
C260.0783 (13)0.0507 (10)0.0644 (11)0.0104 (9)0.0099 (10)0.0038 (8)
C270.0776 (12)0.0345 (8)0.0648 (11)0.0015 (8)0.0075 (9)0.0031 (8)
C280.0563 (10)0.0461 (9)0.0410 (8)0.0045 (7)0.0083 (7)0.0086 (7)
C290.0634 (11)0.0561 (10)0.0585 (10)0.0112 (9)0.0089 (8)0.0099 (8)
C300.0549 (11)0.0847 (15)0.0694 (12)0.0108 (10)0.0103 (9)0.0195 (11)
C310.0581 (12)0.0888 (15)0.0631 (11)0.0089 (10)0.0203 (9)0.0109 (11)
C320.0668 (12)0.0640 (11)0.0477 (9)0.0056 (9)0.0145 (8)0.0003 (8)
C330.0557 (9)0.0500 (9)0.0356 (7)0.0009 (7)0.0103 (7)0.0051 (6)
N10.0544 (8)0.0381 (7)0.0474 (7)0.0035 (6)0.0124 (6)0.0029 (5)
O10.0762 (9)0.0486 (7)0.0767 (8)0.0104 (6)0.0253 (7)0.0038 (6)
O20.0757 (8)0.0466 (7)0.0571 (7)0.0223 (6)0.0017 (6)0.0050 (5)
O30.0681 (7)0.0412 (6)0.0393 (5)0.0081 (5)0.0009 (5)0.0042 (4)
O40.0603 (7)0.0441 (6)0.0676 (7)0.0071 (5)0.0152 (6)0.0077 (5)
Geometric parameters (Å, º) top
C1—N11.462 (2)C17—C181.499 (2)
C1—C21.545 (2)C18—C191.394 (2)
C1—H1A0.9700C18—C231.394 (2)
C1—H1B0.9700C19—C201.381 (3)
C2—C331.510 (2)C19—H190.9300
C2—C31.5386 (19)C20—C211.363 (3)
C2—H20.9800C20—H200.9300
C3—C171.5067 (19)C21—C221.373 (3)
C3—C41.548 (2)C21—H210.9300
C3—H30.9800C22—C231.390 (2)
C4—N11.4616 (18)C22—H220.9300
C4—C121.533 (2)C23—O31.3609 (17)
C4—C51.564 (2)C24—O31.4360 (18)
C5—O11.2079 (19)C24—C251.507 (2)
C5—C61.482 (2)C24—H24A0.9700
C6—C71.370 (3)C24—H24B0.9700
C6—C111.409 (3)C25—C261.520 (3)
C7—C81.420 (4)C25—H25A0.9700
C7—H70.9300C25—H25B0.9700
C8—C91.368 (4)C26—C271.510 (3)
C8—H80.9300C26—H26A0.9700
C9—C101.407 (4)C26—H26B0.9700
C9—H90.9300C27—O41.4372 (19)
C10—C111.412 (2)C27—H27A0.9700
C10—C151.418 (4)C27—H27B0.9700
C11—C121.399 (2)C28—O41.3640 (19)
C12—C131.365 (2)C28—C291.388 (2)
C13—C141.412 (3)C28—C331.405 (2)
C13—H130.9300C29—C301.378 (3)
C14—C151.345 (4)C29—H290.9300
C14—H140.9300C30—C311.369 (3)
C15—H150.9300C30—H300.9300
C16—N11.456 (2)C31—C321.385 (3)
C16—H16A0.9600C31—H310.9300
C16—H16B0.9600C32—C331.389 (2)
C16—H16C0.9600C32—H320.9300
C17—O21.2165 (17)
N1—C1—C2105.89 (12)C19—C18—C23118.57 (14)
N1—C1—H1A110.6C19—C18—C17117.88 (14)
C2—C1—H1A110.6C23—C18—C17123.51 (13)
N1—C1—H1B110.6C20—C19—C18121.12 (17)
C2—C1—H1B110.6C20—C19—H19119.4
H1A—C1—H1B108.7C18—C19—H19119.4
C33—C2—C3115.53 (12)C21—C20—C19119.44 (17)
C33—C2—C1117.14 (13)C21—C20—H20120.3
C3—C2—C1102.89 (12)C19—C20—H20120.3
C33—C2—H2106.9C20—C21—C22120.97 (17)
C3—C2—H2106.9C20—C21—H21119.5
C1—C2—H2106.9C22—C21—H21119.5
C17—C3—C2115.55 (12)C21—C22—C23120.21 (17)
C17—C3—C4112.42 (11)C21—C22—H22119.9
C2—C3—C4101.87 (11)C23—C22—H22119.9
C17—C3—H3108.9O3—C23—C22123.56 (14)
C2—C3—H3108.9O3—C23—C18116.75 (12)
C4—C3—H3108.9C22—C23—C18119.62 (14)
N1—C4—C12116.98 (12)O3—C24—C25106.31 (13)
N1—C4—C399.72 (11)O3—C24—H24A110.5
C12—C4—C3114.99 (12)C25—C24—H24A110.5
N1—C4—C5111.72 (12)O3—C24—H24B110.5
C12—C4—C5102.82 (12)C25—C24—H24B110.5
C3—C4—C5110.94 (12)H24A—C24—H24B108.7
O1—C5—C6128.49 (16)C24—C25—C26113.63 (16)
O1—C5—C4124.00 (14)C24—C25—H25A108.8
C6—C5—C4107.52 (13)C26—C25—H25A108.8
C7—C6—C11120.19 (18)C24—C25—H25B108.8
C7—C6—C5132.5 (2)C26—C25—H25B108.8
C11—C6—C5107.26 (15)H25A—C25—H25B107.7
C6—C7—C8117.2 (3)C27—C26—C25114.63 (16)
C6—C7—H7121.4C27—C26—H26A108.6
C8—C7—H7121.4C25—C26—H26A108.6
C9—C8—C7122.8 (2)C27—C26—H26B108.6
C9—C8—H8118.6C25—C26—H26B108.6
C7—C8—H8118.6H26A—C26—H26B107.6
C8—C9—C10121.2 (2)O4—C27—C26109.63 (13)
C8—C9—H9119.4O4—C27—H27A109.7
C10—C9—H9119.4C26—C27—H27A109.7
C9—C10—C11115.6 (2)O4—C27—H27B109.7
C9—C10—C15128.0 (2)C26—C27—H27B109.7
C11—C10—C15116.4 (2)H27A—C27—H27B108.2
C12—C11—C6113.94 (14)O4—C28—C29125.17 (15)
C12—C11—C10123.1 (2)O4—C28—C33114.55 (14)
C6—C11—C10122.95 (19)C29—C28—C33120.27 (16)
C13—C12—C11118.37 (16)C30—C29—C28120.15 (18)
C13—C12—C4133.39 (16)C30—C29—H29119.9
C11—C12—C4108.24 (14)C28—C29—H29119.9
C12—C13—C14119.3 (2)C31—C30—C29120.66 (18)
C12—C13—H13120.3C31—C30—H30119.7
C14—C13—H13120.3C29—C30—H30119.7
C15—C14—C13122.7 (2)C30—C31—C32119.37 (18)
C15—C14—H14118.6C30—C31—H31120.3
C13—C14—H14118.6C32—C31—H31120.3
C14—C15—C10120.09 (19)C31—C32—C33121.86 (18)
C14—C15—H15120.0C31—C32—H32119.1
C10—C15—H15120.0C33—C32—H32119.1
N1—C16—H16A109.5C32—C33—C28117.69 (16)
N1—C16—H16B109.5C32—C33—C2119.58 (15)
H16A—C16—H16B109.5C28—C33—C2122.73 (14)
N1—C16—H16C109.5C16—N1—C4115.89 (14)
H16A—C16—H16C109.5C16—N1—C1115.79 (15)
H16B—C16—H16C109.5C4—N1—C1108.04 (12)
O2—C17—C18119.55 (13)C23—O3—C24119.06 (12)
O2—C17—C3121.26 (13)C28—O4—C27123.29 (13)
C18—C17—C3119.01 (12)
N1—C1—C2—C33136.90 (13)C2—C3—C17—O222.5 (2)
N1—C1—C2—C39.01 (15)C4—C3—C17—O293.80 (17)
C33—C2—C3—C1775.61 (16)C2—C3—C17—C18162.43 (12)
C1—C2—C3—C17155.49 (12)C4—C3—C17—C1881.22 (15)
C33—C2—C3—C4162.22 (12)O2—C17—C18—C1945.8 (2)
C1—C2—C3—C433.32 (14)C3—C17—C18—C19129.27 (15)
C17—C3—C4—N1169.82 (11)O2—C17—C18—C23131.81 (16)
C2—C3—C4—N145.52 (13)C3—C17—C18—C2353.1 (2)
C17—C3—C4—C1243.82 (17)C23—C18—C19—C200.4 (2)
C2—C3—C4—C1280.48 (14)C17—C18—C19—C20177.41 (16)
C17—C3—C4—C572.31 (14)C18—C19—C20—C211.7 (3)
C2—C3—C4—C5163.39 (11)C19—C20—C21—C221.7 (3)
N1—C4—C5—O149.2 (2)C20—C21—C22—C230.4 (3)
C12—C4—C5—O1175.47 (16)C21—C22—C23—O3179.41 (15)
C3—C4—C5—O161.1 (2)C21—C22—C23—C182.5 (2)
N1—C4—C5—C6130.97 (13)C19—C18—C23—O3179.58 (13)
C12—C4—C5—C64.71 (15)C17—C18—C23—O31.9 (2)
C3—C4—C5—C6118.73 (13)C19—C18—C23—C222.5 (2)
O1—C5—C6—C74.9 (3)C17—C18—C23—C22175.18 (14)
C4—C5—C6—C7175.0 (2)O3—C24—C25—C2671.99 (18)
O1—C5—C6—C11175.99 (17)C24—C25—C26—C27135.12 (16)
C4—C5—C6—C114.20 (17)C25—C26—C27—O474.2 (2)
C11—C6—C7—C80.7 (3)O4—C28—C29—C30178.10 (15)
C5—C6—C7—C8179.8 (2)C33—C28—C29—C300.5 (3)
C6—C7—C8—C91.7 (4)C28—C29—C30—C310.1 (3)
C7—C8—C9—C102.2 (4)C29—C30—C31—C320.5 (3)
C8—C9—C10—C110.1 (3)C30—C31—C32—C330.2 (3)
C8—C9—C10—C15179.2 (2)C31—C32—C33—C280.4 (2)
C7—C6—C11—C12177.33 (17)C31—C32—C33—C2178.72 (16)
C5—C6—C11—C121.9 (2)O4—C28—C33—C32178.01 (14)
C7—C6—C11—C102.8 (3)C29—C28—C33—C320.8 (2)
C5—C6—C11—C10177.89 (16)O4—C28—C33—C22.9 (2)
C9—C10—C11—C12177.83 (18)C29—C28—C33—C2178.32 (15)
C15—C10—C11—C121.6 (3)C3—C2—C33—C32117.19 (16)
C9—C10—C11—C62.3 (3)C1—C2—C33—C32121.30 (16)
C15—C10—C11—C6178.22 (17)C3—C2—C33—C2861.87 (19)
C6—C11—C12—C13178.50 (15)C1—C2—C33—C2859.65 (19)
C10—C11—C12—C131.3 (3)C12—C4—N1—C1648.6 (2)
C6—C11—C12—C41.21 (19)C3—C4—N1—C16173.22 (14)
C10—C11—C12—C4178.95 (15)C5—C4—N1—C1669.49 (17)
N1—C4—C12—C1353.2 (2)C12—C4—N1—C183.20 (16)
C3—C4—C12—C1363.3 (2)C3—C4—N1—C141.42 (14)
C5—C4—C12—C13176.04 (18)C5—C4—N1—C1158.71 (12)
N1—C4—C12—C11126.41 (15)C2—C1—N1—C16152.69 (14)
C3—C4—C12—C11117.08 (14)C2—C1—N1—C420.84 (16)
C5—C4—C12—C113.61 (15)C22—C23—O3—C241.9 (2)
C11—C12—C13—C140.0 (3)C18—C23—O3—C24178.90 (14)
C4—C12—C13—C14179.62 (17)C25—C24—O3—C23178.90 (14)
C12—C13—C14—C151.0 (3)C29—C28—O4—C278.9 (2)
C13—C14—C15—C100.7 (3)C33—C28—O4—C27172.38 (13)
C9—C10—C15—C14178.8 (2)C26—C27—O4—C28107.64 (17)
C11—C10—C15—C140.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···N1i0.932.623.535 (3)167
C15—H15···O1i0.932.503.414 (2)168
C27—H27B···O2ii0.972.483.403 (2)158
C29—H29···O2ii0.932.573.450 (2)159
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC33H29NO4
Mr503.57
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)11.248 (2), 16.609 (3), 14.037 (3)
β (°) 92.965 (6)
V3)2618.8 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.25 × 0.22 × 0.19
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.979, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
24740, 6363, 4183
Rint0.035
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.128, 1.01
No. of reflections6363
No. of parameters345
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.21

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 2012), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···N1i0.932.623.535 (3)167.4
C15—H15···O1i0.932.503.414 (2)167.8
C27—H27B···O2ii0.972.483.403 (2)158.3
C29—H29···O2ii0.932.573.450 (2)158.7
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x+1, y+1/2, z+1/2.
 

Acknowledgements

The authors thank the TBI X-ray facility, CAS in Crystallography and Biophysics, University of Madras, India, for the data collection. SN thanks the University Grant Commission (UGC), Government of India, New Delhi, for a Meritorious Fellowship under the SAP programme.

References

First citationAugustine, T., Vithiya, S. M., Ignacimuthu, S. & Ramkumar, V. (2010). Acta Cryst. E66, o3002.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNarayanan, S., Srinivasan, T., Purushothaman, S., Raghunathan, R. & Velmurugan, D. (2012). Acta Cryst. E68, o3345.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWaldmann, H. (1995). Synlett, pp. 133–141.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds