metal-organic compounds
rac-{[2-(Diphenylthiophosphanyl)ferrocenyl]methyl}trimethylammonium iodide chloroform monosolvate
aCNRS, LCC, 205 route de Narbonne, BP 44099, F-31077, Toulouse Cedex 4, France, and bUniversity Taras Shevchenko, Vladimirska st 64, 01033 Kiev, Ukraine
*Correspondence e-mail: daran@lcc-toulouse.fr
The title compound, [Fe(C5H5)(C21H24NPS)]I·CHCl3, is built up from a (ferrocenylmethyl)trimethylammonium cation, a iodine anion and a chloroform solvent molecule, all residing in general positions. The N atom of the ammonium group is displaced by 1.182 (2) Å from the plane of the substituted cyclopentadienyl (Cp) ring towards the Fe atom, whereas the C atom attached to the same Cp ring is slightly below this plane by −0.128 (2) Å. These deviations might result from weak agostic interactions between the two H atoms of the CH2 group and the Fe atom.
Related literature
For related structures containing the (ferrocenyl)trimethylammonium framework, see: Bai et al. (2011); Ballester et al. (2003); Blake et al. (2004); Broomsgrove et al. (2010); Chohan et al. (1997); Deck et al. (2000); Ferguson et al. (1994); Herbstein & Kapon (2008); Hong et al. (2005); Hosmane et al. (1998); Hu et al. (2004); Li et al. (2009); Malezieux et al. (1994); Pullen et al. (1998); Reynes et al. (2002); Selvapalam et al. (2007); Sharma et al. (2006); Veya & Kochi (1995); Volkov et al. (2003, 2005, 2006); Xu et al. (2010); Yongmao et al. (1982); Zhuji et al. (1982). For their use in chemistry, see: Routaboul et al. (2005, 2007); Mateus et al. (2006); Le Roux et al. (2007); Diab et al. (2008); Audin et al. (2010); Debono et al. (2010). For a description of the Cambridge Structural Database, see: Allen (2002).
Experimental
Crystal data
|
Refinement
|
|
Data collection: CrysAlis PRO (Agilent, 2012); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).
Supporting information
10.1107/S1600536812046053/rn2109sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812046053/rn2109Isup2.hkl
(2-diphenylthiophosphanylferrocenyl) trimethylammonium iodide was synthesized by a published procedure (Mateus et al., 2006). Single crystals suitable for X-ray
were grown from a chloroform solution by slow evaporation of the solvent.All H atoms were fixed geometrically and treated as riding with C—H = 0.95 Å (aromatic), 0.98 Å (methyl), 0.99 Å (methylene) and 1.0 Å (methine) with Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(Cmethyl).
Data collection: CrysAlis PRO (Agilent, 2012); cell
CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).Fig. 1. Molecular view of compound I with the atom labeling scheme. Ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity. |
[Fe(C5H5)(C21H24NPS)]I·CHCl3 | F(000) = 1440 |
Mr = 720.65 | Dx = 1.614 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 19830 reflections |
a = 17.4056 (6) Å | θ = 2.9–28.4° |
b = 12.1843 (3) Å | µ = 1.96 mm−1 |
c = 14.9389 (5) Å | T = 180 K |
β = 110.632 (4)° | Box, yellow |
V = 2964.97 (18) Å3 | 0.49 × 0.18 × 0.10 mm |
Z = 4 |
Agilent Xcalibur (Sapphire1, long nozzle) diffractometer | 6065 independent reflections |
Radiation source: fine-focus sealed tube | 5385 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.034 |
Detector resolution: 8.2632 pixels mm-1 | θmax = 26.4°, θmin = 2.9° |
ω scans | h = −21→21 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) | k = −15→15 |
Tmin = 0.574, Tmax = 1.0 | l = −18→18 |
31103 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.025 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.062 | H-atom parameters constrained |
S = 1.08 | w = 1/[σ2(Fo2) + (0.0242P)2 + 2.8471P] where P = (Fo2 + 2Fc2)/3 |
6065 reflections | (Δ/σ)max = 0.002 |
319 parameters | Δρmax = 0.62 e Å−3 |
0 restraints | Δρmin = −0.61 e Å−3 |
[Fe(C5H5)(C21H24NPS)]I·CHCl3 | V = 2964.97 (18) Å3 |
Mr = 720.65 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 17.4056 (6) Å | µ = 1.96 mm−1 |
b = 12.1843 (3) Å | T = 180 K |
c = 14.9389 (5) Å | 0.49 × 0.18 × 0.10 mm |
β = 110.632 (4)° |
Agilent Xcalibur (Sapphire1, long nozzle) diffractometer | 6065 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) | 5385 reflections with I > 2σ(I) |
Tmin = 0.574, Tmax = 1.0 | Rint = 0.034 |
31103 measured reflections |
R[F2 > 2σ(F2)] = 0.025 | 0 restraints |
wR(F2) = 0.062 | H-atom parameters constrained |
S = 1.08 | Δρmax = 0.62 e Å−3 |
6065 reflections | Δρmin = −0.61 e Å−3 |
319 parameters |
Experimental. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. CrysAlisPro (Agilent Technologies, 2012) |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Fe1 | 0.170301 (18) | 0.73893 (3) | 0.16941 (2) | 0.01825 (7) | |
P1 | 0.13712 (3) | 0.49498 (4) | 0.25844 (4) | 0.01734 (11) | |
S1 | 0.13878 (4) | 0.39785 (5) | 0.15519 (4) | 0.02843 (13) | |
N1 | 0.38708 (12) | 0.51750 (17) | 0.26266 (14) | 0.0266 (4) | |
C1 | 0.19359 (13) | 0.62039 (17) | 0.26970 (14) | 0.0173 (4) | |
C2 | 0.26568 (13) | 0.64348 (18) | 0.24522 (15) | 0.0196 (4) | |
C3 | 0.28607 (14) | 0.75593 (19) | 0.26702 (16) | 0.0242 (5) | |
H3 | 0.3307 | 0.7935 | 0.2581 | 0.029* | |
C4 | 0.22953 (15) | 0.80223 (19) | 0.30379 (16) | 0.0253 (5) | |
H4 | 0.2297 | 0.8762 | 0.3241 | 0.030* | |
C5 | 0.17231 (14) | 0.72073 (17) | 0.30565 (15) | 0.0211 (4) | |
H5 | 0.1274 | 0.7307 | 0.3270 | 0.025* | |
C6 | 0.06407 (17) | 0.7065 (2) | 0.05634 (18) | 0.0407 (7) | |
H6 | 0.0244 | 0.6519 | 0.0537 | 0.049* | |
C7 | 0.13415 (18) | 0.6930 (2) | 0.03003 (17) | 0.0367 (6) | |
H7 | 0.1500 | 0.6273 | 0.0070 | 0.044* | |
C8 | 0.17626 (15) | 0.7942 (2) | 0.04407 (16) | 0.0292 (5) | |
H8 | 0.2253 | 0.8089 | 0.0319 | 0.035* | |
C9 | 0.13258 (15) | 0.8694 (2) | 0.07938 (17) | 0.0309 (5) | |
H9 | 0.1471 | 0.9439 | 0.0954 | 0.037* | |
C10 | 0.06381 (16) | 0.8155 (3) | 0.08696 (18) | 0.0377 (6) | |
H10 | 0.0239 | 0.8473 | 0.1090 | 0.045* | |
C21 | 0.30886 (13) | 0.57269 (19) | 0.19659 (15) | 0.0231 (5) | |
H21A | 0.3230 | 0.6180 | 0.1496 | 0.028* | |
H21B | 0.2704 | 0.5149 | 0.1605 | 0.028* | |
C23 | 0.42053 (19) | 0.4499 (3) | 0.2013 (2) | 0.0448 (7) | |
H23A | 0.4707 | 0.4127 | 0.2417 | 0.067* | |
H23B | 0.4331 | 0.4975 | 0.1554 | 0.067* | |
H23C | 0.3797 | 0.3950 | 0.1667 | 0.067* | |
C24 | 0.36912 (17) | 0.4455 (2) | 0.3336 (2) | 0.0409 (7) | |
H24A | 0.3253 | 0.3939 | 0.2999 | 0.061* | |
H24B | 0.3516 | 0.4907 | 0.3772 | 0.061* | |
H24C | 0.4187 | 0.4045 | 0.3703 | 0.061* | |
C25 | 0.45051 (16) | 0.6000 (2) | 0.3157 (2) | 0.0396 (6) | |
H25A | 0.4302 | 0.6429 | 0.3581 | 0.059* | |
H25B | 0.4618 | 0.6491 | 0.2699 | 0.059* | |
H25C | 0.5011 | 0.5619 | 0.3537 | 0.059* | |
C111 | 0.17654 (13) | 0.43111 (17) | 0.37555 (15) | 0.0186 (4) | |
C112 | 0.23704 (14) | 0.47914 (18) | 0.45243 (15) | 0.0214 (4) | |
H112 | 0.2616 | 0.5462 | 0.4442 | 0.026* | |
C113 | 0.26174 (15) | 0.4291 (2) | 0.54143 (16) | 0.0269 (5) | |
H113 | 0.3040 | 0.4611 | 0.5940 | 0.032* | |
C114 | 0.22482 (15) | 0.3329 (2) | 0.55350 (16) | 0.0289 (5) | |
H114 | 0.2411 | 0.2995 | 0.6148 | 0.035* | |
C115 | 0.16466 (15) | 0.2848 (2) | 0.47744 (17) | 0.0285 (5) | |
H115 | 0.1396 | 0.2185 | 0.4864 | 0.034* | |
C116 | 0.14071 (14) | 0.33311 (19) | 0.38783 (16) | 0.0240 (5) | |
H116 | 0.0999 | 0.2993 | 0.3350 | 0.029* | |
C121 | 0.03365 (13) | 0.53257 (17) | 0.24974 (15) | 0.0204 (4) | |
C122 | 0.01987 (14) | 0.57870 (19) | 0.32821 (16) | 0.0243 (5) | |
H122 | 0.0646 | 0.5903 | 0.3863 | 0.029* | |
C123 | −0.05875 (15) | 0.6075 (2) | 0.32155 (19) | 0.0313 (5) | |
H123 | −0.0678 | 0.6403 | 0.3747 | 0.038* | |
C124 | −0.12427 (16) | 0.5887 (2) | 0.2378 (2) | 0.0359 (6) | |
H124 | −0.1782 | 0.6088 | 0.2333 | 0.043* | |
C125 | −0.11120 (15) | 0.5408 (2) | 0.16082 (19) | 0.0348 (6) | |
H125 | −0.1564 | 0.5272 | 0.1036 | 0.042* | |
C126 | −0.03235 (15) | 0.51233 (19) | 0.16629 (17) | 0.0270 (5) | |
H126 | −0.0237 | 0.4791 | 0.1131 | 0.032* | |
C100 | 0.40211 (16) | 0.1117 (2) | 0.40949 (18) | 0.0339 (6) | |
H100 | 0.4611 | 0.1343 | 0.4362 | 0.041* | |
Cl1 | 0.39374 (5) | −0.02380 (6) | 0.44430 (6) | 0.04887 (18) | |
Cl2 | 0.34498 (6) | 0.19884 (7) | 0.45463 (7) | 0.0642 (3) | |
Cl3 | 0.36757 (5) | 0.12290 (10) | 0.28457 (5) | 0.0685 (3) | |
I1 | 0.586539 (10) | 0.293348 (13) | 0.433624 (12) | 0.03129 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Fe1 | 0.01707 (16) | 0.01936 (16) | 0.01709 (15) | −0.00029 (12) | 0.00449 (12) | 0.00296 (12) |
P1 | 0.0202 (3) | 0.0167 (3) | 0.0162 (2) | −0.0016 (2) | 0.0079 (2) | −0.0016 (2) |
S1 | 0.0382 (3) | 0.0255 (3) | 0.0257 (3) | −0.0051 (3) | 0.0164 (3) | −0.0105 (2) |
N1 | 0.0222 (10) | 0.0349 (11) | 0.0263 (10) | 0.0080 (9) | 0.0128 (8) | 0.0060 (9) |
C1 | 0.0195 (10) | 0.0176 (10) | 0.0141 (9) | −0.0006 (8) | 0.0050 (8) | 0.0013 (8) |
C2 | 0.0179 (10) | 0.0214 (11) | 0.0177 (10) | −0.0007 (9) | 0.0041 (8) | 0.0040 (8) |
C3 | 0.0210 (11) | 0.0237 (11) | 0.0241 (11) | −0.0042 (9) | 0.0031 (9) | 0.0031 (9) |
C4 | 0.0280 (12) | 0.0191 (11) | 0.0242 (11) | −0.0026 (9) | 0.0037 (10) | −0.0022 (9) |
C5 | 0.0246 (11) | 0.0212 (11) | 0.0167 (10) | 0.0006 (9) | 0.0064 (9) | −0.0001 (8) |
C6 | 0.0298 (14) | 0.0541 (18) | 0.0255 (13) | −0.0149 (13) | −0.0061 (11) | 0.0118 (12) |
C7 | 0.0471 (16) | 0.0378 (15) | 0.0173 (11) | 0.0080 (12) | 0.0015 (11) | 0.0004 (10) |
C8 | 0.0251 (12) | 0.0424 (15) | 0.0198 (11) | 0.0069 (11) | 0.0077 (10) | 0.0125 (10) |
C9 | 0.0330 (13) | 0.0300 (13) | 0.0273 (12) | 0.0069 (11) | 0.0079 (10) | 0.0132 (10) |
C10 | 0.0225 (13) | 0.0568 (18) | 0.0320 (13) | 0.0130 (12) | 0.0073 (11) | 0.0167 (12) |
C21 | 0.0201 (11) | 0.0285 (12) | 0.0207 (10) | 0.0026 (9) | 0.0075 (9) | 0.0040 (9) |
C23 | 0.0430 (16) | 0.0575 (19) | 0.0407 (15) | 0.0219 (14) | 0.0232 (13) | −0.0007 (14) |
C24 | 0.0346 (15) | 0.0467 (16) | 0.0480 (16) | 0.0167 (13) | 0.0229 (13) | 0.0256 (13) |
C25 | 0.0232 (13) | 0.0520 (17) | 0.0382 (14) | 0.0023 (12) | 0.0039 (11) | 0.0032 (13) |
C111 | 0.0208 (11) | 0.0183 (10) | 0.0200 (10) | 0.0021 (8) | 0.0113 (9) | 0.0017 (8) |
C112 | 0.0246 (12) | 0.0196 (11) | 0.0228 (10) | −0.0008 (9) | 0.0117 (9) | −0.0018 (9) |
C113 | 0.0295 (13) | 0.0291 (12) | 0.0204 (11) | 0.0002 (10) | 0.0066 (10) | −0.0013 (9) |
C114 | 0.0347 (14) | 0.0311 (13) | 0.0225 (11) | 0.0050 (11) | 0.0121 (10) | 0.0076 (10) |
C115 | 0.0314 (13) | 0.0252 (12) | 0.0326 (13) | −0.0023 (10) | 0.0158 (11) | 0.0065 (10) |
C116 | 0.0230 (12) | 0.0228 (11) | 0.0263 (11) | −0.0027 (9) | 0.0087 (9) | 0.0010 (9) |
C121 | 0.0207 (11) | 0.0182 (10) | 0.0231 (10) | −0.0025 (9) | 0.0087 (9) | 0.0006 (8) |
C122 | 0.0241 (12) | 0.0250 (12) | 0.0246 (11) | −0.0012 (9) | 0.0096 (9) | 0.0002 (9) |
C123 | 0.0314 (13) | 0.0277 (13) | 0.0399 (14) | 0.0026 (10) | 0.0189 (12) | 0.0000 (11) |
C124 | 0.0249 (13) | 0.0313 (14) | 0.0527 (16) | 0.0046 (11) | 0.0150 (12) | 0.0068 (12) |
C125 | 0.0236 (13) | 0.0340 (14) | 0.0396 (14) | −0.0050 (11) | 0.0020 (11) | 0.0021 (11) |
C126 | 0.0264 (12) | 0.0258 (12) | 0.0264 (12) | −0.0066 (10) | 0.0064 (10) | −0.0026 (9) |
C100 | 0.0264 (13) | 0.0414 (15) | 0.0296 (13) | 0.0052 (11) | 0.0044 (11) | 0.0017 (11) |
Cl1 | 0.0362 (4) | 0.0370 (4) | 0.0614 (5) | −0.0056 (3) | 0.0022 (3) | −0.0025 (3) |
Cl2 | 0.0818 (6) | 0.0558 (5) | 0.0758 (6) | 0.0302 (5) | 0.0536 (5) | 0.0199 (4) |
Cl3 | 0.0528 (5) | 0.1143 (8) | 0.0300 (4) | −0.0006 (5) | 0.0042 (3) | 0.0028 (4) |
I1 | 0.02343 (9) | 0.03225 (10) | 0.03755 (10) | 0.00095 (6) | 0.00995 (7) | −0.00385 (7) |
Fe1—C2 | 2.017 (2) | C21—H21A | 0.9900 |
Fe1—C1 | 2.017 (2) | C21—H21B | 0.9900 |
Fe1—C8 | 2.027 (2) | C23—H23A | 0.9800 |
Fe1—C7 | 2.030 (2) | C23—H23B | 0.9800 |
Fe1—C5 | 2.035 (2) | C23—H23C | 0.9800 |
Fe1—C9 | 2.036 (2) | C24—H24A | 0.9800 |
Fe1—C3 | 2.039 (2) | C24—H24B | 0.9800 |
Fe1—C10 | 2.053 (3) | C24—H24C | 0.9800 |
Fe1—C6 | 2.056 (3) | C25—H25A | 0.9800 |
Fe1—C4 | 2.056 (2) | C25—H25B | 0.9800 |
P1—C1 | 1.792 (2) | C25—H25C | 0.9800 |
P1—C111 | 1.814 (2) | C111—C112 | 1.385 (3) |
P1—C121 | 1.818 (2) | C111—C116 | 1.389 (3) |
P1—S1 | 1.9524 (7) | C112—C113 | 1.386 (3) |
N1—C24 | 1.492 (3) | C112—H112 | 0.9500 |
N1—C23 | 1.495 (3) | C113—C114 | 1.380 (3) |
N1—C25 | 1.497 (3) | C113—H113 | 0.9500 |
N1—C21 | 1.527 (3) | C114—C115 | 1.375 (4) |
C1—C5 | 1.435 (3) | C114—H114 | 0.9500 |
C1—C2 | 1.453 (3) | C115—C116 | 1.385 (3) |
C2—C3 | 1.424 (3) | C115—H115 | 0.9500 |
C2—C21 | 1.490 (3) | C116—H116 | 0.9500 |
C3—C4 | 1.403 (3) | C121—C126 | 1.388 (3) |
C3—H3 | 0.9500 | C121—C122 | 1.395 (3) |
C4—C5 | 1.414 (3) | C122—C123 | 1.382 (3) |
C4—H4 | 0.9500 | C122—H122 | 0.9500 |
C5—H5 | 0.9500 | C123—C124 | 1.383 (4) |
C6—C10 | 1.405 (4) | C123—H123 | 0.9500 |
C6—C7 | 1.417 (4) | C124—C125 | 1.377 (4) |
C6—H6 | 0.9500 | C124—H124 | 0.9500 |
C7—C8 | 1.412 (4) | C125—C126 | 1.390 (3) |
C7—H7 | 0.9500 | C125—H125 | 0.9500 |
C8—C9 | 1.406 (3) | C126—H126 | 0.9500 |
C8—H8 | 0.9500 | C100—Cl2 | 1.745 (3) |
C9—C10 | 1.404 (4) | C100—Cl1 | 1.752 (3) |
C9—H9 | 0.9500 | C100—Cl3 | 1.753 (3) |
C10—H10 | 0.9500 | C100—H100 | 1.0000 |
C2—Fe1—C1 | 42.23 (8) | Fe1—C6—H6 | 126.7 |
C2—Fe1—C8 | 114.24 (9) | C8—C7—C6 | 108.0 (2) |
C1—Fe1—C8 | 149.55 (9) | C8—C7—Fe1 | 69.50 (14) |
C2—Fe1—C7 | 108.25 (10) | C6—C7—Fe1 | 70.69 (15) |
C1—Fe1—C7 | 118.22 (10) | C8—C7—H7 | 126.0 |
C8—Fe1—C7 | 40.74 (11) | C6—C7—H7 | 126.0 |
C2—Fe1—C5 | 69.81 (9) | Fe1—C7—H7 | 125.4 |
C1—Fe1—C5 | 41.49 (8) | C9—C8—C7 | 107.7 (2) |
C8—Fe1—C5 | 166.33 (10) | C9—C8—Fe1 | 70.09 (13) |
C7—Fe1—C5 | 152.30 (10) | C7—C8—Fe1 | 69.76 (13) |
C2—Fe1—C9 | 146.24 (9) | C9—C8—H8 | 126.2 |
C1—Fe1—C9 | 169.62 (9) | C7—C8—H8 | 126.2 |
C8—Fe1—C9 | 40.51 (10) | Fe1—C8—H8 | 125.6 |
C7—Fe1—C9 | 68.06 (11) | C10—C9—C8 | 108.3 (2) |
C5—Fe1—C9 | 129.32 (10) | C10—C9—Fe1 | 70.58 (14) |
C2—Fe1—C3 | 41.11 (9) | C8—C9—Fe1 | 69.41 (13) |
C1—Fe1—C3 | 69.65 (9) | C10—C9—H9 | 125.8 |
C8—Fe1—C3 | 105.52 (10) | C8—C9—H9 | 125.8 |
C7—Fe1—C3 | 129.23 (11) | Fe1—C9—H9 | 125.8 |
C5—Fe1—C3 | 68.38 (9) | C9—C10—C6 | 108.3 (2) |
C9—Fe1—C3 | 113.61 (10) | C9—C10—Fe1 | 69.25 (14) |
C2—Fe1—C10 | 171.76 (11) | C6—C10—Fe1 | 70.12 (15) |
C1—Fe1—C10 | 132.36 (10) | C9—C10—H10 | 125.8 |
C8—Fe1—C10 | 67.91 (10) | C6—C10—H10 | 125.8 |
C7—Fe1—C10 | 67.79 (11) | Fe1—C10—H10 | 126.4 |
C5—Fe1—C10 | 110.07 (10) | C2—C21—N1 | 115.32 (18) |
C9—Fe1—C10 | 40.17 (10) | C2—C21—H21A | 108.4 |
C3—Fe1—C10 | 147.00 (11) | N1—C21—H21A | 108.4 |
C2—Fe1—C6 | 132.44 (11) | C2—C21—H21B | 108.4 |
C1—Fe1—C6 | 111.10 (10) | N1—C21—H21B | 108.4 |
C8—Fe1—C6 | 68.21 (10) | H21A—C21—H21B | 107.5 |
C7—Fe1—C6 | 40.57 (12) | N1—C23—H23A | 109.5 |
C5—Fe1—C6 | 119.62 (10) | N1—C23—H23B | 109.5 |
C9—Fe1—C6 | 67.65 (11) | H23A—C23—H23B | 109.5 |
C3—Fe1—C6 | 169.41 (11) | N1—C23—H23C | 109.5 |
C10—Fe1—C6 | 39.98 (12) | H23A—C23—H23C | 109.5 |
C2—Fe1—C4 | 68.76 (9) | H23B—C23—H23C | 109.5 |
C1—Fe1—C4 | 69.09 (9) | N1—C24—H24A | 109.5 |
C8—Fe1—C4 | 127.30 (10) | N1—C24—H24B | 109.5 |
C7—Fe1—C4 | 166.46 (11) | H24A—C24—H24B | 109.5 |
C5—Fe1—C4 | 40.42 (9) | N1—C24—H24C | 109.5 |
C9—Fe1—C4 | 106.63 (10) | H24A—C24—H24C | 109.5 |
C3—Fe1—C4 | 40.07 (9) | H24B—C24—H24C | 109.5 |
C10—Fe1—C4 | 116.83 (11) | N1—C25—H25A | 109.5 |
C6—Fe1—C4 | 150.50 (11) | N1—C25—H25B | 109.5 |
C1—P1—C111 | 105.46 (10) | H25A—C25—H25B | 109.5 |
C1—P1—C121 | 106.77 (10) | N1—C25—H25C | 109.5 |
C111—P1—C121 | 101.86 (9) | H25A—C25—H25C | 109.5 |
C1—P1—S1 | 115.51 (7) | H25B—C25—H25C | 109.5 |
C111—P1—S1 | 113.33 (7) | C112—C111—C116 | 120.0 (2) |
C121—P1—S1 | 112.72 (8) | C112—C111—P1 | 122.49 (16) |
C24—N1—C23 | 109.6 (2) | C116—C111—P1 | 117.47 (17) |
C24—N1—C25 | 108.6 (2) | C111—C112—C113 | 119.9 (2) |
C23—N1—C25 | 108.7 (2) | C111—C112—H112 | 120.1 |
C24—N1—C21 | 110.85 (18) | C113—C112—H112 | 120.1 |
C23—N1—C21 | 107.32 (19) | C114—C113—C112 | 119.9 (2) |
C25—N1—C21 | 111.69 (19) | C114—C113—H113 | 120.1 |
C5—C1—C2 | 106.79 (18) | C112—C113—H113 | 120.1 |
C5—C1—P1 | 123.78 (16) | C115—C114—C113 | 120.5 (2) |
C2—C1—P1 | 129.43 (16) | C115—C114—H114 | 119.7 |
C5—C1—Fe1 | 69.95 (12) | C113—C114—H114 | 119.7 |
C2—C1—Fe1 | 68.88 (11) | C114—C115—C116 | 120.0 (2) |
P1—C1—Fe1 | 125.51 (11) | C114—C115—H115 | 120.0 |
C3—C2—C1 | 107.25 (19) | C116—C115—H115 | 120.0 |
C3—C2—C21 | 122.72 (19) | C115—C116—C111 | 119.8 (2) |
C1—C2—C21 | 129.7 (2) | C115—C116—H116 | 120.1 |
C3—C2—Fe1 | 70.31 (13) | C111—C116—H116 | 120.1 |
C1—C2—Fe1 | 68.89 (12) | C126—C121—C122 | 119.6 (2) |
C21—C2—Fe1 | 121.12 (15) | C126—C121—P1 | 120.34 (17) |
C4—C3—C2 | 108.9 (2) | C122—C121—P1 | 120.05 (17) |
C4—C3—Fe1 | 70.62 (13) | C123—C122—C121 | 120.1 (2) |
C2—C3—Fe1 | 68.59 (12) | C123—C122—H122 | 120.0 |
C4—C3—H3 | 125.6 | C121—C122—H122 | 120.0 |
C2—C3—H3 | 125.6 | C122—C123—C124 | 120.2 (2) |
Fe1—C3—H3 | 126.8 | C122—C123—H123 | 119.9 |
C3—C4—C5 | 108.8 (2) | C124—C123—H123 | 119.9 |
C3—C4—Fe1 | 69.31 (13) | C125—C124—C123 | 119.9 (2) |
C5—C4—Fe1 | 68.99 (12) | C125—C124—H124 | 120.0 |
C3—C4—H4 | 125.6 | C123—C124—H124 | 120.0 |
C5—C4—H4 | 125.6 | C124—C125—C126 | 120.5 (2) |
Fe1—C4—H4 | 127.7 | C124—C125—H125 | 119.8 |
C4—C5—C1 | 108.33 (19) | C126—C125—H125 | 119.8 |
C4—C5—Fe1 | 70.59 (12) | C121—C126—C125 | 119.7 (2) |
C1—C5—Fe1 | 68.56 (11) | C121—C126—H126 | 120.1 |
C4—C5—H5 | 125.8 | C125—C126—H126 | 120.1 |
C1—C5—H5 | 125.8 | Cl2—C100—Cl1 | 109.90 (14) |
Fe1—C5—H5 | 126.6 | Cl2—C100—Cl3 | 109.62 (14) |
C10—C6—C7 | 107.6 (2) | Cl1—C100—Cl3 | 110.86 (15) |
C10—C6—Fe1 | 69.89 (15) | Cl2—C100—H100 | 108.8 |
C7—C6—Fe1 | 68.74 (15) | Cl1—C100—H100 | 108.8 |
C10—C6—H6 | 126.2 | Cl3—C100—H100 | 108.8 |
C7—C6—H6 | 126.2 |
D—H···A | D—H | H···A | D···A | D—H···A |
C24—H24C···I1 | 0.98 | 3.05 | 4.001 (3) | 163 |
C100—H100···I1 | 1.00 | 2.93 | 3.810 (3) | 147 |
Experimental details
Crystal data | |
Chemical formula | [Fe(C5H5)(C21H24NPS)]I·CHCl3 |
Mr | 720.65 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 180 |
a, b, c (Å) | 17.4056 (6), 12.1843 (3), 14.9389 (5) |
β (°) | 110.632 (4) |
V (Å3) | 2964.97 (18) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.96 |
Crystal size (mm) | 0.49 × 0.18 × 0.10 |
Data collection | |
Diffractometer | Agilent Xcalibur (Sapphire1, long nozzle) diffractometer |
Absorption correction | Multi-scan (CrysAlis PRO; Agilent, 2012) |
Tmin, Tmax | 0.574, 1.0 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 31103, 6065, 5385 |
Rint | 0.034 |
(sin θ/λ)max (Å−1) | 0.625 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.025, 0.062, 1.08 |
No. of reflections | 6065 |
No. of parameters | 319 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.62, −0.61 |
Computer programs: CrysAlis PRO (Agilent, 2012), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 2012), WinGX (Farrugia, 2012).
D—H···A | D—H | H···A | D···A | D—H···A |
C24—H24C···I1 | 0.98 | 3.05 | 4.001 (3) | 163.2 |
C100—H100···I1 | 1.00 | 2.93 | 3.810 (3) | 147.4 |
N1···Cp is the distance of the N atom from the Cp ring, C21···Cp is the distance of the C21 atom from the Cp ring and Ang1 is the dihedral angle between the Cp ring and the plane defined by C2—C21—N1. |
Reference | C2—C21 | C21—N1 | N1···Cp | C21···Cp | Ang |
This study | 1.490 (3) | 1.527 (3) | 1.182 (2) | -0.128 (2) | 83.2 (2) |
ASAZIE | 1.476 | 1.530 | 1.253 | -0.096 | 87.49 |
BUBCOQ | 1.505 | 1.520 | 1.256 | -0.106 | 90.0 |
BUBCUW(1) | 1.518 | 1.531 | 1.260 | -0.095 | 84.38 |
BUBCUW(2) | 1.494 | 1.525 | 1.311 | -0.048 | 87.72 |
DEHHUU | 1.482 | 1.524 | 1.220 | -0.111 | 90.0 |
EDUQUP | 1.493 | 1.525 | 1.294 | -0.072 | 88.68 |
HABDUL(1) | 1.493 | 1.520 | 1.167 | -0.147 | 87.20 |
HABDUL(2) | 1.467 | 1.472 | 1.270 | -0.033 | 85.45 |
HABFAT(1) | 1.460 | 1.530 | 1.233 | -0.125 | 86.58 |
HABFAT(2) | 1.478 | 1.540 | 1.125 | -0.167 | 84.17 |
HABFAT(3) | 1.499 | 1.526 | 1.309 | -0.063 | 88.73 |
HIZFOM(1) | 1.471 | 1.519 | 1.327 | -0.029 | 81.08 |
HIZFOM(2) | 1.447 | 1.525 | 1.425 | -0.032 | 90.0 |
HIZFOM(3) | 1.432 | 1.515 | 1.393 | -0.042 | 83.97 |
HIZFOM(4) | 1.336 | 1.529 | 1.335 | -0.007 | 90.0 |
IBIROB(1) | 1.493 | 1.529 | 1.197 | -0.142 | 88.83 |
IBIROB(2) | 1.470 | 1.537 | 1.324 | -0.060 | 82.55 |
IGEPUG(1) | 1.519 | 1.520 | 1.248 | -0.066 | 77.69 |
IGEPUG(2) | 1.522 | 1.523 | 0.999 | -0.274 | 85.92 |
IGEPUG(3) | 1.514 | 1.533 | 1.914 | -0.426 | 81.02 |
IGEPUG(4) | 1.516 | 1.533 | 1.152 | -0.163 | 83.23 |
IGEQAN(1) | 1.462 | 1.533 | 1.251 | -0.106 | 82.66 |
IGEQAN(2) | 1.481 | 1.543 | 1.216 | -0.123 | 87.22 |
IKONOL | 1.485 | 1.522 | 1.223 | -0.100 | 84.09 |
IKONOL01 | 1.484 | 1.514 | 1.223 | -0.097 | 90.0 |
IKONUR | 1.495 | 1.526 | 1.177 | -0.134 | 86.93 |
IKUZOD(1) | 1.493 | 1.530 | 1.272 | -0.073 | 80.32 |
IKUZOD(2) | 1.487 | 1.528 | 1.316 | -0.050 | 82.74 |
IKUZUJ(1) | 1.484 | 1.535 | 1.290 | -0.072 | 88.63 |
IKUZUJ(2) | 1.489 | 1.537 | 1.256 | -0.094 | 87.41 |
IQUCIG | 1.485 | 1.528 | 1.263 | -0.083 | 79.62 |
JUHXEP | 1.471 | 1.516 | 1.283 | -0.066 | 88.29 |
JUJDOH | 1.482 | 1.536 | 1.330 | -0.056 | 88.54 |
JUJDOH01 | 1.488 | 1.510 | 1.327 | -0.033 | 87.68 |
JUJFEZ | 1.485 | 1.530 | 1.225 | -0.111 | 88.50 |
LEJHIR | 1.488 | 1.521 | 1.129 | -0.141 | 76.82 |
LEJHOX(1) | 1.502 | 1.523 | 1.200 | -0.120 | 83.12 |
LEJHOX(2) | 1.484 | 1.526 | 1.203 | -0.127 | 86.84 |
LIFWUS(1) | 1.509 | 1.536 | 1.127 | -0.166 | 78.64 |
LIFWUS(2) | 1.485 | 1.544 | 1.101 | -0.127 | 69.81 |
LIFXAZ | 1.494 | 1.525 | 1.125 | -0.129 | 70.44 |
NAGHOU | 1.501 | 1.527 | 1.256 | -0.060 | 77.63 |
NAGHUA(1) | 1.489 | 1.526 | 1.235 | -0.097 | 79.70 |
NAGHUA(2) | 1.495 | 1.528 | 1.182 | -0.129 | 79.44 |
NATZEO | 1.459 | 1.549 | 1.295 | -0.074 | 89.24 |
NEYSIT | 1.486 | 1.525 | 1.256 | -0.090 | 86.76 |
SAZWIA | 1.472 | 1.530 | 1.188 | -0.119 | 80.76 |
WASGED(1) | 1.489 | 1.533 | 1.181 | -0.150 | 88.52 |
WASGED(2) | 1.488 | 1.523 | 1.239 | -0.101 | 88.53 |
WASGED(3) | 1.479 | 1.518 | 1.241 | -0.093 | 88.22 |
XAJNIF(1) | 1.481 | 1.519 | 1.318 | -0.054 | 87.91 |
XAJNIF(2) | 1.488 | 1.532 | 1.325 | -0.049 | 87.05 |
XEQKIN | 1.497 | 1.531 | 1.378 | -0.012 | 84.17 |
YOVGOF | 1.488 | 1.524 | 1.265 | -0.057 | 75.89 |
Notes: ASAZIE (Bai et al., 2011); BUBCOQ (Zhuji et al., 1982); BUBCUW (Yongmao et al., 1982); DEHHUU (Volkov et al., 2006); EDUQUP (Reynes et al., 2002); HABDUL (Xu et al., 2010); HABFAT (Xu et al., 2010) ; HIZFOM (Selvapalam et al., 2007); IBIROB (Hu et al., 2004); IGEPUG (Li et al., 2009); IGEQAN (Li et al., 2009); IKONOL (Ballester et al., 2003); IKOOL01 (Herbstein & Kapon, 2008); IKONUR (Ballester et al., 2003); IKUZOD (Volkov et al., 2003); IKUZUJ (Volkov et al., 2003); IQUCIG (Blake et al., 2004); JUHXEP (Pullen et al., 1998); JUJDOH (Pullen et al., 1998); JUJDOH01 (Pullen et al., 1998); JUJFEZ (Pullen et al., 1998); LEJHIR (Ferguson et al., 1994); LEJHOX (Ferguson et al., 1994); LIFWUS (Malezieux et al., 1994); LIFXAZ (Malezieux et al., 1994); NAGHOU (Broomsgrove et al., 2010); NAGHUA (Broomsgrove et al., 2010) ; NATZEO (Hong et al., 2005); NEYSIT (Chohan et al., 1997); SAZWIA (Sharma et al., 2006); WASGED (Volkov et al., 2005); XAJNIF (Hosmane et al., 1998); XEQKIN (Deck et al., 2000); YOVGOF (Veya & Kochi, 1995). |
Acknowledgements
AK thanks the Ministry of Education, Science, Youth and Sports of Ukraine for funding his stay at the LCC.
References
Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England. Google Scholar
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Audin, C., Daran, J.-C., Deydier, E., Manoury, E. & Poli, R. (2010). C. R. Chim. 13, 890–899. CrossRef CAS Google Scholar
Bai, Y., Zhang, G. Q., Dang, D. B., Qi, Z. Y. & Zhang, L. (2011). Z. Naturforsch. Teil B, 66, 549–552. CrossRef CAS Google Scholar
Ballester, L., Gil, A. M., Gutierrez, A., Perpinan, M. F., Sanchez, A. E., Fonari, M., Suwinska, K. & Belsky, V. (2003). Eur. J. Inorg. Chem. pp. 3034–3041. Web of Science CSD CrossRef Google Scholar
Blake, A. J., Caltagirone, C., Lippolis, V., Schröder, M. & Wilson, C. (2004). Acta Cryst. E60, m20–m21. Web of Science CSD CrossRef IUCr Journals Google Scholar
Broomsgrove, A. E. J., Addy, D. A., Di Paolo, A., Morgan, I. R., Bresner, C., Chislett, V., Fallis, I. A., Thompson, A. L., Vidovic, D. & Aldridge, S. (2010). Inorg. Chem. 49, 157–173. Web of Science CSD CrossRef PubMed CAS Google Scholar
Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Chohan, Z. H., Howie, R. A., Wardell, J. L., Wilkens, R. & Doidge-Harrison, S. M. S. V. (1997). Polyhedron, 16, 2689–2696. CSD CrossRef CAS Web of Science Google Scholar
Debono, N., Labande, A., Manoury, E., Daran, J.-C. & Poli, R. (2010). Organometallics, 29, 1879–1882. Web of Science CSD CrossRef CAS Google Scholar
Deck, P. A., Lane, M. J., Montgomery, J. L., Slebodnick, C. & Fronczek, F. R. (2000). Organometallics, 19, 1013–1024. Web of Science CSD CrossRef CAS Google Scholar
Diab, L., Gouygou, M., Manoury, E., Kalck, P. & Urrutigoïty, M. (2008). Tetrahedron Lett. 49, 5186–5189. Web of Science CrossRef CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ferguson, G., Gallagher, J. F., Glidewell, C. & Zakaria, C. M. (1994). Acta Cryst. B50, 146–150. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Herbstein, F. H. & Kapon, M. (2008). Struct. Chem. 19, 679–682. Web of Science CSD CrossRef CAS Google Scholar
Hong, J., Tang, L.-F., Yang, Z., Zhai, Y.-P. & Nan, M. (2005). Transition Met. Chem. 30, 439–444. Web of Science CSD CrossRef CAS Google Scholar
Hosmane, N. S., Franken, A., Zhang, G., Srivastava, R. R., Smith, R. Y. & Spielvogel, B. F. (1998). Main Group Met. Chem. 21, 319–324. CrossRef CAS Google Scholar
Hu, J., Barbour, L. J. & Gokel, G. W. (2004). New J. Chem. 28, 907–911. Web of Science CSD CrossRef CAS Google Scholar
Le Roux, E., Malacea, R., Manoury, E., Poli, R., Gonsalvi, L. & Peruzzini, M. (2007). Adv. Synth. Catal. 349, 1064–1073. Web of Science CrossRef Google Scholar
Li, Z., Liu, B., Xu, H., Xue, G., Hu, H., Fu, F. & Wang, J. (2009). J. Organomet. Chem. 694, 2210–2216. Web of Science CSD CrossRef CAS Google Scholar
Malezieux, B., Gruselle, M., Troitskaya, L. L., Sokolov, V. I. & Vaissermann, J. (1994). Organometallics, 13, 2979–2986. CSD CrossRef CAS Web of Science Google Scholar
Mateus, N., Routaboul, L., Daran, J.-C. & Manoury, E. (2006). J. Organomet. Chem. 691, 2297–2310. Web of Science CSD CrossRef CAS Google Scholar
Pullen, A. E., Faulmann, C., Pokhodnya, K. I., Cassoux, P. & Tokumoto, M. (1998). Inorg. Chem. 37, 6714–6720. Web of Science CSD CrossRef PubMed CAS Google Scholar
Reynes, O., Moutet, J.-C., Pecaut, J., Royal, G. & Saint-Aman, E. (2002). New J. Chem. 26, 9–12. Web of Science CSD CrossRef CAS Google Scholar
Routaboul, L., Vincendeau, S., Daran, J.-C. & Manoury, E. (2005). Tetrahedron Asymmetry, 16, 2685–2690. Web of Science CrossRef CAS Google Scholar
Routaboul, L., Vincendeau, S., Turrin, C.-O., Caminade, A.-M., Majoral, J.-P., Daran, J.-C. & Manoury, E. (2007). J. Organomet. Chem. 692, 1064–1073. Web of Science CSD CrossRef CAS Google Scholar
Selvapalam, N., Kim, H., Sobransingh, D., Kaifer, A. E., Liu, S., Isaacs, L., Chen, W., Moghaddam, S., Gilson, M. K., Kim, K. & Inoue, Y. (2007). Proc. Natl Acad. Sci. USA, 104, 20737–20742. Web of Science PubMed Google Scholar
Sharma, P., Lopez, J. G., Ortega, C., Rosas, N., Cabrera, A., Alvarez, C., Toscano, A. & Reyes, E. (2006). Inorg. Chem. Commun. 9, 82–85. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Veya, P. L. & Kochi, J. K. (1995). J. Organomet. Chem. 488, C4–C8. CSD CrossRef CAS Web of Science Google Scholar
Volkov, O., Hu, C., Kolle, V. & Paetzold, P. (2005). Z. Anorg. Allg. Chem. 631, 1909–1911. Web of Science CSD CrossRef CAS Google Scholar
Volkov, O., Paetzold, P. & Hu, C. (2006). Z. Anorg. Allg. Chem. 632, 945–948. Web of Science CSD CrossRef CAS Google Scholar
Volkov, O., Rath, N. P. & Barton, L. (2003). J. Organomet. Chem. 680, 212–217. Web of Science CSD CrossRef CAS Google Scholar
Xu, H., Zhang, L., Li, Z., Li, Z., Hu, H. & Xue, G. (2010). J. Cluster Sci. 21, 211–221. Web of Science CSD CrossRef CAS Google Scholar
Yongmao, Z., Zhaoping, C., Zhiwei, C., Kezhen, P., Jiaxi, L., Guomin, Z. & Hong, Z. (1982). Jiegou Huaxue, 1, 45–46. Google Scholar
Zhuji, F., Kezhen, P., Jiaxi, L., Guomin, Z. & Hong, Z. (1982). Jiegou Huaxue, 1, 57–59. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Recently, our group has synthesized various chiral enantiomerically pure ferrocenyl ligands and tested them in different catalytic asymmetric reactions (Routaboul et al., 2005; Mateus et al., 2006; Routaboul et al., 2007; Le Roux et al., 2007; Diab et al., 2008; Audin et al., 2010; Debono et al., 2010). These ligands are synthesized from enantiomerically pure 2-(diphenylthiophosphanyl)(hydroxymethyl)ferrocene. One intermediate in the synthesis of such enantiomerically pure building block is the racemic (2-diphenylthiophosphanylferrocenyl) trimethylammonium iodide (Mateus et al., 2006).
The asymmetric unit is built up from the (ferrocenylmethyl)trimethylammonium cation, the iodine anion and a chloroform molecule as solvate (Fig. 1). Except for the occurrence of the chloroform solvate, the structure is closely related to the one reported by Ferguson et al. (1994). However, in their case, the iodine was in weak interaction with one of the H atom of the bridging CH2 group whereas in our case the shortest interactions with the iodine involved one of the methyl of the ammonium and the H atom of the chloroform (Table 1). The phosphorus, P1 atom, is roughly in the plane of the Cp ring to which it is attached deviating only by -0.013 (1) Å whereas the sulfur, S1, is endo located -0.887 (1) Å below the Cp ring.
In the Cambridge Structural Database (CSD version 5.33, 2011; Allen, 2002), there are, to the best of our knowledge, 34 hits corresponding to structures involving the (ferrocenylmethyl)trimethylammonium cation with different counter ions. A comparison of selected distances and angles within the Cp—C-NMe3 framework is reported in supplementary materials. Surprisingly, there is no real influence of the counter ion on the geometry of this framework. In all compounds the bridging C sp3 atom is always endo with respect to the Cp ring to which it is attached with values ranging from -0.07 to -0.426 Å, whereas the ammonium N atom is always exo with values ranging from 0.999 to 1.914 Å. Surprisingly, these two extreme values are related to compound containing a very large anion, the (µ12-phosphato)-tetracosakis(µ2-oxo)-dodecaoxo-molybdenum(v)-undeca-molybdenum(vi) (Li et al., 2009). However, it is worthwhile to note that the asymmetric unit in this polyoxomolybdate anions contains four molecules of which two of them have distance of the N from the Cp ring within the usual range: 1.248 and 1.152 Å. Moreover there are other compounds containing polyoxomolybdate anions (Xu et al., 2010; Li et al. 2009) for which the values are within the normal range. So, these two extreme values might be the consequence of crystal packing which should accommodate four molecules within the asymetric unit.