metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tris(thio­cyanato-κN)tris­­(tri­phenyl­phosphine oxide-κO)europium(III)–(nitrato-κ2O,O′)bis­­(thio­cyanato-κN)tris­­(tri­phenyl­phosphine oxide-κO)europium(III) (1/1)

aUniversity of South Alabama, Department of Chemistry, Mobile, AL 36688, USA
*Correspondence e-mail: rsykora@southalabama.edu

(Received 12 November 2012; accepted 19 November 2012; online 24 November 2012)

The title co-crystal, [Eu(NCS)3(C18H15OP)3][Eu(NCS)2(NO3)(C18H15OP)3], contains two distinct neutral complexes. Each complex has threefold symmetry about its central Eu3+ ion. As a result, the nitrate-containing mol­ecule contains disorder of its bidentate nitrate and two N-bound thio­cyanate anions, while the [Eu(NCS)3(OPPh3)3] complex is fully ordered. There is a weak ππ stacking inter­action between the phenyl rings of the two mol­ecules [centroid–centroid distance = 4.138 (4) Å].

Related literature

For structural studies on related f-block triphenyl­phosphine oxide complexes, see: Feazell et al. (2004[Feazell, R. P., Gary, J. B., Kautz, J. A., Klausmeyer, K. K., Wong, C. W. & Zancanella, M. (2004). Acta Cryst. E60, m532-m534.]); Berthet et al. (2003[Berthet, J.-C., Nierlich, M. & Ephritikhine, M. (2003). Polyhedron, 22, 3475-3482.]); Long et al. (1999[Long, D.-L., Hu, H.-M., Chen, J.-T. & Huang, J.-S. (1999). Acta Cryst. C55, 1662-1664.]); Bowden et al. (2010[Bowden, A., Platt, A. W. G., Singh, K. & Townsend, R. (2010). Inorg. Chim. Acta, 363, 243-249.]). For syntheses and spectroscopic characterization of related compounds, see: Cousins & Hart (1967[Cousins, D. R. & Hart, F. A. (1967). J. Inorg. Nucl. Chem. 29, 1745-1757.], 1968[Cousins, D. R. & Hart, F. A. (1968). J. Inorg. Nucl. Chem. 30, 3009-3015.]).

[Scheme 1]

Experimental

Crystal data
  • [Eu(NCS)3(C18H15OP)3][Eu(NCS)2(NO3)(C18H15OP)3]

  • Mr = 2325.95

  • Trigonal, R 3

  • a = 20.3249 (7) Å

  • c = 22.3186 (6) Å

  • V = 7984.7 (4) Å3

  • Z = 3

  • Mo Kα radiation

  • μ = 1.42 mm−1

  • T = 180 K

  • 0.12 × 0.07 × 0.05 mm

Data collection
  • Agilent Xcalibur Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.892, Tmax = 1.000

  • 15970 measured reflections

  • 6325 independent reflections

  • 5614 reflections with I > 2σ(I)

  • Rint = 0.052

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.065

  • S = 1.02

  • 6325 reflections

  • 439 parameters

  • 8 restraints

  • H-atom parameters constrained

  • Δρmax = 1.30 e Å−3

  • Δρmin = −0.90 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 3154 Friedel pairs

  • Flack parameter: −0.045 (9)

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

From previous studies, it has been known that lanthanide triphenylphosphine oxide complexes can be prepared with a number of anions including nitrate (Cousins & Hart, 1967; Long et al., 1999), thiocyanate (Cousins & Hart, 1968; Feazell et al., 2004), bromide (Bowden et al., 2010), trifluoromethanesulfonate (Berthet et al., 2003), and iodide (Berthet et al., 2003). The title compound, [Eu(OPPh3)3(SCN)3][Eu(OPPh3)3(SCN)2NO3], is of particular interest because of the anion disorder in one of the two neutral molecules in this co-crystal. There are two crystallographically unique europium(III) sites in the structure, one at the center of each neutral complex, [Eu(OPPh3)3(SCN)3] and [Eu(OPPh3)3(SCN)2NO3], as shown in Fig. 1. Each complex has threefold symmetry and therefore the two thiocyanato and one bidentate nitrate anions are disordered over the three positions in the latter. In [Eu(OPPh3)3(SCN)3], the three triphenylphosphine oxide ligands and three thiocyanto anions are found in a fac arrangement. The isolation of the mixed-anion system is interesting from a coordinating viewpoint, as the thiocyanato displays a monodentate (kN) coordination while the nitrato is bidentate (κ2O,O'). The thiocyanato-kN coordination is also observed in previous lanthanide complexes, such as [Nd(OPPh3)4(SCN)3] (Feazell et al., 2004), likely due to the hard nature of the Ln(III) ions. Also of note is the fact that the title compound contains a 1:3 ratio of Eu(III) to phosphine oxide in both of its complexes, whereas with the larger Nd(III) ion, four triphenylphosphine ligands coordinate. Regarding intermolecular interactions, the title compound contains one weak π-stacking interaction, with plane-to-centroid distances of 3.529 (8) and 3.841 (5) Å, between adjacent rings of the two complexes as illustrated in Fig. 1.

It should be noted that the stoichiometry of the reaction conditions to prepare the title compound were not rigorously controlled and it is likely that the introduced nitrate is a result of a slightly less than 1:3 ratio of Eu(III) to KSCN.

Related literature top

For structural studies on related f-block triphenylphosphine oxide complexes, see: Feazell et al. (2004); Berthet et al. (2003); Long et al. (1999); Bowden et al. (2010). For syntheses and spectroscopic characterization of related compounds, see: Cousins & Hart (1967, 1968).

Experimental top

Ethanol solutions of europium(III) nitrate hydrate (~1 mmol) and KSCN (~3 mmol) were combined. The resultant solution was decanted from the KNO3 precipitate. This solution was then mixed with an ethanol solution of triphenylphosphine oxide (~4 mmol). Within one hour, the colorless crystals suitable for the X-ray analysis were isolated.

Refinement top

H-atoms were placed in calculated positions and allowed to ride during subsequent refinement, with Uiso(H) = 1.2Ueq(C) and C—H distances of 0.95 Å.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of I, with the atom-numbering scheme. Displacement ellipsoids for non-hydrogen atoms are drawn at the 50% probability level.
Tris(thiocyanato-κN)tris(triphenylphosphine oxide-κO)europium(III)– (nitrato-κ2O,O')bis(thiocyanato- κN)tris(triphenylphosphine oxide-κO)europium(III) (1/1) top
Crystal data top
[Eu(NCS)3(C18H15OP)3][Eu(NCS)2(NO3)(C18H15OP)3]Dx = 1.451 Mg m3
Mr = 2325.95Mo Kα radiation, λ = 0.71073 Å
Trigonal, R3Cell parameters from 5442 reflections
a = 20.3249 (7) Åθ = 3.2–25.0°
c = 22.3186 (6) ŵ = 1.42 mm1
V = 7984.7 (4) Å3T = 180 K
Z = 3Prism, colourless
F(000) = 35340.12 × 0.07 × 0.05 mm
Data collection top
Agilent Xcalibur Eos
diffractometer
6325 independent reflections
Radiation source: Enhance (Mo) X-ray Source5614 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
ω scansθmax = 25.1°, θmin = 3.2°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
h = 2423
Tmin = 0.892, Tmax = 1.000k = 2224
15970 measured reflectionsl = 2626
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.065 w = 1/[σ2(Fo2) + (0.0112P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
6325 reflectionsΔρmax = 1.30 e Å3
439 parametersΔρmin = 0.90 e Å3
8 restraintsAbsolute structure: Flack (1983), 3154 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.045 (9)
Crystal data top
[Eu(NCS)3(C18H15OP)3][Eu(NCS)2(NO3)(C18H15OP)3]Z = 3
Mr = 2325.95Mo Kα radiation
Trigonal, R3µ = 1.42 mm1
a = 20.3249 (7) ÅT = 180 K
c = 22.3186 (6) Å0.12 × 0.07 × 0.05 mm
V = 7984.7 (4) Å3
Data collection top
Agilent Xcalibur Eos
diffractometer
6325 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
5614 reflections with I > 2σ(I)
Tmin = 0.892, Tmax = 1.000Rint = 0.052
15970 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.065Δρmax = 1.30 e Å3
S = 1.02Δρmin = 0.90 e Å3
6325 reflectionsAbsolute structure: Flack (1983), 3154 Friedel pairs
439 parametersAbsolute structure parameter: 0.045 (9)
8 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Eu10.66670.33330.305072 (13)0.02675 (13)
Eu20.00000.00000.462118 (16)0.04265 (17)
P20.16058 (9)0.14280 (10)0.55807 (6)0.0392 (4)
C200.1572 (3)0.1238 (3)0.6370 (2)0.0325 (13)
C260.1639 (3)0.2324 (3)0.5478 (2)0.0422 (15)
C270.0969 (4)0.2320 (4)0.5345 (2)0.0556 (18)
H270.05110.18480.53020.067*
C250.1888 (3)0.1809 (3)0.6797 (2)0.0433 (15)
H250.21290.23270.66800.052*
C230.1489 (3)0.0872 (3)0.7568 (2)0.0476 (16)
H230.14580.07480.79810.057*
C210.1214 (3)0.0488 (3)0.6551 (2)0.0416 (15)
H210.09930.00960.62590.050*
C50.6419 (4)0.6382 (4)0.3299 (3)0.063 (2)
H50.66220.68940.31730.075*
C70.6563 (3)0.5304 (3)0.3457 (2)0.0447 (15)
H70.68690.50720.34350.054*
C220.1170 (3)0.0297 (3)0.7152 (2)0.0484 (16)
H220.09260.02200.72740.058*
C240.1848 (3)0.1616 (3)0.7400 (2)0.0538 (17)
H240.20710.20040.76940.065*
C30.5402 (3)0.5249 (4)0.3722 (2)0.0508 (16)
H30.49000.49810.38790.061*
C310.2310 (4)0.3011 (4)0.5537 (2)0.0543 (18)
H310.27750.30250.56190.065*
C40.5701 (4)0.5993 (4)0.3524 (3)0.069 (2)
H40.54020.62320.35450.083*
C320.2453 (3)0.1481 (3)0.5283 (3)0.0455 (15)
C280.0957 (6)0.2984 (5)0.5274 (3)0.076 (3)
H280.04940.29680.51750.091*
C60.6848 (4)0.6037 (4)0.3256 (2)0.0566 (19)
H60.73430.63040.30880.068*
C150.4249 (3)0.2996 (3)0.3298 (2)0.0411 (14)
H150.46060.29730.30370.049*
C140.4488 (3)0.3405 (3)0.3818 (2)0.0339 (13)
C190.3959 (3)0.3451 (3)0.4193 (2)0.0471 (16)
H190.41220.37410.45520.057*
C170.2956 (4)0.2656 (4)0.3514 (3)0.0572 (18)
H170.24340.24040.34050.069*
C180.3194 (3)0.3069 (4)0.4038 (3)0.0521 (17)
H180.28340.30930.42940.063*
C160.3476 (4)0.2612 (3)0.3151 (3)0.0507 (17)
H160.33090.23160.27960.061*
C20.5837 (3)0.4902 (3)0.3689 (2)0.0341 (13)
P10.54959 (10)0.39503 (10)0.39594 (7)0.0340 (4)
C330.2450 (4)0.1274 (4)0.4703 (3)0.069 (2)
H330.20130.11380.44640.083*
C350.3655 (6)0.1416 (6)0.4787 (4)0.106 (3)
H350.40630.13730.46220.127*
C340.3056 (5)0.1254 (5)0.4453 (4)0.096 (3)
H340.30460.11260.40420.115*
C360.3692 (5)0.1647 (6)0.5374 (4)0.128 (4)
H360.41390.18000.56030.153*
C80.5630 (3)0.3996 (3)0.4755 (2)0.0345 (13)
C90.5823 (3)0.4644 (3)0.5082 (2)0.0465 (16)
H90.59020.50900.48820.056*
C130.5536 (4)0.3365 (4)0.5059 (3)0.083 (3)
H130.54120.29130.48460.100*
C120.5624 (5)0.3390 (4)0.5682 (3)0.089 (3)
H120.55550.29520.58890.107*
C370.3063 (4)0.1655 (5)0.5630 (3)0.093 (3)
H370.30680.17810.60400.112*
C110.5805 (4)0.4029 (4)0.5991 (3)0.060 (2)
H110.58620.40400.64140.072*
C100.5904 (4)0.4652 (4)0.5695 (2)0.0555 (17)
H100.60310.51020.59120.067*
C290.1603 (7)0.3662 (5)0.5344 (3)0.089 (3)
H290.15920.41220.53040.107*
C300.2286 (5)0.3681 (4)0.5475 (3)0.072 (2)
H300.27390.41570.55220.086*
O10.5906 (3)0.3592 (3)0.36468 (18)0.0356 (12)
O20.0922 (3)0.0804 (3)0.52650 (18)0.0436 (13)
N10.5587 (3)0.2656 (4)0.2408 (2)0.0473 (17)
C10.5031 (4)0.2346 (4)0.2139 (2)0.0405 (16)
S10.42411 (10)0.18996 (11)0.17744 (7)0.0675 (6)
N20.0419 (7)0.1088 (7)0.4014 (5)0.059 (4)0.667
C380.0671 (12)0.1696 (9)0.3841 (9)0.065 (3)0.667
S20.0997 (3)0.25559 (18)0.36159 (19)0.0701 (11)0.667
O30.0028 (11)0.1221 (9)0.4189 (6)0.086 (5)0.333
O40.0805 (12)0.1092 (11)0.3900 (8)0.086 (5)0.333
O50.0886 (13)0.2223 (11)0.3588 (10)0.065 (3)0.333
N30.0614 (15)0.1602 (12)0.3857 (12)0.065 (3)0.333
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Eu10.02793 (16)0.02793 (16)0.0244 (3)0.01396 (8)0.0000.000
Eu20.0534 (2)0.0534 (2)0.0211 (3)0.02671 (11)0.0000.000
P20.0414 (10)0.0455 (11)0.0281 (8)0.0197 (9)0.0038 (7)0.0029 (7)
C200.026 (3)0.038 (3)0.026 (3)0.010 (3)0.000 (2)0.005 (2)
C260.052 (4)0.050 (4)0.025 (3)0.026 (4)0.005 (3)0.007 (3)
C270.076 (5)0.079 (5)0.034 (3)0.055 (4)0.009 (3)0.002 (3)
C250.057 (4)0.032 (3)0.031 (3)0.015 (3)0.004 (3)0.006 (3)
C230.052 (4)0.052 (4)0.034 (3)0.023 (4)0.002 (3)0.013 (3)
C210.048 (4)0.037 (4)0.034 (3)0.017 (3)0.002 (3)0.000 (3)
C50.090 (6)0.043 (4)0.057 (4)0.034 (5)0.002 (4)0.009 (3)
C70.048 (4)0.046 (4)0.036 (3)0.020 (3)0.003 (3)0.010 (3)
C220.053 (4)0.040 (4)0.050 (4)0.021 (3)0.006 (3)0.014 (3)
C240.059 (4)0.047 (4)0.038 (3)0.014 (4)0.009 (3)0.005 (3)
C30.050 (4)0.053 (4)0.056 (4)0.031 (4)0.018 (3)0.015 (3)
C310.069 (5)0.056 (5)0.035 (3)0.029 (4)0.004 (3)0.003 (3)
C40.082 (6)0.059 (5)0.081 (5)0.047 (5)0.013 (4)0.015 (4)
C320.042 (4)0.057 (4)0.042 (3)0.028 (4)0.009 (3)0.014 (3)
C280.120 (8)0.097 (7)0.053 (5)0.087 (7)0.004 (5)0.004 (5)
C60.052 (4)0.040 (4)0.048 (4)0.000 (4)0.013 (3)0.000 (3)
C150.037 (4)0.042 (4)0.042 (3)0.018 (3)0.002 (3)0.008 (3)
C140.033 (3)0.033 (3)0.036 (3)0.017 (3)0.008 (2)0.005 (2)
C190.045 (4)0.058 (4)0.040 (3)0.027 (4)0.010 (3)0.001 (3)
C170.036 (4)0.060 (5)0.078 (5)0.026 (4)0.010 (3)0.010 (4)
C180.037 (4)0.060 (5)0.069 (5)0.031 (4)0.015 (3)0.005 (4)
C160.055 (5)0.045 (4)0.052 (4)0.025 (4)0.014 (3)0.020 (3)
C20.042 (4)0.041 (4)0.025 (3)0.025 (3)0.003 (2)0.008 (2)
P10.0356 (10)0.0403 (10)0.0302 (9)0.0221 (9)0.0010 (7)0.0040 (7)
C330.076 (6)0.105 (6)0.054 (4)0.066 (5)0.014 (4)0.007 (4)
C350.121 (9)0.176 (10)0.073 (6)0.114 (8)0.057 (6)0.039 (6)
C340.119 (8)0.148 (9)0.062 (5)0.099 (8)0.035 (5)0.024 (5)
C360.064 (6)0.236 (12)0.101 (7)0.089 (8)0.013 (5)0.030 (7)
C80.036 (3)0.043 (4)0.033 (3)0.026 (3)0.002 (2)0.003 (3)
C90.060 (4)0.057 (4)0.032 (3)0.037 (4)0.003 (3)0.002 (3)
C130.161 (9)0.067 (5)0.044 (4)0.074 (6)0.008 (4)0.001 (4)
C120.160 (9)0.090 (7)0.049 (4)0.086 (7)0.003 (5)0.015 (4)
C370.066 (6)0.156 (9)0.060 (5)0.058 (6)0.026 (4)0.015 (5)
C110.065 (5)0.104 (6)0.030 (3)0.057 (5)0.001 (3)0.004 (4)
C100.063 (5)0.065 (5)0.040 (3)0.032 (4)0.001 (3)0.009 (3)
C290.176 (11)0.087 (7)0.037 (4)0.090 (8)0.018 (6)0.011 (5)
C300.111 (7)0.046 (5)0.036 (4)0.022 (5)0.010 (4)0.002 (3)
O10.036 (3)0.043 (3)0.035 (3)0.026 (2)0.002 (2)0.009 (2)
O20.039 (3)0.053 (3)0.030 (2)0.016 (3)0.0020 (19)0.003 (2)
N10.034 (4)0.064 (4)0.034 (3)0.018 (3)0.013 (3)0.006 (3)
C10.054 (5)0.057 (5)0.028 (3)0.041 (4)0.009 (3)0.002 (3)
S10.0499 (12)0.0825 (15)0.0536 (10)0.0207 (11)0.0238 (8)0.0100 (9)
N20.063 (10)0.086 (11)0.038 (7)0.045 (9)0.017 (6)0.001 (6)
C380.065 (6)0.085 (8)0.047 (5)0.040 (7)0.013 (4)0.004 (5)
S20.096 (3)0.049 (2)0.067 (2)0.038 (2)0.0164 (17)0.0274 (19)
O30.137 (15)0.069 (8)0.054 (8)0.053 (10)0.013 (8)0.027 (6)
O40.137 (15)0.069 (8)0.054 (8)0.053 (10)0.013 (8)0.027 (6)
O50.065 (6)0.085 (8)0.047 (5)0.040 (7)0.013 (4)0.004 (5)
N30.065 (6)0.085 (8)0.047 (5)0.040 (7)0.013 (4)0.004 (5)
Geometric parameters (Å, º) top
Eu1—O1i2.292 (4)C32—C371.350 (8)
Eu1—O1ii2.292 (4)C28—H280.9500
Eu1—O12.292 (4)C28—C291.356 (11)
Eu1—N1i2.397 (6)C6—H60.9500
Eu1—N12.397 (6)C15—H150.9500
Eu1—N1ii2.397 (6)C15—C141.368 (7)
Eu2—O22.277 (4)C15—C161.400 (7)
Eu2—O2iii2.277 (4)C14—C191.403 (7)
Eu2—O2iv2.277 (4)C14—P11.804 (5)
Eu2—N2iii2.359 (12)C19—H190.9500
Eu2—N22.359 (12)C19—C181.390 (7)
Eu2—N2iv2.359 (12)C17—H170.9500
Eu2—O3iv2.637 (16)C17—C181.379 (7)
Eu2—O32.637 (16)C17—C161.369 (7)
Eu2—O3iii2.637 (16)C18—H180.9500
Eu2—O4iv2.562 (17)C16—H160.9500
Eu2—O42.562 (18)C2—P11.800 (6)
Eu2—O4iii2.562 (17)P1—C81.791 (5)
P2—C201.799 (5)P1—O11.522 (4)
P2—C261.803 (6)C33—H330.9500
P2—C321.799 (6)C33—C341.372 (8)
P2—O21.508 (5)C35—H350.9500
C20—C251.387 (7)C35—C341.321 (10)
C20—C211.381 (7)C35—C361.381 (10)
C26—C271.390 (8)C34—H340.9500
C26—C311.387 (8)C36—H360.9500
C27—H270.9500C36—C371.407 (9)
C27—C281.371 (9)C8—C91.381 (7)
C25—H250.9500C8—C131.377 (7)
C25—C241.391 (6)C9—H90.9500
C23—H230.9500C9—C101.376 (6)
C23—C221.375 (7)C13—H130.9500
C23—C241.363 (7)C13—C121.399 (7)
C21—H210.9500C12—H120.9500
C21—C221.387 (6)C12—C111.348 (8)
C5—H50.9500C37—H370.9500
C5—C41.361 (8)C11—H110.9500
C5—C61.369 (8)C11—C101.353 (8)
C7—H70.9500C10—H100.9500
C7—C61.376 (7)C29—H290.9500
C7—C21.381 (7)C29—C301.401 (11)
C22—H220.9500C30—H300.9500
C24—H240.9500N1—C11.150 (8)
C3—H30.9500C1—S11.615 (7)
C3—C41.390 (8)N2—C381.144 (14)
C3—C21.384 (7)C38—S21.608 (13)
C31—H310.9500O3—N31.283 (19)
C31—C301.393 (9)O4—N31.280 (19)
C4—H40.9500O5—N31.249 (16)
C32—C331.360 (7)
O1i—Eu1—O1ii89.68 (16)C4—C5—C6120.0 (6)
O1i—Eu1—O189.68 (16)C6—C5—H5120.0
O1ii—Eu1—O189.68 (16)C6—C7—H7119.7
O1ii—Eu1—N1i95.6 (2)C6—C7—C2120.6 (6)
O1i—Eu1—N1i87.14 (19)C2—C7—H7119.7
O1—Eu1—N1i173.8 (2)C23—C22—C21118.5 (5)
O1i—Eu1—N195.6 (2)C23—C22—H22120.7
O1ii—Eu1—N1173.8 (2)C21—C22—H22120.7
O1i—Eu1—N1ii173.8 (2)C25—C24—H24119.9
O1—Eu1—N187.14 (19)C23—C24—C25120.2 (5)
O1—Eu1—N1ii95.6 (2)C23—C24—H24119.9
O1ii—Eu1—N1ii87.14 (19)C4—C3—H3120.2
N1i—Eu1—N187.9 (2)C2—C3—H3120.2
N1i—Eu1—N1ii87.9 (2)C2—C3—C4119.7 (6)
N1—Eu1—N1ii87.9 (2)C26—C31—H31120.7
O2—Eu2—O2iii84.41 (16)C26—C31—C30118.6 (7)
O2—Eu2—O2iv84.41 (16)C30—C31—H31120.7
O2iii—Eu2—O2iv84.41 (16)C5—C4—C3120.6 (7)
O2iii—Eu2—N2iii84.7 (3)C5—C4—H4119.7
O2—Eu2—N2iii166.8 (3)C3—C4—H4119.7
O2iv—Eu2—N2iii101.9 (3)C33—C32—P2118.4 (5)
O2—Eu2—N284.7 (3)C37—C32—P2122.1 (5)
O2iii—Eu2—N2101.9 (3)C37—C32—C33119.3 (6)
O2—Eu2—N2iv101.9 (3)C27—C28—H28119.9
O2iv—Eu2—N2166.8 (3)C29—C28—C27120.1 (9)
O2iv—Eu2—N2iv84.7 (3)C29—C28—H28119.9
O2iii—Eu2—N2iv166.8 (3)C5—C6—C7120.1 (6)
O2iii—Eu2—O3iv161.7 (4)C5—C6—H6119.9
O2iv—Eu2—O3iv86.1 (4)C7—C6—H6119.9
O2—Eu2—O3iv79.1 (4)C14—C15—H15120.1
O2iv—Eu2—O3161.7 (3)C14—C15—C16119.7 (5)
O2iii—Eu2—O379.1 (4)C16—C15—H15120.1
O2—Eu2—O386.1 (4)C15—C14—C19119.7 (5)
O2iv—Eu2—O3iii79.1 (4)C15—C14—P1118.1 (4)
O2—Eu2—O3iii161.7 (3)C19—C14—P1121.8 (4)
O2iii—Eu2—O3iii86.1 (4)C14—C19—H19120.2
O2iii—Eu2—O4119.1 (4)C18—C19—C14119.6 (5)
O2—Eu2—O480.5 (5)C18—C19—H19120.2
O2iv—Eu2—O4150.2 (5)C18—C17—H17120.2
O2iv—Eu2—O4iii119.1 (4)C16—C17—H17120.2
O2iii—Eu2—O4iii80.5 (5)C16—C17—C18119.6 (6)
O2iv—Eu2—O4iv80.5 (5)C19—C18—H18119.8
O2—Eu2—O4iii150.2 (5)C17—C18—C19120.4 (5)
O2iii—Eu2—O4iv150.2 (5)C17—C18—H18119.8
O2—Eu2—O4iv119.1 (4)C15—C16—H16119.6
N2—Eu2—N2iv90.3 (4)C17—C16—C15120.9 (5)
N2iii—Eu2—N2iv90.3 (4)C17—C16—H16119.6
N2iii—Eu2—N290.3 (4)C7—C2—C3119.0 (5)
N2—Eu2—O3iv84.5 (5)C7—C2—P1119.1 (4)
N2iii—Eu2—O3iv112.6 (5)C3—C2—P1121.9 (4)
N2—Eu2—O323.1 (4)C2—P1—C14108.1 (3)
N2iv—Eu2—O3112.6 (5)C8—P1—C14107.6 (2)
N2iv—Eu2—O3iv23.1 (4)C8—P1—C2108.0 (3)
N2iii—Eu2—O384.5 (5)O1—P1—C14110.5 (3)
N2iii—Eu2—O3iii23.1 (4)O1—P1—C2110.5 (3)
N2iv—Eu2—O3iii84.5 (5)O1—P1—C8111.9 (3)
N2—Eu2—O3iii112.6 (5)C32—C33—H33119.0
N2iii—Eu2—O4iii18.6 (5)C32—C33—C34122.0 (7)
N2iv—Eu2—O4iv18.6 (5)C34—C33—H33119.0
N2iv—Eu2—O473.6 (5)C34—C35—H35119.8
N2—Eu2—O418.6 (5)C34—C35—C36120.4 (8)
N2iv—Eu2—O4iii98.4 (5)C36—C35—H35119.8
N2—Eu2—O4iv98.4 (5)C33—C34—H34120.3
N2iii—Eu2—O4iv73.6 (5)C35—C34—C33119.5 (8)
N2—Eu2—O4iii73.6 (5)C35—C34—H34120.3
N2iii—Eu2—O498.4 (5)C35—C36—H36120.2
O3iii—Eu2—O3iv107.4 (4)C35—C36—C37119.6 (8)
O3—Eu2—O3iv107.4 (4)C37—C36—H36120.2
O3iii—Eu2—O3107.4 (4)C9—C8—P1122.5 (4)
O4iv—Eu2—O3117.8 (5)C13—C8—P1119.6 (4)
O4—Eu2—O3iii117.8 (5)C13—C8—C9117.9 (5)
O4—Eu2—O341.5 (5)C8—C9—H9119.6
O4iii—Eu2—O366.0 (6)C10—C9—C8120.9 (5)
O4iv—Eu2—O3iii66.0 (6)C10—C9—H9119.6
O4iv—Eu2—O3iv41.5 (5)C8—C13—H13120.0
O4—Eu2—O3iv66.0 (6)C8—C13—C12120.0 (6)
O4iii—Eu2—O3iii41.5 (5)C12—C13—H13120.0
O4iii—Eu2—O3iv117.8 (5)C13—C12—H12119.6
O4iii—Eu2—O484.7 (7)C11—C12—C13120.9 (6)
O4—Eu2—O4iv84.7 (7)C11—C12—H12119.6
O4iii—Eu2—O4iv84.7 (7)C32—C37—C36118.9 (7)
C20—P2—C26108.7 (2)C32—C37—H37120.5
C20—P2—C32107.9 (3)C36—C37—H37120.5
C32—P2—C26110.0 (3)C12—C11—H11120.3
O2—P2—C20110.9 (3)C12—C11—C10119.5 (6)
O2—P2—C26110.1 (3)C10—C11—H11120.3
O2—P2—C32109.3 (3)C9—C10—H10119.5
C25—C20—P2122.8 (4)C11—C10—C9120.9 (6)
C21—C20—P2117.8 (4)C11—C10—H10119.5
C21—C20—C25119.4 (4)C28—C29—H29120.2
C27—C26—P2118.7 (5)C28—C29—C30119.7 (8)
C31—C26—P2121.8 (5)C30—C29—H29120.2
C31—C26—C27119.5 (6)C31—C30—C29120.8 (8)
C26—C27—H27119.4C31—C30—H30119.6
C28—C27—C26121.3 (7)C29—C30—H30119.6
C28—C27—H27119.4P1—O1—Eu1165.8 (3)
C20—C25—H25120.3P2—O2—Eu2168.6 (3)
C20—C25—C24119.3 (5)C1—N1—Eu1173.5 (6)
C24—C25—H25120.3N1—C1—S1178.8 (7)
C22—C23—H23119.3C38—N2—Eu2164.6 (14)
C24—C23—H23119.3N2—C38—S2177 (2)
C24—C23—C22121.4 (5)N3—O3—Eu2110.8 (14)
C20—C21—H21119.4N3—O4—Eu2115.3 (14)
C20—C21—C22121.1 (5)O4—N3—O392.0 (17)
C22—C21—H21119.4O5—N3—O3134 (2)
C4—C5—H5120.0O5—N3—O4134 (2)
Symmetry codes: (i) y+1, xy, z; (ii) x+y+1, x+1, z; (iii) y, xy, z; (iv) x+y, x, z.

Experimental details

Crystal data
Chemical formula[Eu(NCS)3(C18H15OP)3][Eu(NCS)2(NO3)(C18H15OP)3]
Mr2325.95
Crystal system, space groupTrigonal, R3
Temperature (K)180
a, c (Å)20.3249 (7), 22.3186 (6)
V3)7984.7 (4)
Z3
Radiation typeMo Kα
µ (mm1)1.42
Crystal size (mm)0.12 × 0.07 × 0.05
Data collection
DiffractometerAgilent Xcalibur Eos
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2012)
Tmin, Tmax0.892, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
15970, 6325, 5614
Rint0.052
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.065, 1.02
No. of reflections6325
No. of parameters439
No. of restraints8
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.30, 0.90
Absolute structureFlack (1983), 3154 Friedel pairs
Absolute structure parameter0.045 (9)

Computer programs: CrysAlis PRO (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009), publCIF (Westrip, 2010).

 

Acknowledgements

The authors acknowledge the National Science Foundation for their generous support (NSF-CAREER grant to RES, CHE-0846680).

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBerthet, J.-C., Nierlich, M. & Ephritikhine, M. (2003). Polyhedron, 22, 3475–3482.  Web of Science CSD CrossRef CAS Google Scholar
First citationBowden, A., Platt, A. W. G., Singh, K. & Townsend, R. (2010). Inorg. Chim. Acta, 363, 243–249.  Web of Science CSD CrossRef CAS Google Scholar
First citationCousins, D. R. & Hart, F. A. (1967). J. Inorg. Nucl. Chem. 29, 1745–1757.  CrossRef CAS Web of Science Google Scholar
First citationCousins, D. R. & Hart, F. A. (1968). J. Inorg. Nucl. Chem. 30, 3009–3015.  CrossRef CAS Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFeazell, R. P., Gary, J. B., Kautz, J. A., Klausmeyer, K. K., Wong, C. W. & Zancanella, M. (2004). Acta Cryst. E60, m532–m534.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLong, D.-L., Hu, H.-M., Chen, J.-T. & Huang, J.-S. (1999). Acta Cryst. C55, 1662–1664.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds