organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 12| December 2012| Pages o3329-o3330

Methyl 12-hy­droxy-10-[1-(4-meth­­oxy­phen­yl)-2-oxo-3-phen­­oxy­azetidin-4-yl]-11-oxa-3-aza­hexa­cyclo­[11.7.1.02,9.02,12.03,7.017,21]henicosa-1(20),13,15,17(21),18-penta­ene-9-carboxyl­ate

aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: shirai2011@gmail.com

(Received 31 October 2012; accepted 6 November 2012; online 10 November 2012)

In the title compound, C37H34N2O7, both pyrrolidine rings adopt envelope conformations. The β-lactam ring is close to planar (r.m.s. deviation = 0.0395 Å) and makes a dihedral angle of 83.35 (15)° with the furan ring. The O atom attached to the β-lactam ring deviates by 0.187 (2) Å from the mean plane of the ring. The β-lactam ring makes dihedral angles of 14.90 (15) and 27.72 (17)° with the meth­oxy­phenyl and phenyl rings, respectively. The crystal packing features C—H⋯O hydrogen bonds.

Related literature

For general background and therapeutic applications of β-lactams, see: Banik & Becker (2000[Banik, B. K. & Becker, F. F. (2000). Tetrahedron Lett. 41, 6551-6554.]); Brakhage (1998[Brakhage, A. A. (1998). Microbiol. Mol. Biol. Rev. 62, 547-585.]). For a related structure, see: Sundaramoorthy et al. (2012[Sundaramoorthy, S., Rajesh, R., Raghunathan, R. & Velmurugan, D. (2012). Acta Cryst. E68, o2200-o2201.]).

[Scheme 1]

Experimental

Crystal data
  • C37H34N2O7

  • Mr = 618.66

  • Orthorhombic, P b c a

  • a = 9.6545 (11) Å

  • b = 20.363 (2) Å

  • c = 31.804 (3) Å

  • V = 6252.5 (11) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.35 × 0.30 × 0.25 mm

Data collection
  • Bruker SMART APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.969, Tmax = 0.978

  • 26528 measured reflections

  • 5614 independent reflections

  • 3210 reflections with I > 2σ(I)

  • Rint = 0.062

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.127

  • S = 1.00

  • 5614 reflections

  • 421 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C33—H33⋯O4i 0.93 2.49 3.409 (3) 173
C37—H37C⋯O7ii 0.96 2.53 3.217 (3) 128
Symmetry codes: (i) -x, -y, -z+1; (ii) x-1, y, z.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 2012)[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]; software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The role of β-lactam antibiotics is well known (Banik & Becker, 2000). The most commonly used β-lactam antibiotics for the therapy of infectious diseases are penicillin and cephalosporin (Brakhage, 1998). In view of potential applications of β-lactam derivatives, we have determined the crystal structure of the title compound and report it in this article.

In the title compound (Fig. 1), both pyrrolidine rings N2/C18–C20/C24 and N2/C20–C23 adopt C20- and C23-envelope conformations, respectively. The β lactam ring (N1/C8–C10) is essentially planar (rmsd = 0.0395 Å) and the O2 atom attached to it deviates by -0.187 (2)Å from its least-squares plane. The β lactam ring makes dihedral angles 14.90 (15)° and 27.72 (17)° with the methoxy phenyl and unsubstitued phenyl rings, respectively. The dihedral angle between the β lactam ring and the furan ring (O6/C17/C18/C24/C25) is 83.35 (15)°. The furan ring makes dihedral angles 81.84 (12)° and 72.24 (15)° with the two pyrrolidine rings. The dihedral angle between the furan ring and the cyclopentane ring (C24/C25/C26/C27/C28) is 71.56 (12)°. The bond distances and angles in the title compound agree very well with the corresponding bond distances and angles reported in a closely related compound (Sundaramoorthy et al., 2012). The packing of the crystal structure is stabilised by intermolecular C—H···O hydrogen bonds (Tab. 1 & Fig. 2).

Related literature top

For general background and therapeutic applications of β-lactams, see: Banik & Becker (2000); Brakhage (1998). For a related structure, see: Sundaramoorthy et al. (2012).

Experimental top

A solution of methyl 2-(hydroxy(1-(4-methoxyphenyl)-4-oxo-3-phenoxyazetidin -2-yl)methyl)acrylate (1.0 equiv.), acenaphthequinone (1.1 equiv.) and proline (1.1 equiv.) were refluxed in dry methanol. Completion of the reaction was evidenced by TLC analysis. The solvent was then removed under vacuum, diluted in dichloromethane and washed with brine and water. The organic layer was separated and removed and the residue subjected to column chromatography using ethyl acetate and hexane as an eluent (1:4) afforded the cycloadduct. The product was dissolved in chloroform and heated for two minutes. The resulting solution was subjected to crystallization by slow evaporation of the solvent for 48 hours resulting in the formation of single crystals.

Refinement top

The hydrogen atoms were placed in calculated positions with C—H = 0.93 Å to 0.98 Å and refined in the riding model with fixed isotropic displacement parameters:Uiso(H) = 1.5Ueq(methyl-C) and 1.2Ueq(non-methyl C). The hydroxyl H-atom was located from a difference map and was allowed to refine freely.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms were omitted for clarity.
[Figure 2] Fig. 2. A view of the C—-H···O hydrogen bonds (dotted lines) in the crystal structure of the title compound viewed down b axis. H atoms non-participating in hydrogen-bonding were omitted for clarity.
Methyl 12-hydroxy-10-[1-(4-methoxyphenyl)-2-oxo-3-phenoxyazetidin-4-yl]- 11-oxa-3-azahexacyclo[11.7.1.02,9.02,12.03,7.017,21]henicosa- 1(20),13,15,17 (21),18-pentaene-9-carboxylate top
Crystal data top
C37H34N2O7F(000) = 2608
Mr = 618.66Dx = 1.314 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 5614 reflections
a = 9.6545 (11) Åθ = 1.3–25.3°
b = 20.363 (2) ŵ = 0.09 mm1
c = 31.804 (3) ÅT = 293 K
V = 6252.5 (11) Å3Block, colourless
Z = 80.35 × 0.30 × 0.25 mm
Data collection top
Bruker SMART APEXII area-detector
diffractometer
5614 independent reflections
Radiation source: fine-focus sealed tube3210 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.062
ω and ϕ scansθmax = 25.3°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1111
Tmin = 0.969, Tmax = 0.978k = 2224
26528 measured reflectionsl = 3238
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0503P)2 + 1.3234P]
where P = (Fo2 + 2Fc2)/3
5614 reflections(Δ/σ)max < 0.001
421 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C37H34N2O7V = 6252.5 (11) Å3
Mr = 618.66Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 9.6545 (11) ŵ = 0.09 mm1
b = 20.363 (2) ÅT = 293 K
c = 31.804 (3) Å0.35 × 0.30 × 0.25 mm
Data collection top
Bruker SMART APEXII area-detector
diffractometer
5614 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3210 reflections with I > 2σ(I)
Tmin = 0.969, Tmax = 0.978Rint = 0.062
26528 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.127H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.14 e Å3
5614 reflectionsΔρmin = 0.21 e Å3
421 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1844 (4)0.29414 (16)0.45652 (10)0.0994 (11)
H1A0.27160.29310.47100.149*
H1B0.19450.31820.43070.149*
H1C0.15530.25010.45040.149*
C20.0580 (3)0.29816 (14)0.52120 (9)0.0668 (7)
C30.1206 (3)0.24169 (13)0.53561 (8)0.0614 (7)
H30.18690.22060.51920.074*
C40.0846 (3)0.21631 (12)0.57455 (7)0.0580 (7)
H40.12610.17780.58400.070*
C50.0121 (3)0.24757 (12)0.59942 (8)0.0559 (6)
C60.0725 (3)0.30568 (13)0.58544 (9)0.0688 (7)
H60.13620.32780.60220.083*
C70.0370 (3)0.33014 (14)0.54648 (9)0.0742 (8)
H70.07770.36880.53700.089*
C80.0036 (2)0.15872 (11)0.65931 (7)0.0531 (6)
H80.09710.15850.66330.064*
C90.0769 (2)0.18432 (12)0.69942 (7)0.0566 (6)
H90.16320.16090.70560.068*
C100.1001 (3)0.24787 (14)0.67485 (8)0.0656 (7)
C110.0410 (3)0.19644 (13)0.77364 (7)0.0569 (6)
C120.1496 (3)0.23813 (13)0.78101 (8)0.0663 (7)
H120.19450.25910.75890.080*
C130.1909 (3)0.24834 (16)0.82211 (11)0.0823 (9)
H130.26390.27680.82780.099*
C140.1255 (4)0.2170 (2)0.85429 (11)0.1028 (13)
H140.15250.22500.88190.123*
C150.0202 (4)0.1739 (2)0.84622 (10)0.1091 (13)
H150.02240.15170.86830.131*
C160.0224 (3)0.16324 (17)0.80586 (9)0.0832 (9)
H160.09360.13380.80030.100*
C170.0505 (2)0.09544 (11)0.63905 (7)0.0465 (6)
H170.03420.09880.60870.056*
C180.0236 (2)0.03335 (11)0.65529 (6)0.0431 (5)
C190.0432 (2)0.02920 (12)0.70346 (6)0.0513 (6)
H19A0.12800.00600.71030.062*
H19B0.04720.07280.71570.062*
C200.0831 (2)0.00838 (13)0.71975 (7)0.0563 (6)
H200.16020.02190.72480.068*
C210.0590 (3)0.05173 (16)0.75843 (8)0.0771 (8)
H21A0.03540.04720.76850.093*
H21B0.12200.03990.78090.093*
C220.0859 (4)0.12086 (16)0.74376 (9)0.0889 (9)
H22A0.18130.13340.74890.107*
H22B0.02510.15180.75790.107*
C230.0555 (3)0.11824 (13)0.69729 (8)0.0680 (7)
H23A0.04330.11840.69180.082*
H23B0.09860.15450.68240.082*
C240.0864 (2)0.02290 (11)0.64621 (6)0.0433 (5)
C250.2212 (2)0.01860 (12)0.63326 (7)0.0484 (6)
C260.2334 (2)0.00885 (12)0.58636 (7)0.0523 (6)
C270.1370 (2)0.03869 (12)0.57417 (7)0.0516 (6)
C280.0569 (2)0.06374 (12)0.60742 (7)0.0486 (6)
C290.0358 (3)0.11284 (13)0.59889 (8)0.0661 (7)
H290.08740.13180.62040.079*
C300.0519 (3)0.13415 (15)0.55704 (10)0.0826 (9)
H300.11540.16730.55130.099*
C310.0218 (4)0.10812 (16)0.52475 (9)0.0859 (10)
H310.00520.12230.49740.103*
C320.1232 (3)0.05987 (14)0.53230 (8)0.0669 (7)
C330.2122 (4)0.03017 (17)0.50266 (9)0.0858 (10)
H330.20630.04190.47450.103*
C340.3064 (4)0.01533 (17)0.51499 (9)0.0887 (10)
H340.36460.03370.49490.106*
C350.3196 (3)0.03595 (14)0.55723 (8)0.0725 (8)
H350.38530.06710.56490.087*
C360.1586 (2)0.02405 (13)0.63177 (7)0.0500 (6)
C370.3568 (3)0.04349 (18)0.62279 (9)0.0912 (10)
H37A0.33270.05320.59420.137*
H37B0.39970.08120.63530.137*
H37C0.42000.00710.62350.137*
N10.0482 (2)0.22067 (10)0.63899 (6)0.0595 (5)
N20.11888 (18)0.05505 (10)0.68586 (5)0.0501 (5)
O10.0823 (2)0.32569 (10)0.48259 (6)0.0937 (7)
O20.1430 (2)0.30229 (10)0.68253 (6)0.0899 (6)
O30.01484 (17)0.18640 (9)0.73418 (5)0.0636 (5)
O40.19583 (18)0.05791 (10)0.60292 (6)0.0740 (5)
O50.23191 (15)0.02664 (9)0.64624 (5)0.0635 (5)
O60.19453 (14)0.08459 (8)0.64559 (4)0.0525 (4)
O70.33797 (16)0.00319 (10)0.65408 (6)0.0655 (5)
H7A0.303 (3)0.0308 (14)0.6745 (9)0.090 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.118 (3)0.105 (3)0.075 (2)0.008 (2)0.029 (2)0.0208 (19)
C20.0727 (18)0.0621 (18)0.0657 (18)0.0071 (15)0.0012 (15)0.0129 (15)
C30.0669 (17)0.0586 (17)0.0587 (17)0.0053 (13)0.0017 (13)0.0016 (14)
C40.0671 (17)0.0539 (16)0.0529 (16)0.0033 (13)0.0057 (13)0.0004 (13)
C50.0663 (16)0.0493 (15)0.0522 (16)0.0063 (13)0.0047 (13)0.0030 (12)
C60.0727 (18)0.0570 (17)0.077 (2)0.0029 (14)0.0052 (15)0.0009 (15)
C70.0778 (19)0.0606 (18)0.084 (2)0.0053 (15)0.0018 (16)0.0166 (16)
C80.0601 (15)0.0522 (15)0.0469 (14)0.0038 (12)0.0009 (12)0.0028 (12)
C90.0569 (15)0.0662 (17)0.0465 (15)0.0052 (12)0.0012 (12)0.0110 (13)
C100.0746 (18)0.0639 (19)0.0583 (18)0.0046 (14)0.0042 (14)0.0121 (15)
C110.0588 (16)0.0667 (17)0.0451 (16)0.0158 (13)0.0017 (12)0.0117 (13)
C120.0731 (18)0.0641 (18)0.0616 (18)0.0048 (14)0.0088 (14)0.0124 (14)
C130.081 (2)0.087 (2)0.079 (2)0.0211 (17)0.0233 (18)0.0271 (19)
C140.097 (3)0.157 (4)0.054 (2)0.048 (3)0.019 (2)0.027 (2)
C150.094 (3)0.179 (4)0.055 (2)0.011 (3)0.0026 (18)0.012 (2)
C160.0722 (19)0.120 (3)0.0577 (19)0.0013 (18)0.0054 (15)0.0031 (18)
C170.0484 (13)0.0535 (14)0.0375 (13)0.0039 (11)0.0004 (10)0.0025 (11)
C180.0391 (12)0.0570 (14)0.0330 (12)0.0001 (10)0.0016 (9)0.0036 (10)
C190.0510 (13)0.0648 (16)0.0382 (13)0.0031 (11)0.0058 (10)0.0045 (11)
C200.0524 (14)0.0747 (17)0.0418 (14)0.0066 (12)0.0042 (11)0.0020 (13)
C210.0775 (19)0.113 (3)0.0409 (16)0.0027 (17)0.0011 (13)0.0145 (16)
C220.103 (2)0.097 (2)0.067 (2)0.0008 (19)0.0008 (17)0.0316 (18)
C230.0772 (18)0.0650 (18)0.0617 (17)0.0004 (14)0.0044 (14)0.0175 (14)
C240.0404 (12)0.0527 (14)0.0368 (13)0.0028 (10)0.0015 (9)0.0021 (10)
C250.0416 (13)0.0571 (16)0.0465 (14)0.0047 (11)0.0058 (10)0.0030 (12)
C260.0561 (14)0.0570 (16)0.0438 (14)0.0146 (12)0.0117 (11)0.0082 (12)
C270.0610 (15)0.0563 (16)0.0373 (14)0.0198 (12)0.0040 (11)0.0013 (11)
C280.0492 (13)0.0526 (15)0.0439 (14)0.0098 (11)0.0004 (11)0.0045 (11)
C290.0676 (17)0.0652 (18)0.0654 (18)0.0000 (14)0.0000 (14)0.0128 (14)
C300.091 (2)0.081 (2)0.076 (2)0.0044 (17)0.0112 (18)0.0299 (18)
C310.109 (3)0.091 (2)0.057 (2)0.029 (2)0.0130 (18)0.0294 (17)
C320.085 (2)0.0700 (19)0.0459 (17)0.0277 (16)0.0024 (15)0.0067 (14)
C330.125 (3)0.092 (3)0.0404 (17)0.040 (2)0.0145 (18)0.0012 (17)
C340.117 (3)0.094 (3)0.055 (2)0.027 (2)0.0365 (18)0.0206 (18)
C350.0842 (19)0.0754 (19)0.0578 (18)0.0144 (15)0.0238 (15)0.0135 (15)
C360.0443 (13)0.0619 (17)0.0439 (15)0.0061 (12)0.0046 (11)0.0079 (13)
C370.0504 (16)0.142 (3)0.081 (2)0.0219 (17)0.0102 (14)0.012 (2)
N10.0763 (14)0.0545 (13)0.0477 (13)0.0003 (11)0.0036 (11)0.0061 (11)
N20.0485 (11)0.0630 (13)0.0387 (11)0.0008 (9)0.0011 (9)0.0083 (10)
O10.1088 (17)0.0879 (15)0.0843 (15)0.0127 (12)0.0236 (12)0.0371 (12)
O20.1236 (17)0.0733 (14)0.0729 (14)0.0277 (13)0.0007 (12)0.0158 (11)
O30.0584 (10)0.0863 (13)0.0459 (10)0.0035 (9)0.0015 (8)0.0165 (9)
O40.0688 (12)0.0918 (14)0.0613 (12)0.0018 (10)0.0224 (9)0.0095 (10)
O50.0418 (9)0.0909 (13)0.0579 (10)0.0123 (9)0.0013 (8)0.0041 (9)
O60.0442 (9)0.0612 (11)0.0520 (10)0.0042 (8)0.0053 (7)0.0041 (8)
O70.0386 (9)0.0956 (14)0.0622 (12)0.0063 (9)0.0009 (8)0.0150 (11)
Geometric parameters (Å, º) top
C1—O11.440 (3)C19—H19A0.9700
C1—H1A0.9600C19—H19B0.9700
C1—H1B0.9600C20—N21.478 (3)
C1—H1C0.9600C20—C211.532 (3)
C2—O11.370 (3)C20—H200.9800
C2—C31.378 (4)C21—C221.506 (4)
C2—C71.383 (4)C21—H21A0.9700
C3—C41.386 (3)C21—H21B0.9700
C3—H30.9300C22—C231.508 (4)
C4—C51.380 (3)C22—H22A0.9700
C4—H40.9300C22—H22B0.9700
C5—C61.392 (3)C23—N21.470 (3)
C5—N11.416 (3)C23—H23A0.9700
C6—C71.379 (4)C23—H23B0.9700
C6—H60.9300C24—N21.455 (3)
C7—H70.9300C24—C281.515 (3)
C8—N11.482 (3)C24—C251.605 (3)
C8—C171.510 (3)C25—O71.381 (3)
C8—C91.549 (3)C25—O61.423 (3)
C8—H80.9800C25—C261.509 (3)
C9—O31.417 (3)C26—C351.362 (3)
C9—C101.528 (4)C26—C271.397 (3)
C9—H90.9800C27—C281.406 (3)
C10—O21.208 (3)C27—C321.406 (3)
C10—N11.363 (3)C28—C291.369 (3)
C11—C121.369 (4)C29—C301.408 (4)
C11—C161.372 (4)C29—H290.9300
C11—O31.381 (3)C30—C311.357 (4)
C12—C131.383 (4)C30—H300.9300
C12—H120.9300C31—C321.408 (4)
C13—C141.362 (5)C31—H310.9300
C13—H130.9300C32—C331.412 (4)
C14—C151.367 (5)C33—C341.356 (4)
C14—H140.9300C33—H330.9300
C15—C161.365 (4)C34—C351.413 (4)
C15—H150.9300C34—H340.9300
C16—H160.9300C35—H350.9300
C17—O61.423 (2)C36—O41.203 (3)
C17—C181.542 (3)C36—O51.334 (3)
C17—H170.9800C37—O51.458 (3)
C18—C361.514 (3)C37—H37A0.9600
C18—C191.546 (3)C37—H37B0.9600
C18—C241.589 (3)C37—H37C0.9600
C19—C201.530 (3)O7—H7A0.92 (3)
O1—C1—H1A109.5C22—C21—C20105.3 (2)
O1—C1—H1B109.5C22—C21—H21A110.7
H1A—C1—H1B109.5C20—C21—H21A110.7
O1—C1—H1C109.5C22—C21—H21B110.7
H1A—C1—H1C109.5C20—C21—H21B110.7
H1B—C1—H1C109.5H21A—C21—H21B108.8
O1—C2—C3124.4 (3)C21—C22—C23103.7 (2)
O1—C2—C7116.2 (3)C21—C22—H22A111.0
C3—C2—C7119.4 (3)C23—C22—H22A111.0
C2—C3—C4119.9 (3)C21—C22—H22B111.0
C2—C3—H3120.0C23—C22—H22B111.0
C4—C3—H3120.0H22A—C22—H22B109.0
C5—C4—C3120.7 (2)N2—C23—C22101.1 (2)
C5—C4—H4119.7N2—C23—H23A111.6
C3—C4—H4119.7C22—C23—H23A111.6
C4—C5—C6119.5 (2)N2—C23—H23B111.6
C4—C5—N1119.8 (2)C22—C23—H23B111.6
C6—C5—N1120.6 (2)H23A—C23—H23B109.4
C7—C6—C5119.3 (3)N2—C24—C28119.95 (19)
C7—C6—H6120.3N2—C24—C18108.12 (16)
C5—C6—H6120.3C28—C24—C18114.73 (16)
C6—C7—C2121.2 (3)N2—C24—C25106.54 (16)
C6—C7—H7119.4C28—C24—C25103.42 (16)
C2—C7—H7119.4C18—C24—C25102.06 (16)
N1—C8—C17116.94 (19)O7—C25—O6108.61 (18)
N1—C8—C986.55 (17)O7—C25—C26111.61 (18)
C17—C8—C9120.1 (2)O6—C25—C26114.24 (18)
N1—C8—H8110.4O7—C25—C24111.69 (18)
C17—C8—H8110.4O6—C25—C24106.23 (16)
C9—C8—H8110.4C26—C25—C24104.32 (18)
O3—C9—C10117.7 (2)C35—C26—C27119.9 (2)
O3—C9—C8111.53 (19)C35—C26—C25131.8 (2)
C10—C9—C886.05 (18)C27—C26—C25108.28 (19)
O3—C9—H9112.9C26—C27—C28114.1 (2)
C10—C9—H9112.9C26—C27—C32122.6 (2)
C8—C9—H9112.9C28—C27—C32123.3 (3)
O2—C10—N1131.9 (3)C29—C28—C27118.4 (2)
O2—C10—C9136.4 (3)C29—C28—C24133.2 (2)
N1—C10—C991.7 (2)C27—C28—C24108.1 (2)
C12—C11—C16121.3 (2)C28—C29—C30119.0 (3)
C12—C11—O3123.1 (2)C28—C29—H29120.5
C16—C11—O3115.6 (2)C30—C29—H29120.5
C11—C12—C13118.4 (3)C31—C30—C29122.5 (3)
C11—C12—H12120.8C31—C30—H30118.8
C13—C12—H12120.8C29—C30—H30118.8
C14—C13—C12120.4 (3)C30—C31—C32120.5 (3)
C14—C13—H13119.8C30—C31—H31119.7
C12—C13—H13119.8C32—C31—H31119.7
C13—C14—C15120.3 (3)C27—C32—C31116.2 (3)
C13—C14—H14119.8C27—C32—C33116.3 (3)
C15—C14—H14119.8C31—C32—C33127.5 (3)
C16—C15—C14120.2 (3)C34—C33—C32120.5 (3)
C16—C15—H15119.9C34—C33—H33119.7
C14—C15—H15119.9C32—C33—H33119.7
C15—C16—C11119.3 (3)C33—C34—C35122.6 (3)
C15—C16—H16120.3C33—C34—H34118.7
C11—C16—H16120.3C35—C34—H34118.7
O6—C17—C8111.30 (18)C26—C35—C34118.1 (3)
O6—C17—C18106.09 (17)C26—C35—H35121.0
C8—C17—C18114.68 (18)C34—C35—H35121.0
O6—C17—H17108.2O4—C36—O5123.2 (2)
C8—C17—H17108.2O4—C36—C18124.2 (2)
C18—C17—H17108.2O5—C36—C18112.5 (2)
C36—C18—C17109.66 (18)O5—C37—H37A109.5
C36—C18—C19112.16 (17)O5—C37—H37B109.5
C17—C18—C19115.70 (18)H37A—C37—H37B109.5
C36—C18—C24113.28 (17)O5—C37—H37C109.5
C17—C18—C24102.72 (16)H37A—C37—H37C109.5
C19—C18—C24102.86 (16)H37B—C37—H37C109.5
C20—C19—C18105.37 (17)C10—N1—C5132.6 (2)
C20—C19—H19A110.7C10—N1—C895.04 (19)
C18—C19—H19A110.7C5—N1—C8130.2 (2)
C20—C19—H19B110.7C24—N2—C23121.23 (18)
C18—C19—H19B110.7C24—N2—C20107.00 (17)
H19A—C19—H19B108.8C23—N2—C20106.56 (18)
N2—C20—C19105.13 (17)C2—O1—C1116.8 (2)
N2—C20—C21104.5 (2)C11—O3—C9118.00 (18)
C19—C20—C21116.0 (2)C36—O5—C37116.4 (2)
N2—C20—H20110.3C17—O6—C25106.45 (16)
C19—C20—H20110.3C25—O7—H7A103.4 (17)
C21—C20—H20110.3
O1—C2—C3—C4177.3 (2)C35—C26—C27—C320.8 (4)
C7—C2—C3—C42.1 (4)C25—C26—C27—C32179.1 (2)
C2—C3—C4—C50.9 (4)C26—C27—C28—C29176.9 (2)
C3—C4—C5—C60.9 (4)C32—C27—C28—C292.3 (3)
C3—C4—C5—N1179.6 (2)C26—C27—C28—C248.5 (3)
C4—C5—C6—C71.6 (4)C32—C27—C28—C24172.2 (2)
N1—C5—C6—C7179.0 (2)N2—C24—C28—C2955.5 (3)
C5—C6—C7—C20.3 (4)C18—C24—C28—C2975.9 (3)
O1—C2—C7—C6178.0 (2)C25—C24—C28—C29173.8 (3)
C3—C2—C7—C61.5 (4)N2—C24—C28—C27131.1 (2)
N1—C8—C9—O3124.0 (2)C18—C24—C28—C2797.5 (2)
C17—C8—C9—O3116.7 (2)C25—C24—C28—C2712.8 (2)
N1—C8—C9—C105.66 (17)C27—C28—C29—C302.9 (4)
C17—C8—C9—C10125.0 (2)C24—C28—C29—C30170.0 (2)
O3—C9—C10—O259.7 (4)C28—C29—C30—C310.4 (4)
C8—C9—C10—O2172.0 (4)C29—C30—C31—C322.8 (5)
O3—C9—C10—N1118.4 (2)C26—C27—C32—C31179.9 (2)
C8—C9—C10—N16.14 (19)C28—C27—C32—C310.7 (4)
C16—C11—C12—C132.7 (4)C26—C27—C32—C330.3 (4)
O3—C11—C12—C13175.3 (2)C28—C27—C32—C33179.5 (2)
C11—C12—C13—C140.6 (4)C30—C31—C32—C273.2 (4)
C12—C13—C14—C151.6 (5)C30—C31—C32—C33177.0 (3)
C13—C14—C15—C161.7 (6)C27—C32—C33—C341.1 (4)
C14—C15—C16—C110.3 (5)C31—C32—C33—C34179.2 (3)
C12—C11—C16—C152.5 (4)C32—C33—C34—C350.8 (5)
O3—C11—C16—C15175.6 (3)C27—C26—C35—C341.0 (4)
N1—C8—C17—O672.3 (2)C25—C26—C35—C34178.8 (2)
C9—C8—C17—O630.2 (3)C33—C34—C35—C260.3 (4)
N1—C8—C17—C18167.29 (18)C17—C18—C36—O44.7 (3)
C9—C8—C17—C1890.2 (3)C19—C18—C36—O4134.7 (2)
O6—C17—C18—C36152.17 (16)C24—C18—C36—O4109.4 (3)
C8—C17—C18—C3684.6 (2)C17—C18—C36—O5176.02 (17)
O6—C17—C18—C1979.8 (2)C19—C18—C36—O546.0 (3)
C8—C17—C18—C1943.5 (3)C24—C18—C36—O569.9 (2)
O6—C17—C18—C2431.4 (2)O2—C10—N1—C57.8 (5)
C8—C17—C18—C24154.71 (18)C9—C10—N1—C5170.5 (2)
C36—C18—C19—C20140.6 (2)O2—C10—N1—C8171.8 (3)
C17—C18—C19—C2092.5 (2)C9—C10—N1—C86.4 (2)
C24—C18—C19—C2018.6 (2)C4—C5—N1—C10155.1 (3)
C18—C19—C20—N232.5 (2)C6—C5—N1—C1024.4 (4)
C18—C19—C20—C21147.4 (2)C4—C5—N1—C83.9 (4)
N2—C20—C21—C221.1 (3)C6—C5—N1—C8176.7 (2)
C19—C20—C21—C22116.3 (3)C17—C8—N1—C10128.5 (2)
C20—C21—C22—C2326.2 (3)C9—C8—N1—C106.35 (19)
C21—C22—C23—N241.4 (3)C17—C8—N1—C566.8 (3)
C36—C18—C24—N2119.8 (2)C9—C8—N1—C5171.0 (2)
C17—C18—C24—N2121.96 (17)C28—C24—N2—C2333.7 (3)
C19—C18—C24—N21.5 (2)C18—C24—N2—C23100.4 (2)
C36—C18—C24—C2817.0 (3)C25—C24—N2—C23150.5 (2)
C17—C18—C24—C28101.2 (2)C28—C24—N2—C20156.03 (18)
C19—C18—C24—C28138.27 (19)C18—C24—N2—C2021.9 (2)
C36—C18—C24—C25128.07 (19)C25—C24—N2—C2087.19 (19)
C17—C18—C24—C259.86 (19)C22—C23—N2—C24164.2 (2)
C19—C18—C24—C25110.64 (17)C22—C23—N2—C2041.8 (2)
N2—C24—C25—O719.2 (2)C19—C20—N2—C2433.9 (2)
C28—C24—C25—O7108.2 (2)C21—C20—N2—C24156.53 (18)
C18—C24—C25—O7132.45 (18)C19—C20—N2—C2397.2 (2)
N2—C24—C25—O699.09 (18)C21—C20—N2—C2325.5 (2)
C28—C24—C25—O6133.58 (17)C3—C2—O1—C12.6 (4)
C18—C24—C25—O614.2 (2)C7—C2—O1—C1178.0 (3)
N2—C24—C25—C26139.87 (18)C12—C11—O3—C938.0 (3)
C28—C24—C25—C2612.5 (2)C16—C11—O3—C9144.0 (2)
C18—C24—C25—C26106.85 (18)C10—C9—O3—C1194.6 (3)
O7—C25—C26—C3565.5 (3)C8—C9—O3—C11168.2 (2)
O6—C25—C26—C3558.2 (3)O4—C36—O5—C375.3 (3)
C24—C25—C26—C35173.8 (2)C18—C36—O5—C37174.0 (2)
O7—C25—C26—C27112.5 (2)C8—C17—O6—C25168.15 (17)
O6—C25—C26—C27123.8 (2)C18—C17—O6—C2542.8 (2)
C24—C25—C26—C278.2 (2)O7—C25—O6—C17155.54 (17)
C35—C26—C27—C28178.5 (2)C26—C25—O6—C1779.2 (2)
C25—C26—C27—C280.2 (3)C24—C25—O6—C1735.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C33—H33···O4i0.932.493.409 (3)173
C37—H37C···O7ii0.962.533.217 (3)128
Symmetry codes: (i) x, y, z+1; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC37H34N2O7
Mr618.66
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)9.6545 (11), 20.363 (2), 31.804 (3)
V3)6252.5 (11)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.35 × 0.30 × 0.25
Data collection
DiffractometerBruker SMART APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.969, 0.978
No. of measured, independent and
observed [I > 2σ(I)] reflections
26528, 5614, 3210
Rint0.062
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.127, 1.00
No. of reflections5614
No. of parameters421
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.14, 0.21

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 2012), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C33—H33···O4i0.932.493.409 (3)173
C37—H37C···O7ii0.962.533.217 (3)128
Symmetry codes: (i) x, y, z+1; (ii) x1, y, z.
 

Acknowledgements

The authors thank the TBI X–ray facility, CAS in Crystallography and Biophysics, University of Madras, India for the data collection. TS thanks the DST for an Inspire fellowship.

References

First citationBanik, B. K. & Becker, F. F. (2000). Tetrahedron Lett. 41, 6551–6554.  Web of Science CrossRef CAS Google Scholar
First citationBrakhage, A. A. (1998). Microbiol. Mol. Biol. Rev. 62, 547–585.  Web of Science CAS PubMed Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSundaramoorthy, S., Rajesh, R., Raghunathan, R. & Velmurugan, D. (2012). Acta Cryst. E68, o2200–o2201.  CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 12| December 2012| Pages o3329-o3330
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds