organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-[(E)-2-Hy­dr­oxy-5-meth­­oxy­benzyl­­idene]-2-meth­­oxy­benzohydrazide

aAtta-ur-Rahman Institute for Natural Product Discovery, Universiti Teknologi MARA (UiTM), Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor D. E. Malaysia, bFaculty of Applied Science, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Malaysia, cFaculty of Pharmacy, Universiti Teknologi MARA, Puncak Alam, 42300, Selangor, Malaysia, and dH. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
*Correspondence e-mail: dr.sammer.yousuf@gmail.com

(Received 5 October 2012; accepted 10 October 2012; online 3 November 2012)

The mol­ecule of the title compound, C16H16N2O4, adopts an E conformation about the azomethine C=N double bond. The dihedral angle formed by the benzene rings is 18.88 (9)°. The mol­ecular conformation is stabilized by an intra­molecular O—H⋯N hydrogen bond, which forms an S(6) ring. In the crystal, the mol­ecules are linked into chains parallel to [001] by N—H⋯O hydrogen bonds. The chains are further connected into a three-dimensional network by ππ stacking inter­actions with centroid–centroid distances of 3.6538 (10) and 3.8995 (11) Å.

Related literature

For the applications and biological activity of Schiff bases, see: Panneerselvam et al. (2009[Panneerselvam, P., Rather, B. A., Reddy, D. R. S. & Kumar, R. N. (2009). Eur. J. Med. Chem. 44, 2328-2333.]); Khan et al. (2009[Khan, K. M., Ambreen, N., Hussain, S., Perveen, S. & Choudhary, M. I. (2009). Bioorg. Med. Chem. 17, 2983-2988.]); Jarahpour et al. (2007[Jarahpour, A., Khalili, D., De Clercq, E., Salmi, C. & Brunel, J. M. (2007). Molecules, 12, 1720-1730.]); Pandeya et al. (1999[Pandeya, S. N., Sriram, D., Nath, G. & DeClercq, E. (1999). Eur. J. Pharm. Sci. 9, 25-31.]). For related structures, see: Taha et al. (2012a[Taha, M., Baharudin, M. S., Ismail, N. H., Shah, S. A. A. & Yousuf, S. (2012a). Acta Cryst. E68, o3256.],b[Taha, M., Naz, H., Rahman, A. A., Ismail, N. H. & Sammer, Y. (2012b). Acta Cryst. E68, o2780.]); Lu et al. (2008[Lu, J.-F., Min, S.-T., Ji, X.-H. & Dang, Z.-H. (2008). Acta Cryst. E64, o1693.]).

[Scheme 1]

Experimental

Crystal data
  • C16H16N2O4

  • Mr = 300.31

  • Monoclinic, P 21 /c

  • a = 14.5775 (13) Å

  • b = 11.0798 (11) Å

  • c = 9.5893 (9) Å

  • β = 99.872 (2)°

  • V = 1525.9 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 273 K

  • 0.59 × 0.45 × 0.39 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.946, Tmax = 0.964

  • 8886 measured reflections

  • 2767 independent reflections

  • 2210 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.124

  • S = 1.04

  • 2767 reflections

  • 208 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯N1 0.83 (2) 1.87 (2) 2.605 (2) 146.0 (19)
N2—H2A⋯O3i 0.835 (17) 2.051 (17) 2.8258 (17) 154.2 (15)
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Applications of Schiff bases are reported in different fields of chemistry with a broad range of biological activities (Panneerselvam et al., 2009, Khan et al., 2009, Jarahpour et al., 2007, Pandeya et al., 1999). The title compound is a Schiff base synthesize as a part of our ongoing resaerch to study different biological activities of this medicinally important class of organic compounds.

The structure of title compound (Fig. 1) is similar to that of the previously published compound N'-(2-hydroxybenzylidene)-2-methoxybenzohydrazide monohydrate (Lu et al., 2008), with the difference that the 2-hydroxy benzene ring is replaced by a 2-hydroxy-5-methoxy phenyl ring (C1–C6). The phenyl rings (C1–C6 and C9–C14) form an angle of 18.88 (9)°. Bond lengths and angles are similar to those observed in structurally related benzohydrazide derivatives (Taha et al., 2012; Lu et al., 2008). The E configuration of the azomethine olefinic bond is stabilized by an intramolecular O1—H1A···N1 hydrogen bond (Table 1) forming a ring of S(6) graph set motif. The crystal structure is stabilized by an intermolecular N2—H2A···O3 interaction forming chains running parallel to the [001] direction (Fig. 2). The chains are further linked into a three-dimensional network by π···π stacking interactions with centroid–centroid distances of 3.6538 (10) and 3.8995 (11) Å.

Related literature top

For the applications and biological activity of Schiff bases, see: Panneerselvam et al. (2009); Khan et al. (2009); Jarahpour et al. (2007); Pandeya et al. (1999). For related structures, see: Taha et al. (2012a,b); Lu et al. (2008).

Experimental top

The title compound was synthesized by refluxing a mixture of 2-methoxybenzohydrazide (0.332 g, 2 mmol) and 2-hydroxy-5-methoxybenzaldehyde (0.304 g, 2 mmol) in methanol along with a catalytical amount of acetic acid for 3 hrs. The progress of reaction was monitored by TLC. After completion of reaction, the solvent was evaporated by vacuum to afford the crude product which was recrystallized by dissolving in methanol at room temperature to obtained needle-like crystals (0.504 g, 84% yield). All chemicals were purchased by Sigma Aldrich Germany.

Refinement top

H atoms on methyl, phenyl and methine carbon atoms were positioned geometrically with C—H = 0.96 Å (CH3) and 0.93 Å (CH), and constrained to ride on their parent atoms with Uiso(H) = 1.5Ueq(CH3) or 1.2Ueq(CH). The H atoms on the nitrogen (N–H= 0.835 (17) Å) and oxygen (O–H= 0.84 (2) Å) atoms were located in a difference Fourier map and refined isotropically. A rotating group model was applied to the methyl groups.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level. The intramolecular hydrogen bond is shown as a dashed line.
[Figure 2] Fig. 2. The crystal packing of the title compound. Only hydrogen atoms involved in hydrogen bonding (dashed lines) are shown.
N'-[(E)-2-Hydroxy-5-methoxybenzylidene]-2-methoxybenzohydrazide top
Crystal data top
C16H16N2O4F(000) = 632
Mr = 300.31Dx = 1.307 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3190 reflections
a = 14.5775 (13) Åθ = 2.3–25.0°
b = 11.0798 (11) ŵ = 0.10 mm1
c = 9.5893 (9) ÅT = 273 K
β = 99.872 (2)°Block, colourless
V = 1525.9 (2) Å30.59 × 0.45 × 0.39 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2767 independent reflections
Radiation source: fine-focus sealed tube2210 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
ω scanθmax = 25.5°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1716
Tmin = 0.946, Tmax = 0.964k = 1313
8886 measured reflectionsl = 911
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0648P)2 + 0.1784P]
where P = (Fo2 + 2Fc2)/3
2767 reflections(Δ/σ)max < 0.001
208 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
C16H16N2O4V = 1525.9 (2) Å3
Mr = 300.31Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.5775 (13) ŵ = 0.10 mm1
b = 11.0798 (11) ÅT = 273 K
c = 9.5893 (9) Å0.59 × 0.45 × 0.39 mm
β = 99.872 (2)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2767 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2210 reflections with I > 2σ(I)
Tmin = 0.946, Tmax = 0.964Rint = 0.016
8886 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.124H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.15 e Å3
2767 reflectionsΔρmin = 0.15 e Å3
208 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.41411 (11)0.06306 (13)0.11043 (13)0.0918 (4)
O20.68838 (9)0.10138 (14)0.58074 (17)0.1009 (4)
O30.17476 (9)0.24072 (14)0.01591 (12)0.0957 (5)
O40.16599 (8)0.47356 (10)0.32496 (12)0.0767 (3)
N10.31001 (9)0.20202 (11)0.23724 (13)0.0618 (3)
N20.22889 (9)0.26092 (12)0.24670 (14)0.0634 (4)
C10.47885 (12)0.07530 (15)0.22962 (18)0.0714 (5)
C20.56411 (15)0.01986 (17)0.2354 (2)0.0881 (6)
H2B0.57580.02500.15840.106*
C30.63154 (14)0.03008 (17)0.3527 (2)0.0884 (6)
H3A0.68850.00830.35480.106*
C40.61614 (11)0.09696 (16)0.4685 (2)0.0752 (5)
C50.53108 (11)0.15170 (14)0.46503 (19)0.0692 (4)
H5A0.51980.19590.54280.083*
C60.46152 (10)0.14167 (13)0.34613 (16)0.0612 (4)
C70.37267 (11)0.19998 (13)0.34759 (17)0.0629 (4)
H7A0.36120.23640.43030.076*
C80.16545 (10)0.28010 (13)0.13077 (15)0.0585 (4)
C90.08121 (10)0.34987 (13)0.15057 (14)0.0578 (4)
C100.08163 (11)0.44261 (14)0.24890 (16)0.0631 (4)
C110.00098 (14)0.50192 (17)0.2600 (2)0.0822 (5)
H11A0.00120.56260.32700.099*
C120.08169 (14)0.47113 (19)0.1728 (3)0.0922 (6)
H12A0.13670.51060.18180.111*
C130.08304 (12)0.3835 (2)0.0728 (2)0.0883 (6)
H13A0.13830.36410.01310.106*
C140.00128 (12)0.32362 (16)0.06098 (18)0.0743 (5)
H14A0.00190.26480.00830.089*
C150.17013 (18)0.5590 (2)0.4353 (3)0.1167 (8)
H15A0.23390.57160.47830.175*
H15B0.13570.52950.50500.175*
H15C0.14370.63390.39740.175*
C160.67844 (15)0.1759 (2)0.6962 (3)0.1081 (7)
H16A0.73590.17750.76220.162*
H16B0.62990.14480.74210.162*
H16C0.66280.25630.66290.162*
H2A0.2202 (11)0.2826 (14)0.3268 (18)0.066 (5)*
H1A0.3662 (16)0.101 (2)0.120 (2)0.106 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.1031 (10)0.1066 (10)0.0695 (8)0.0320 (8)0.0257 (7)0.0085 (7)
O20.0627 (8)0.1096 (10)0.1274 (11)0.0180 (7)0.0077 (8)0.0032 (9)
O30.1036 (10)0.1328 (11)0.0532 (7)0.0220 (8)0.0202 (6)0.0145 (7)
O40.0744 (8)0.0750 (7)0.0801 (7)0.0077 (6)0.0118 (6)0.0138 (6)
N10.0644 (8)0.0624 (7)0.0623 (8)0.0105 (6)0.0214 (7)0.0013 (6)
N20.0642 (8)0.0780 (8)0.0509 (7)0.0163 (6)0.0180 (6)0.0018 (6)
C10.0783 (11)0.0701 (10)0.0719 (10)0.0150 (8)0.0298 (9)0.0068 (8)
C20.0933 (14)0.0870 (12)0.0924 (13)0.0288 (11)0.0400 (12)0.0002 (10)
C30.0740 (12)0.0836 (12)0.1166 (16)0.0274 (10)0.0418 (12)0.0122 (11)
C40.0571 (10)0.0719 (10)0.0989 (12)0.0093 (8)0.0204 (9)0.0092 (9)
C50.0634 (10)0.0658 (9)0.0826 (11)0.0059 (7)0.0241 (9)0.0007 (8)
C60.0608 (9)0.0569 (8)0.0708 (9)0.0071 (7)0.0247 (8)0.0039 (7)
C70.0648 (10)0.0622 (8)0.0654 (9)0.0073 (7)0.0211 (8)0.0030 (7)
C80.0666 (9)0.0629 (8)0.0488 (8)0.0017 (7)0.0180 (7)0.0036 (6)
C90.0581 (9)0.0632 (8)0.0539 (8)0.0000 (7)0.0142 (7)0.0152 (6)
C100.0643 (10)0.0622 (8)0.0654 (9)0.0052 (7)0.0183 (8)0.0104 (7)
C110.0774 (12)0.0749 (11)0.0991 (13)0.0142 (9)0.0293 (10)0.0068 (9)
C120.0663 (12)0.0863 (13)0.1271 (17)0.0149 (10)0.0258 (12)0.0237 (12)
C130.0587 (11)0.0930 (13)0.1090 (15)0.0021 (9)0.0026 (10)0.0306 (12)
C140.0737 (11)0.0744 (10)0.0733 (10)0.0056 (8)0.0082 (9)0.0145 (8)
C150.1156 (18)0.1105 (17)0.1212 (18)0.0065 (13)0.0127 (14)0.0508 (14)
C160.0801 (14)0.1211 (18)0.1162 (17)0.0058 (12)0.0030 (12)0.0012 (15)
Geometric parameters (Å, º) top
O1—C11.359 (2)C6—C71.450 (2)
O1—H1A0.84 (2)C7—H7A0.9300
O2—C41.372 (2)C8—C91.491 (2)
O2—C161.408 (3)C9—C141.384 (2)
O3—C81.2138 (17)C9—C101.394 (2)
O4—C101.362 (2)C10—C111.392 (2)
O4—C151.413 (2)C11—C121.365 (3)
N1—C71.2740 (18)C11—H11A0.9300
N1—N21.3671 (17)C12—C131.362 (3)
N2—C81.3356 (19)C12—H12A0.9300
N2—H2A0.835 (17)C13—C141.386 (3)
C1—C21.379 (2)C13—H13A0.9300
C1—C61.396 (2)C14—H14A0.9300
C2—C31.366 (3)C15—H15A0.9600
C2—H2B0.9300C15—H15B0.9600
C3—C41.385 (3)C15—H15C0.9600
C3—H3A0.9300C16—H16A0.9600
C4—C51.376 (2)C16—H16B0.9600
C5—C61.394 (2)C16—H16C0.9600
C5—H5A0.9300
C1—O1—H1A109.1 (15)C14—C9—C10118.52 (15)
C4—O2—C16117.98 (14)C14—C9—C8117.34 (14)
C10—O4—C15119.23 (15)C10—C9—C8124.08 (14)
C7—N1—N2117.29 (12)O4—C10—C11123.63 (16)
C8—N2—N1120.27 (12)O4—C10—C9116.54 (13)
C8—N2—H2A121.8 (11)C11—C10—C9119.75 (16)
N1—N2—H2A117.9 (11)C12—C11—C10120.09 (19)
O1—C1—C2118.72 (16)C12—C11—H11A120.0
O1—C1—C6122.06 (14)C10—C11—H11A120.0
C2—C1—C6119.22 (17)C13—C12—C11121.09 (18)
C3—C2—C1120.82 (17)C13—C12—H12A119.5
C3—C2—H2B119.6C11—C12—H12A119.5
C1—C2—H2B119.6C12—C13—C14119.35 (18)
C2—C3—C4120.80 (16)C12—C13—H13A120.3
C2—C3—H3A119.6C14—C13—H13A120.3
C4—C3—H3A119.6C9—C14—C13121.11 (18)
O2—C4—C5124.81 (17)C9—C14—H14A119.4
O2—C4—C3116.11 (16)C13—C14—H14A119.4
C5—C4—C3119.07 (18)O4—C15—H15A109.5
C4—C5—C6120.71 (16)O4—C15—H15B109.5
C4—C5—H5A119.6H15A—C15—H15B109.5
C6—C5—H5A119.6O4—C15—H15C109.5
C5—C6—C1119.36 (14)H15A—C15—H15C109.5
C5—C6—C7118.83 (14)H15B—C15—H15C109.5
C1—C6—C7121.80 (15)O2—C16—H16A109.5
N1—C7—C6120.96 (14)O2—C16—H16B109.5
N1—C7—H7A119.5H16A—C16—H16B109.5
C6—C7—H7A119.5O2—C16—H16C109.5
O3—C8—N2121.93 (14)H16A—C16—H16C109.5
O3—C8—C9121.66 (14)H16B—C16—H16C109.5
N2—C8—C9116.39 (12)
C7—N1—N2—C8171.24 (14)N1—N2—C8—O34.2 (2)
O1—C1—C2—C3179.69 (17)N1—N2—C8—C9177.33 (12)
C6—C1—C2—C30.6 (3)O3—C8—C9—C1429.3 (2)
C1—C2—C3—C40.4 (3)N2—C8—C9—C14149.17 (14)
C16—O2—C4—C56.0 (3)O3—C8—C9—C10147.80 (16)
C16—O2—C4—C3175.16 (18)N2—C8—C9—C1033.75 (19)
C2—C3—C4—O2180.00 (17)C15—O4—C10—C119.0 (2)
C2—C3—C4—C51.1 (3)C15—O4—C10—C9174.19 (17)
O2—C4—C5—C6179.68 (15)C14—C9—C10—O4173.55 (13)
C3—C4—C5—C60.9 (3)C8—C9—C10—O43.5 (2)
C4—C5—C6—C10.0 (2)C14—C9—C10—C113.4 (2)
C4—C5—C6—C7179.48 (14)C8—C9—C10—C11179.56 (14)
O1—C1—C6—C5179.50 (15)O4—C10—C11—C12175.27 (16)
C2—C1—C6—C50.8 (2)C9—C10—C11—C121.4 (3)
O1—C1—C6—C71.0 (2)C10—C11—C12—C130.8 (3)
C2—C1—C6—C7178.75 (15)C11—C12—C13—C140.9 (3)
N2—N1—C7—C6178.73 (13)C10—C9—C14—C133.3 (2)
C5—C6—C7—N1173.93 (14)C8—C9—C14—C13179.48 (14)
C1—C6—C7—N16.6 (2)C12—C13—C14—C91.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N10.83 (2)1.87 (2)2.605 (2)146.0 (19)
N2—H2A···O3i0.835 (17)2.051 (17)2.8258 (17)154.2 (15)
Symmetry code: (i) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC16H16N2O4
Mr300.31
Crystal system, space groupMonoclinic, P21/c
Temperature (K)273
a, b, c (Å)14.5775 (13), 11.0798 (11), 9.5893 (9)
β (°) 99.872 (2)
V3)1525.9 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.59 × 0.45 × 0.39
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.946, 0.964
No. of measured, independent and
observed [I > 2σ(I)] reflections
8886, 2767, 2210
Rint0.016
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.124, 1.04
No. of reflections2767
No. of parameters208
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.15, 0.15

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N10.83 (2)1.87 (2)2.605 (2)146.0 (19)
N2—H2A···O3i0.835 (17)2.051 (17)2.8258 (17)154.2 (15)
Symmetry code: (i) x, y+1/2, z+1/2.
 

References

First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJarahpour, A., Khalili, D., De Clercq, E., Salmi, C. & Brunel, J. M. (2007). Molecules, 12, 1720–1730.  Web of Science PubMed Google Scholar
First citationKhan, K. M., Ambreen, N., Hussain, S., Perveen, S. & Choudhary, M. I. (2009). Bioorg. Med. Chem. 17, 2983–2988.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLu, J.-F., Min, S.-T., Ji, X.-H. & Dang, Z.-H. (2008). Acta Cryst. E64, o1693.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationPandeya, S. N., Sriram, D., Nath, G. & DeClercq, E. (1999). Eur. J. Pharm. Sci. 9, 25–31.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPanneerselvam, P., Rather, B. A., Reddy, D. R. S. & Kumar, R. N. (2009). Eur. J. Med. Chem. 44, 2328–2333.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTaha, M., Baharudin, M. S., Ismail, N. H., Shah, S. A. A. & Yousuf, S. (2012a). Acta Cryst. E68, o3256.  CSD CrossRef IUCr Journals Google Scholar
First citationTaha, M., Naz, H., Rahman, A. A., Ismail, N. H. & Sammer, Y. (2012b). Acta Cryst. E68, o2780.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds