organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 12| December 2012| Pages o3302-o3303

Di­methyl 2,6-di­methyl-4-{3-[4-(methyl­sulfan­yl)phen­yl]-1H-pyrazol-4-yl}-1,4-di­hydro­pyridine-3,5-di­carboxyl­ate monohydrate

aNational Institute of Technology-Karnataka, Department of Chemistry, Organic Chemistry Laboratory, Surathkal, Mangalore 575 025, India, bGITAM University, Department of Engineering Chemistry, GIT, Rushikonda, Visakhapatnam, A.P. 530 045, India, and cNelson Mandela Metropolitan University, Summerstrand Campus, Department of Chemistry, University Way, Summerstrand, PO Box 77000, Port Elizabeth, 6031, South Africa
*Correspondence e-mail: richard.betz@webmail.co.za

(Received 16 October 2012; accepted 2 November 2012; online 10 November 2012)

In the title compound, C21H23N3O4S·H2O, the methyl­sulfanyl group is disordered over two sets of sites with site-occupancy factors of 0.631 (11) and 0.369 (11). The dihydro­pyridine ring adopts an E4 conformation. In the crystal, classical O—H⋯N, O—H⋯O and N—H⋯O hydrogen bonds, as well as C—H⋯O and C—H⋯S contacts, connect the mol­ecules into a three-dimensional network.

Related literature

For general information about the pharmacological importance of 1,4-dihydro­pyridine-based drugs, see: Janis & Triggle (1983[Janis, R. A. & Triggle, D. J. (1983). J. Med. Chem. 26, 775-785.]); Boecker & Guengerich (1986[Boecker, R. H. & Guengerich, F. P. (1986). J. Med. Chem. 29, 1596-1603.]); Gordeev et al. (1996[Gordeev, M. F., Patel, D. V. & Gordon, E. M. (1996). J. Org. Chem. 61, 924-928.]); Buhler & Kiowski (1987[Buhler, F. R. & Kiowski, W. (1987). J. Hypertens. 5, S3-S10.]); Vo et al. (1995[Vo, D., Matowe, W. C., Ramesh, M., Iqbal, N., Wolowyk, M. W., Howlett, S. E. & Knaus, E. E. (1995). J. Med. Chem. 38, 2851-2859.]). For puckering analysis of cyclic motifs, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C21H23N3O4S·H2O

  • Mr = 431.50

  • Monoclinic, P 21 /c

  • a = 10.5542 (2) Å

  • b = 14.7260 (2) Å

  • c = 14.5377 (2) Å

  • β = 110.106 (1)°

  • V = 2121.77 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 200 K

  • 0.27 × 0.23 × 0.20 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS. Bruker Inc., Madison, Wisconsin, USA.]) Tmin = 0.950, Tmax = 0.963

  • 20236 measured reflections

  • 5267 independent reflections

  • 4311 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.111

  • S = 1.03

  • 5267 reflections

  • 312 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O8—H8A⋯N22i 0.83 (3) 2.09 (3) 2.8982 (18) 167 (2)
O8—H8B⋯O4ii 0.84 (3) 2.09 (3) 2.8989 (19) 164 (2)
N21—H21⋯O2iii 0.884 (19) 1.985 (19) 2.8505 (15) 165.9 (17)
N31—H31A⋯O8iv 0.908 (19) 1.965 (19) 2.8561 (18) 166.6 (17)
C23—H23⋯S1Av 0.95 2.79 3.637 (3) 149
Symmetry codes: (i) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iv) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In recent years, considerable attention has been paid to the synthesis of 1,4-dihydropyridines owing to their significant biological activity. 1,4-Dihydropyridine-containing drugs (1,4-DHPs), such as nifedipine, nicardipine, amlodipine, felodipine and others have been found to be useful as calcium channel blockers (Janis & Triggle, 1983; Boecker & Guengerich, 1986; Gordeev et al., 1996) and are used most frequently as cardiovascular agents for the treatment of hypertension (Buhler & Kiowski, 1987). A number of DHP derivatives are employed as potential drug candidates for the treatment of congestive heart failure (Vo et al., 1995). In continuation of our ongoing interest in pharmaceutically active compounds, the title compound was synthesized to study its crystal structure.

The compound is the hydrate of a mixed pyrazole-1,4-dihydropyridine compound. The thiomethyl group is disordered over two positions with site occupancy factors of 0.631 (11) and 0.369 (11). According to a puckering analysis (Cremer & Pople, 1975), the dihydropyridine ring adopts an E4 conformation with the flap atom on C31 (EC31). The least-squares planes defined by the carbon atoms of the phenyl group and the intracyclic atoms of the pyrazole ring enclose an angle of 48.42 (8) °. At the same time, the aforementioned planes intersect with the least-squares plane defined by the atoms of the 1,4-dihydropyridine ring at angles of 45.18 (7) ° and 86.12 (7) °, respectively.

In the crystal, classical hydrogen bonds of the O–H···N, O–H···O and N–H..O type can be observed that are supported by all nitrogen- and oxygen-bound hydrogen atoms. The bifurcated C H···O contact may influence the eclipsed ester substituent conformation with respect to this group. Furthermore, an intermolecular C–H···S contact is present falling short by more than 0.2 Å of the sum of van-der-Waals radii of the corresponding atoms. These contacts connect the entities in the crystal structure to a three-dimensional network. In terms of graph-set analysis (Etter et al., 1990; Bernstein et al., 1995), the descriptor for these contacts is S(5)S(5)DDDC11(8)C11(9) on the unary level. The C11(9) descriptor detailing the intermolecular C–H···S contacts is shown in Figure 2. Metrical parameters as well as information about the symmetry of these contacts are summarized in Table 1. The shortest intercentroid distance between two aromatic systems was measured at 5.2965 (8) Å and is apparent between the pyrazole and the phenyl moiety in two neighbouring molecules.

Related literature top

For general information about the pharmacological importance of 1,4-dihydropyridine-based drugs, see: Janis & Triggle (1983); Boecker & Guengerich (1986); Gordeev et al. (1996); Buhler & Kiowski (1987); Vo et al. (1995). For puckering analysis of cyclic motifs, see: Cremer & Pople (1975). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990); Bernstein et al. (1995).

Experimental top

3-(4-methylsulfanyl-phenyl)-1H-pyrazole-4-carbaldehyde (0.2 g, 0.9 mmol), methylacetoacetate (0.21 g, 1.8 mmol) and ammonium acetate (0.07 g, 0.9 mmol) in methanol (20 mL) were heated under reflux in an oil bath for 8 h. After completion of the reaction, the reaction mixture was concentrated and poured onto crushed ice. The precipitate was filtered and washed with water. The resulting solid was recrystallized from hot methanol, yield: 0.32 g (84%).

Refinement top

Carbon-bound H atoms were placed in calculated positions (C—H 0.95 Å for aromatic carbon atoms and C—H 1.00 Å for the methine group) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C). The H atoms of the methyl groups were allowed to rotate with a fixed angle around the C—C bond to best fit the experimental electron density (HFIX 137 in the SHELX program suite (Sheldrick, 2008), with U(H) set to 1.5Ueq(C). All nitrogen- and oxygen-bound H atoms were located on a difference Fourier map and refined freely.

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and anisotropic displacement ellipsoids (drawn at 50% probability level). For clarity, only the major component of the split model is depicted.
[Figure 2] Fig. 2. Intermolecular contacts, viewed along [-1 0 0]. For clarity, only the major component of the split model and only the C–H···S contacts necessitating a C11(9) descriptor are depicted. Symmetry operators: i 2 - x,-1/2 + y,1/2 - z; ii 2 - x,1/2 + y,1/2 - z.
Dimethyl 2,6-dimethyl-4-{3-[4-(methylsulfanyl)phenyl]-1H-pyrazol-4- yl}-1,4-dihydropyridine-3,5-dicarboxylate monohydrate top
Crystal data top
C21H23N3O4S·H2OF(000) = 912
Mr = 431.50Dx = 1.351 Mg m3
Monoclinic, P21/cMelting point = 467–469 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 10.5542 (2) ÅCell parameters from 9343 reflections
b = 14.7260 (2) Åθ = 2.5–28.2°
c = 14.5377 (2) ŵ = 0.19 mm1
β = 110.106 (1)°T = 200 K
V = 2121.77 (6) Å3Block, colourless
Z = 40.27 × 0.23 × 0.20 mm
Data collection top
Bruker APEXII CCD
diffractometer
5267 independent reflections
Radiation source: fine-focus sealed tube4311 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ϕ and ω scansθmax = 28.3°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1413
Tmin = 0.950, Tmax = 0.963k = 1419
20236 measured reflectionsl = 1319
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.056P)2 + 0.7436P]
where P = (Fo2 + 2Fc2)/3
5267 reflections(Δ/σ)max = 0.001
312 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C21H23N3O4S·H2OV = 2121.77 (6) Å3
Mr = 431.50Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.5542 (2) ŵ = 0.19 mm1
b = 14.7260 (2) ÅT = 200 K
c = 14.5377 (2) Å0.27 × 0.23 × 0.20 mm
β = 110.106 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
5267 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
4311 reflections with I > 2σ(I)
Tmin = 0.950, Tmax = 0.963Rint = 0.019
20236 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.111H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.30 e Å3
5267 reflectionsΔρmin = 0.27 e Å3
312 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.93564 (10)0.59820 (7)0.43428 (7)0.0310 (2)
O20.78574 (10)0.70794 (7)0.42595 (7)0.0347 (2)
O30.87427 (11)0.35098 (7)0.22830 (8)0.0376 (3)
O40.69528 (12)0.32275 (8)0.09516 (8)0.0422 (3)
O80.73981 (13)0.12824 (12)0.41554 (11)0.0621 (4)
H8A0.820 (3)0.1239 (17)0.4195 (18)0.073 (7)*
H8B0.743 (3)0.1385 (17)0.473 (2)0.075 (8)*
N210.88151 (11)0.65657 (8)0.07373 (8)0.0278 (2)
H210.8649 (18)0.6971 (13)0.0262 (13)0.041 (5)*
N220.99846 (12)0.60935 (8)0.10597 (8)0.0294 (3)
N310.51897 (12)0.55198 (8)0.18783 (9)0.0286 (2)
H31A0.431 (2)0.5681 (12)0.1579 (13)0.043 (5)*
C20.81451 (13)0.63803 (8)0.39268 (9)0.0231 (2)
C31.02617 (15)0.64046 (11)0.52148 (10)0.0346 (3)
H3A0.98330.64300.57150.052*
H3B1.04720.70220.50610.052*
H3C1.10960.60500.54630.052*
C40.75074 (14)0.37067 (9)0.16581 (10)0.0270 (3)
C50.9362 (2)0.27053 (11)0.20646 (14)0.0543 (5)
H5A1.02600.26270.25590.081*
H5B0.94440.27660.14160.081*
H5C0.88030.21750.20700.081*
C60.51172 (15)0.66544 (11)0.30489 (12)0.0373 (3)
H6A0.55790.67670.37490.056*
H6B0.42340.63800.29480.056*
H6C0.49950.72300.26900.056*
C70.45802 (15)0.42238 (10)0.07938 (11)0.0347 (3)
H7A0.45350.36090.10380.052*
H7B0.47960.41910.01910.052*
H7C0.37070.45260.06580.052*
C111.10148 (13)0.49866 (9)0.23494 (10)0.0267 (3)
C121.14884 (14)0.49982 (10)0.33673 (11)0.0336 (3)
H121.10770.53890.37020.040*
C131.25535 (15)0.44469 (11)0.39020 (12)0.0384 (3)
H131.28660.44660.45970.046*
C141.31631 (14)0.38692 (10)0.34276 (12)0.0360 (3)
C151.26844 (18)0.38458 (12)0.24128 (13)0.0446 (4)
H151.30830.34440.20790.054*
C161.16273 (17)0.44037 (11)0.18802 (12)0.0398 (4)
H161.13190.43860.11850.048*
C210.98781 (13)0.55804 (8)0.17910 (9)0.0238 (3)
C220.86336 (12)0.57278 (8)0.19351 (9)0.0205 (2)
C230.79950 (13)0.63695 (8)0.12396 (9)0.0239 (3)
H230.71310.66260.11350.029*
C310.79937 (12)0.52258 (8)0.25760 (8)0.0200 (2)
H310.87130.48870.30950.024*
C320.72985 (12)0.58775 (8)0.30658 (9)0.0217 (2)
C330.59493 (13)0.60214 (9)0.26803 (9)0.0253 (3)
C340.56572 (13)0.47545 (9)0.15537 (9)0.0256 (3)
C350.69821 (13)0.45444 (8)0.19347 (9)0.0228 (2)
S1A1.4500 (2)0.31690 (16)0.41722 (17)0.0465 (5)0.631 (11)
C1A1.5934 (3)0.3614 (3)0.3947 (5)0.0589 (14)0.631 (11)
H1A1.67360.32610.43150.088*0.631 (11)
H1B1.60660.42500.41560.088*0.631 (11)
H1C1.57910.35750.32450.088*0.631 (11)
S1B1.4470 (4)0.3094 (3)0.4019 (4)0.0648 (12)0.369 (11)
C1B1.5788 (7)0.3823 (5)0.4539 (10)0.069 (3)0.369 (11)
H1D1.65790.34780.49390.104*0.369 (11)
H1E1.55360.42620.49530.104*0.369 (11)
H1F1.60020.41470.40220.104*0.369 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0267 (5)0.0338 (5)0.0252 (5)0.0035 (4)0.0004 (4)0.0091 (4)
O20.0364 (5)0.0316 (5)0.0311 (5)0.0039 (4)0.0051 (4)0.0119 (4)
O30.0451 (6)0.0263 (5)0.0333 (5)0.0110 (4)0.0031 (4)0.0057 (4)
O40.0466 (6)0.0377 (6)0.0384 (6)0.0048 (5)0.0098 (5)0.0183 (5)
O80.0280 (6)0.1059 (13)0.0516 (8)0.0074 (7)0.0129 (6)0.0297 (8)
N210.0281 (6)0.0282 (6)0.0250 (5)0.0005 (4)0.0065 (4)0.0076 (5)
N220.0279 (6)0.0324 (6)0.0292 (6)0.0028 (5)0.0115 (5)0.0055 (5)
N310.0204 (5)0.0331 (6)0.0287 (6)0.0013 (4)0.0039 (4)0.0032 (5)
C20.0254 (6)0.0240 (6)0.0200 (6)0.0012 (5)0.0080 (5)0.0011 (5)
C30.0311 (7)0.0393 (8)0.0249 (7)0.0018 (6)0.0013 (5)0.0074 (6)
C40.0353 (7)0.0219 (6)0.0248 (6)0.0045 (5)0.0114 (5)0.0010 (5)
C50.0691 (12)0.0330 (8)0.0528 (10)0.0237 (8)0.0107 (9)0.0065 (8)
C60.0290 (7)0.0438 (8)0.0393 (8)0.0073 (6)0.0121 (6)0.0071 (7)
C70.0308 (7)0.0377 (7)0.0314 (7)0.0130 (6)0.0052 (6)0.0059 (6)
C110.0242 (6)0.0268 (6)0.0304 (7)0.0024 (5)0.0113 (5)0.0036 (5)
C120.0297 (7)0.0388 (8)0.0308 (7)0.0075 (6)0.0084 (6)0.0013 (6)
C130.0308 (7)0.0469 (9)0.0330 (8)0.0058 (6)0.0052 (6)0.0053 (7)
C140.0257 (7)0.0336 (7)0.0481 (9)0.0059 (6)0.0121 (6)0.0123 (6)
C150.0476 (9)0.0418 (9)0.0508 (10)0.0198 (7)0.0250 (8)0.0076 (7)
C160.0461 (9)0.0429 (8)0.0336 (8)0.0150 (7)0.0180 (7)0.0053 (7)
C210.0246 (6)0.0237 (6)0.0230 (6)0.0007 (5)0.0082 (5)0.0002 (5)
C220.0210 (5)0.0189 (5)0.0198 (5)0.0022 (4)0.0046 (4)0.0025 (4)
C230.0220 (6)0.0225 (6)0.0245 (6)0.0023 (5)0.0045 (5)0.0003 (5)
C310.0212 (5)0.0189 (5)0.0185 (5)0.0008 (4)0.0049 (4)0.0012 (4)
C320.0237 (6)0.0213 (5)0.0199 (6)0.0006 (4)0.0070 (5)0.0016 (5)
C330.0260 (6)0.0264 (6)0.0240 (6)0.0009 (5)0.0090 (5)0.0009 (5)
C340.0275 (6)0.0256 (6)0.0226 (6)0.0071 (5)0.0071 (5)0.0006 (5)
C350.0278 (6)0.0208 (6)0.0195 (5)0.0053 (5)0.0078 (5)0.0019 (5)
S1A0.0298 (7)0.0559 (11)0.0562 (8)0.0169 (7)0.0179 (5)0.0368 (7)
C1A0.0275 (14)0.051 (2)0.094 (3)0.0008 (13)0.0159 (17)0.017 (2)
S1B0.0287 (12)0.0245 (10)0.121 (3)0.0001 (8)0.0002 (13)0.0005 (14)
C1B0.033 (3)0.053 (4)0.101 (8)0.003 (2)0.003 (3)0.013 (4)
Geometric parameters (Å, º) top
O1—C21.3464 (16)C11—C161.387 (2)
O1—C31.4402 (16)C11—C121.390 (2)
O2—C21.2193 (16)C11—C211.4810 (17)
O3—C41.3397 (17)C12—C131.388 (2)
O3—C51.4403 (18)C12—H120.9500
O4—C41.2175 (16)C13—C141.385 (2)
O8—H8A0.83 (3)C13—H130.9500
O8—H8B0.84 (3)C14—C151.386 (2)
N21—C231.3417 (17)C14—S1B1.770 (4)
N21—N221.3524 (16)C14—S1A1.782 (3)
N21—H210.884 (19)C15—C161.388 (2)
N22—C211.3402 (17)C15—H150.9500
N31—C341.3770 (18)C16—H160.9500
N31—C331.3802 (17)C21—C221.4161 (17)
N31—H31A0.908 (19)C22—C231.3788 (17)
C2—C321.4644 (17)C22—C311.5177 (16)
C3—H3A0.9800C23—H230.9500
C3—H3B0.9800C31—C321.5250 (16)
C3—H3C0.9800C31—C351.5270 (16)
C4—C351.4642 (18)C31—H311.0000
C5—H5A0.9800C32—C331.3557 (18)
C5—H5B0.9800C34—C351.3511 (18)
C5—H5C0.9800S1A—C1A1.780 (4)
C6—C331.5004 (19)C1A—H1A0.9800
C6—H6A0.9800C1A—H1B0.9800
C6—H6B0.9800C1A—H1C0.9800
C6—H6C0.9800S1B—C1B1.713 (8)
C7—C341.5034 (17)C1B—H1D0.9800
C7—H7A0.9800C1B—H1E0.9800
C7—H7B0.9800C1B—H1F0.9800
C7—H7C0.9800
C2—O1—C3116.57 (10)C12—C13—H13119.8
C4—O3—C5115.99 (12)C13—C14—C15118.92 (13)
H8A—O8—H8B105 (2)C13—C14—S1B124.9 (2)
C23—N21—N22112.54 (11)C15—C14—S1B116.1 (2)
C23—N21—H21125.4 (12)C13—C14—S1A117.34 (15)
N22—N21—H21122.0 (12)C15—C14—S1A123.72 (15)
C21—N22—N21104.44 (11)C14—C15—C16120.55 (15)
C34—N31—C33123.70 (11)C14—C15—H15119.7
C34—N31—H31A118.4 (12)C16—C15—H15119.7
C33—N31—H31A117.7 (12)C11—C16—C15120.89 (15)
O2—C2—O1121.14 (11)C11—C16—H16119.6
O2—C2—C32127.16 (12)C15—C16—H16119.6
O1—C2—C32111.70 (10)N22—C21—C22111.46 (11)
O1—C3—H3A109.5N22—C21—C11119.65 (11)
O1—C3—H3B109.5C22—C21—C11128.85 (11)
H3A—C3—H3B109.5C23—C22—C21103.95 (11)
O1—C3—H3C109.5C23—C22—C31125.14 (11)
H3A—C3—H3C109.5C21—C22—C31130.33 (11)
H3B—C3—H3C109.5N21—C23—C22107.61 (11)
O4—C4—O3121.34 (13)N21—C23—H23126.2
O4—C4—C35127.04 (13)C22—C23—H23126.2
O3—C4—C35111.61 (11)C22—C31—C32111.54 (10)
O3—C5—H5A109.5C22—C31—C35108.10 (9)
O3—C5—H5B109.5C32—C31—C35110.55 (10)
H5A—C5—H5B109.5C22—C31—H31108.9
O3—C5—H5C109.5C32—C31—H31108.9
H5A—C5—H5C109.5C35—C31—H31108.9
H5B—C5—H5C109.5C33—C32—C2121.32 (11)
C33—C6—H6A109.5C33—C32—C31120.73 (11)
C33—C6—H6B109.5C2—C32—C31117.86 (10)
H6A—C6—H6B109.5C32—C33—N31119.22 (12)
C33—C6—H6C109.5C32—C33—C6127.59 (12)
H6A—C6—H6C109.5N31—C33—C6113.13 (12)
H6B—C6—H6C109.5C35—C34—N31119.29 (11)
C34—C7—H7A109.5C35—C34—C7126.64 (12)
C34—C7—H7B109.5N31—C34—C7114.07 (12)
H7A—C7—H7B109.5C34—C35—C4121.10 (11)
C34—C7—H7C109.5C34—C35—C31120.51 (11)
H7A—C7—H7C109.5C4—C35—C31118.04 (11)
H7B—C7—H7C109.5C1A—S1A—C14102.77 (15)
C16—C11—C12118.26 (13)C1B—S1B—C14100.9 (3)
C16—C11—C21121.51 (12)S1B—C1B—H1D109.5
C12—C11—C21120.23 (12)S1B—C1B—H1E109.5
C13—C12—C11120.98 (14)H1D—C1B—H1E109.5
C13—C12—H12119.5S1B—C1B—H1F109.5
C11—C12—H12119.5H1D—C1B—H1F109.5
C14—C13—C12120.39 (14)H1E—C1B—H1F109.5
C14—C13—H13119.8
C23—N21—N22—C210.26 (15)O2—C2—C32—C3316.9 (2)
C3—O1—C2—O22.32 (19)O1—C2—C32—C33163.70 (12)
C3—O1—C2—C32178.28 (11)O2—C2—C32—C31159.42 (13)
C5—O3—C4—O40.1 (2)O1—C2—C32—C3119.94 (16)
C5—O3—C4—C35178.85 (14)C22—C31—C32—C3397.79 (13)
C16—C11—C12—C130.5 (2)C35—C31—C32—C3322.52 (16)
C21—C11—C12—C13179.93 (13)C22—C31—C32—C278.60 (13)
C11—C12—C13—C140.3 (2)C35—C31—C32—C2161.10 (10)
C12—C13—C14—C150.5 (2)C2—C32—C33—N31178.89 (11)
C12—C13—C14—S1B176.74 (19)C31—C32—C33—N314.85 (19)
C12—C13—C14—S1A178.72 (14)C2—C32—C33—C61.8 (2)
C13—C14—C15—C161.1 (3)C31—C32—C33—C6178.10 (13)
S1B—C14—C15—C16177.66 (19)C34—N31—C33—C3213.4 (2)
S1A—C14—C15—C16179.19 (15)C34—N31—C33—C6164.05 (13)
C12—C11—C16—C150.1 (2)C33—N31—C34—C3510.2 (2)
C21—C11—C16—C15179.48 (14)C33—N31—C34—C7168.98 (12)
C14—C15—C16—C110.9 (3)N31—C34—C35—C4175.98 (11)
N21—N22—C21—C220.05 (15)C7—C34—C35—C43.1 (2)
N21—N22—C21—C11177.88 (11)N31—C34—C35—C3110.96 (18)
C16—C11—C21—N2249.61 (19)C7—C34—C35—C31169.94 (12)
C12—C11—C21—N22130.85 (14)O4—C4—C35—C3416.9 (2)
C16—C11—C21—C22132.99 (15)O3—C4—C35—C34164.25 (12)
C12—C11—C21—C2246.5 (2)O4—C4—C35—C31156.34 (14)
N22—C21—C22—C230.16 (14)O3—C4—C35—C3122.52 (16)
C11—C21—C22—C23177.41 (13)C22—C31—C35—C3496.68 (13)
N22—C21—C22—C31171.27 (12)C32—C31—C35—C3425.66 (16)
C11—C21—C22—C3111.2 (2)C22—C31—C35—C476.59 (13)
N22—N21—C23—C220.37 (15)C32—C31—C35—C4161.07 (11)
C21—C22—C23—N210.30 (13)C13—C14—S1A—C1A112.7 (3)
C31—C22—C23—N21171.71 (11)C15—C14—S1A—C1A69.2 (4)
C23—C22—C31—C3249.64 (15)S1B—C14—S1A—C1A79.4 (13)
C21—C22—C31—C32140.55 (13)C13—C14—S1B—C1B70.6 (7)
C23—C22—C31—C3572.09 (14)C15—C14—S1B—C1B113.1 (7)
C21—C22—C31—C3597.72 (14)S1A—C14—S1B—C1B57.5 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H8A···N22i0.83 (3)2.09 (3)2.8982 (18)167 (2)
O8—H8B···O4ii0.84 (3)2.09 (3)2.8989 (19)164 (2)
N21—H21···O2iii0.884 (19)1.985 (19)2.8505 (15)165.9 (17)
N31—H31A···O8iv0.908 (19)1.965 (19)2.8561 (18)166.6 (17)
C23—H23···S1Av0.952.793.637 (3)149
C31—H31···O11.002.352.7141 (14)101
C31—H31···O31.002.352.7246 (15)101
Symmetry codes: (i) x+2, y1/2, z+1/2; (ii) x, y+1/2, z+1/2; (iii) x, y+3/2, z1/2; (iv) x+1, y+1/2, z+1/2; (v) x+2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC21H23N3O4S·H2O
Mr431.50
Crystal system, space groupMonoclinic, P21/c
Temperature (K)200
a, b, c (Å)10.5542 (2), 14.7260 (2), 14.5377 (2)
β (°) 110.106 (1)
V3)2121.77 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.19
Crystal size (mm)0.27 × 0.23 × 0.20
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.950, 0.963
No. of measured, independent and
observed [I > 2σ(I)] reflections
20236, 5267, 4311
Rint0.019
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.111, 1.03
No. of reflections5267
No. of parameters312
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.30, 0.27

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2010), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H8A···N22i0.83 (3)2.09 (3)2.8982 (18)167 (2)
O8—H8B···O4ii0.84 (3)2.09 (3)2.8989 (19)164 (2)
N21—H21···O2iii0.884 (19)1.985 (19)2.8505 (15)165.9 (17)
N31—H31A···O8iv0.908 (19)1.965 (19)2.8561 (18)166.6 (17)
C23—H23···S1Av0.952.793.637 (3)148.7
C31—H31···O11.002.352.7141 (14)100.6
C31—H31···O31.002.352.7246 (15)100.9
Symmetry codes: (i) x+2, y1/2, z+1/2; (ii) x, y+1/2, z+1/2; (iii) x, y+3/2, z1/2; (iv) x+1, y+1/2, z+1/2; (v) x+2, y+1/2, z+1/2.
 

Acknowledgements

AMI thanks the Board for Research in Nuclear Sciences, Government of India, for a Young Scientist award.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBoecker, R. H. & Guengerich, F. P. (1986). J. Med. Chem. 29, 1596–1603.  CrossRef CAS PubMed Google Scholar
First citationBruker (2008). SADABS. Bruker Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBuhler, F. R. & Kiowski, W. (1987). J. Hypertens. 5, S3–S10.  CrossRef CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGordeev, M. F., Patel, D. V. & Gordon, E. M. (1996). J. Org. Chem. 61, 924–928.  CrossRef CAS Web of Science Google Scholar
First citationJanis, R. A. & Triggle, D. J. (1983). J. Med. Chem. 26, 775–785.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVo, D., Matowe, W. C., Ramesh, M., Iqbal, N., Wolowyk, M. W., Howlett, S. E. & Knaus, E. E. (1995). J. Med. Chem. 38, 2851–2859.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 12| December 2012| Pages o3302-o3303
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds