organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Benzoyl-2-(1H-indol-3-yl)-4-[4-(propan-2-yl)phen­yl]-4,5-di­hydro­furan-3-carbo­nitrile

aDepartment of Physics, Thiagarajar College, Madurai 625 009, India, and bSchool of Chemistry, Madurai Kamaraj University, Madurai 625 021, India
*Correspondence e-mail: mailtorvkk@yahoo.co.in

(Received 8 November 2012; accepted 13 November 2012; online 24 November 2012)

In the title compound, C29H24N2O2, the hydrofuran ring is twisted with puckering parameters Q = 0.1553 (16) Å and φ = 305.0 (6)°. In the crystal, the graph-set motifs of the inter­action pattern are an R22(16) motif involving dimers through N—H⋯N hydrogen bonds across centres of inversion and a C(6) motif through C—H⋯O hydrogen-bond between glide-related mol­ecules. Together, these generate [101] ladder-like chains.

Related literature

For related structures, see: Suresh et al. (2012a[Suresh, J., Vishnupriya, R., Gunasekaran, P., Perumal, S. & Lakshman, P. L. N. (2012a). Acta Cryst. E68, o1576.],b[Suresh, J., Vishnupriya, R., Gunasekaran, P., Perumal, S. & Lakshman, P. L. N. (2012b). Acta Cryst. E68, o1124.],c[Suresh, J., Vishnupriya, R., Gunasekaran, P., Perumal, S. & Lakshman, P. L. N. (2012c). Acta Cryst. E68, o2397.]). For discussion on aromatic inter­actions, see: Bloom & Wheeler (2011[Bloom, J. W. G. & Wheeler, S. E. (2011). Angew. Chem. Int. Ed. 50, 7847-7849.]); Martinez & Iverson (2012[Martinez, C. R. & Iverson, B. L. (2012). Chem. Sci. 3, 2191-2201.]). For graph-set motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For puckering analysis, see: Cremer & Pople (1975[Cremer, D. & &Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C29H24N2O2

  • Mr = 432.50

  • Monoclinic, P 21 /n

  • a = 17.1073 (4) Å

  • b = 8.1230 (2) Å

  • c = 17.6160 (4) Å

  • β = 110.325 (1)°

  • V = 2295.55 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 298 K

  • 0.30 × 0.24 × 0.18 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin,USA.]) Tmin = 0.978, Tmax = 0.986

  • 21711 measured reflections

  • 4455 independent reflections

  • 2979 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.115

  • S = 1.03

  • 4455 reflections

  • 313 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯N1i 0.91 (2) 2.09 (2) 2.973 (2) 165.2 (17)
C56—H56⋯O2ii 0.978 (15) 2.411 (16) 3.371 (2) 166.9 (13)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin,USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin,USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the molecule of the title compound (Fig. 1), the puckering (Cremer & Pople, 1975) of the furan ring is twisted (4T5) about the C4—C5 bond with Q = 0.1553 (16) Å and ϕ = 305.0 (6)°. The geometry of the N—H···N and C—H···O interactions that characterize the crystal packing (Table 1) are similar to its 4-phenyl analogue (Suresh et al., 2012a). The graph-set motifs (Bernstein et al., 1995) that characterize the intermolecular interaction pattern are a R22(16) involving dimers through N—H···N hydrogen bonds across centres of inversion and a C(6) motif through C—H···O hydrogen-bond between glide-related molecules (Fig. 2). The crystal structure may be visualized as zero-dimensional N—H···N mediated centrosymmetric dimeric units linked via C—H···O linkages to form a supramolecular ladder parallel to the b axis that extends along the [101] direction (Fig. 3). The non-covalent crystal packing interactions are closely related to that observed in the 4-phenyl analogue and distinctly differs from those of the 4-methylphenyl (Suresh et al., 2012b) and 4-bromophenyl (Suresh et al., 2012c) analogues. The intramolecular C—H···O hydrogen bond generates a S(6) motif and its geometry is similar to those observed in all of the above analogues. No significant weak non-covalent crystal packing interactions involving centroids of planar rings are observed. Though it has become an acceptable norm in describing weak non-covalent interactions in terms of C—H···π and π···π interactions, some recent views (Martinez & Iverson, 2012; Bloom & Wheeler, 2011) on these interactions calls for a careful analysis while describing them in crystal structures.

The crystal structure of the title compound together with those of its analogues demonstrate the effect of substituents in drastically altering the interaction patterns while retaining the crystal system and lattice type.

Related literature top

For related structures, see: Suresh et al. (2012a,b,c). For discussion on aromatic interactions, see: Bloom & Wheeler (2011); Martinez & Iverson (2012). For graph-set motifs, see: Bernstein et al. (1995). For puckering analysis, see: Cremer & Pople (1975).

Experimental top

To a stirred mixture of 2-(1H-indole-3-carbonyl)-3-(4-isopropylphenyl)acrylonitrile (1.0 eq) and phenacylpyridinium bromide (1.0 eq) in water (10 ml) was added drop wise triethylamine (0.25 eq) at room temperature. The resulting clear solution, that slowly became turbid, was stirred at room temperature for 1.5 h. Then the separated free flowing solid was filtered and washed with methanol (3 ml) to afford the compound as pale yellow solid. Yield 87%; m.p. 508 K.

Refinement top

All hydrogen atoms except those participating in the hydrogen-bonding were included into the model at geometrically calculated positions (C—H target distance 0.96 Å for methyl hydrogen atoms, 0.93 Å for all others) and refined using a riding model. The torsion angle of the methyl groups involving C7 and C8 were allowed to refine. The Uiso values of all hydrogen atoms were constrained to 1.2 times Ueq (1.5 times for methyl H atoms) of the respective atom to which the hydrogen atom binds. The positions of the hydrogen atoms bound to N2, C33 and C56 were allowed to refine isotropically. A reflection (1 0 1) partially obstructed by the primary beam stop was omitted from the refinement.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms have been omitted for clarity.
[Figure 2] Fig. 2. The R22(16) N—H···N mediated centrosymmetric dimeric units linked via C(6) C—H···O linkages to form a supramolecular ladder. Non-participating groups and H-atoms are omitted for clarity.
[Figure 3] Fig. 3. Perspective view of supramolecular ladders parallel to the b axis extending along the [101] direction. Non-participating groups and H-atoms are omitted for clarity.
5-Benzoyl-2-(1H-indol-3-yl)-4-[4-(propan-2-yl)phenyl]-4,5-dihydrofuran- 3-carbonitrile top
Crystal data top
C29H24N2O2F(000) = 912
Mr = 432.50Dx = 1.251 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4455 reflections
a = 17.1073 (4) Åθ = 2.5–25.9°
b = 8.1230 (2) ŵ = 0.08 mm1
c = 17.6160 (4) ÅT = 298 K
β = 110.325 (1)°Block, yellow
V = 2295.55 (9) Å30.30 × 0.24 × 0.18 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD
diffractometer
4455 independent reflections
Radiation source: fine-focus sealed tube2979 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ω and ϕ scansθmax = 25.9°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 2120
Tmin = 0.978, Tmax = 0.986k = 99
21711 measured reflectionsl = 2121
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.115 w = 1/[σ2(Fo2) + (0.0478P)2 + 0.3844P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
4455 reflectionsΔρmax = 0.14 e Å3
313 parametersΔρmin = 0.15 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0037 (8)
Crystal data top
C29H24N2O2V = 2295.55 (9) Å3
Mr = 432.50Z = 4
Monoclinic, P21/nMo Kα radiation
a = 17.1073 (4) ŵ = 0.08 mm1
b = 8.1230 (2) ÅT = 298 K
c = 17.6160 (4) Å0.30 × 0.24 × 0.18 mm
β = 110.325 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
4455 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2979 reflections with I > 2σ(I)
Tmin = 0.978, Tmax = 0.986Rint = 0.031
21711 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.14 e Å3
4455 reflectionsΔρmin = 0.15 e Å3
313 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.27185 (7)0.17860 (13)0.26234 (6)0.0553 (3)
O20.14529 (8)0.34499 (18)0.16547 (7)0.0792 (4)
N10.49191 (10)0.5602 (2)0.31131 (9)0.0752 (5)
N20.40406 (11)0.3263 (2)0.52408 (9)0.0694 (5)
H20.4434 (13)0.352 (3)0.5722 (13)0.088 (6)*
C380.41572 (11)0.3360 (2)0.45193 (10)0.0611 (5)
H380.46520.36690.44510.073*
C370.32392 (12)0.2788 (2)0.51144 (10)0.0623 (5)
C360.28453 (16)0.2536 (3)0.56731 (12)0.0808 (6)
H360.31240.26900.62240.097*
C350.20349 (17)0.2056 (3)0.53802 (15)0.0907 (7)
H350.17560.18620.57400.109*
C340.16088 (14)0.1847 (3)0.45517 (14)0.0828 (6)
H340.10510.15370.43710.099*
C330.20012 (12)0.2091 (2)0.39978 (12)0.0640 (5)
H330.1721 (10)0.194 (2)0.3426 (10)0.063 (5)*
C320.28362 (11)0.25594 (19)0.42818 (9)0.0527 (4)
C310.34395 (10)0.29363 (19)0.39077 (9)0.0510 (4)
C30.33352 (9)0.28117 (19)0.30620 (9)0.0481 (4)
C20.37493 (10)0.34966 (19)0.26182 (9)0.0486 (4)
C10.43942 (11)0.4654 (2)0.28977 (9)0.0544 (4)
C50.34552 (9)0.27757 (19)0.17735 (9)0.0477 (4)
H50.33020.36630.13710.057*
C40.26595 (9)0.18830 (19)0.17900 (8)0.0483 (4)
H40.26410.07690.15710.058*
C410.18682 (10)0.2796 (2)0.13117 (9)0.0505 (4)
C420.16376 (9)0.28783 (19)0.04210 (9)0.0472 (4)
C430.20139 (11)0.1912 (2)0.00015 (10)0.0613 (5)
H430.24400.11940.02810.074*
C440.17592 (13)0.2007 (3)0.08313 (11)0.0751 (6)
H440.20120.13480.11110.090*
C450.11360 (13)0.3069 (2)0.12478 (11)0.0725 (5)
H450.09660.31290.18090.087*
C460.07638 (12)0.4040 (3)0.08392 (11)0.0741 (5)
H460.03430.47670.11210.089*
C470.10122 (11)0.3943 (2)0.00096 (10)0.0633 (5)
H470.07550.46040.02650.076*
C510.41055 (9)0.16822 (19)0.16311 (9)0.0486 (4)
C520.44866 (12)0.2118 (2)0.10860 (11)0.0718 (5)
H520.43130.30590.07720.086*
C530.51201 (13)0.1176 (3)0.10024 (12)0.0803 (6)
H530.53650.14980.06300.096*
C540.54025 (11)0.0221 (2)0.14503 (10)0.0631 (5)
C550.49997 (10)0.0680 (2)0.19778 (10)0.0579 (4)
H550.51630.16400.22800.070*
C560.43633 (10)0.0251 (2)0.20650 (9)0.0518 (4)
H560.4086 (9)0.0097 (19)0.2440 (9)0.059 (4)*
C60.61471 (13)0.1150 (3)0.14021 (12)0.0827 (6)
H60.62450.07650.09160.099*
C70.69188 (13)0.0692 (4)0.21299 (13)0.1129 (9)
H7A0.68120.09010.26210.169*
H7B0.70430.04530.21010.169*
H7C0.73850.13430.21230.169*
C80.60164 (18)0.2977 (3)0.1318 (2)0.1309 (11)
H8A0.59460.34080.17970.196*
H8B0.64920.34840.12440.196*
H8C0.55280.32080.08570.196*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0631 (7)0.0602 (7)0.0400 (6)0.0138 (6)0.0145 (5)0.0035 (5)
O20.0800 (9)0.1019 (10)0.0621 (8)0.0212 (8)0.0331 (7)0.0097 (7)
N10.0769 (11)0.0719 (11)0.0629 (10)0.0211 (9)0.0067 (8)0.0012 (8)
N20.0827 (12)0.0747 (11)0.0406 (9)0.0067 (9)0.0087 (8)0.0032 (7)
C380.0699 (11)0.0623 (11)0.0458 (10)0.0031 (9)0.0134 (8)0.0008 (8)
C370.0830 (14)0.0546 (10)0.0484 (10)0.0046 (10)0.0217 (9)0.0016 (8)
C360.1129 (18)0.0812 (14)0.0558 (12)0.0064 (13)0.0389 (12)0.0030 (10)
C350.1152 (19)0.0943 (17)0.0842 (16)0.0108 (15)0.0619 (15)0.0097 (13)
C340.0788 (14)0.0842 (15)0.0955 (17)0.0055 (12)0.0432 (13)0.0062 (12)
C330.0687 (12)0.0613 (11)0.0629 (12)0.0076 (9)0.0242 (10)0.0011 (9)
C320.0651 (11)0.0443 (9)0.0472 (9)0.0069 (8)0.0176 (8)0.0011 (7)
C310.0603 (10)0.0470 (9)0.0413 (9)0.0028 (8)0.0120 (7)0.0004 (7)
C30.0512 (9)0.0442 (9)0.0435 (9)0.0018 (7)0.0094 (7)0.0024 (7)
C20.0511 (9)0.0465 (9)0.0438 (8)0.0020 (8)0.0107 (7)0.0027 (7)
C10.0584 (10)0.0531 (10)0.0450 (9)0.0036 (9)0.0095 (8)0.0004 (8)
C50.0520 (9)0.0473 (9)0.0402 (8)0.0047 (7)0.0115 (7)0.0002 (7)
C40.0556 (9)0.0490 (9)0.0394 (8)0.0055 (7)0.0155 (7)0.0059 (7)
C410.0511 (9)0.0531 (9)0.0485 (9)0.0050 (8)0.0188 (8)0.0101 (7)
C420.0453 (9)0.0486 (9)0.0460 (9)0.0057 (7)0.0137 (7)0.0074 (7)
C430.0677 (11)0.0652 (11)0.0506 (10)0.0086 (9)0.0199 (8)0.0026 (8)
C440.0912 (14)0.0846 (14)0.0548 (11)0.0057 (12)0.0320 (11)0.0082 (10)
C450.0856 (14)0.0795 (14)0.0462 (10)0.0104 (11)0.0149 (10)0.0021 (10)
C460.0728 (12)0.0755 (13)0.0581 (12)0.0063 (10)0.0030 (10)0.0016 (10)
C470.0568 (10)0.0696 (12)0.0568 (11)0.0039 (9)0.0110 (8)0.0088 (9)
C510.0525 (9)0.0532 (9)0.0392 (8)0.0068 (8)0.0148 (7)0.0013 (7)
C520.0848 (13)0.0751 (13)0.0671 (12)0.0079 (11)0.0410 (11)0.0220 (10)
C530.0857 (14)0.1008 (16)0.0742 (13)0.0119 (12)0.0528 (11)0.0227 (12)
C540.0628 (11)0.0780 (13)0.0539 (10)0.0029 (10)0.0271 (9)0.0005 (9)
C550.0620 (11)0.0598 (11)0.0529 (10)0.0034 (9)0.0212 (8)0.0046 (8)
C560.0579 (10)0.0575 (10)0.0445 (9)0.0049 (8)0.0234 (8)0.0026 (8)
C60.0760 (13)0.1117 (18)0.0713 (13)0.0184 (13)0.0393 (11)0.0067 (12)
C70.0725 (15)0.190 (3)0.0792 (16)0.0226 (16)0.0300 (13)0.0053 (16)
C80.125 (2)0.110 (2)0.182 (3)0.0356 (18)0.084 (2)0.005 (2)
Geometric parameters (Å, º) top
O1—C31.3557 (18)C42—C431.381 (2)
O1—C41.4384 (17)C43—C441.380 (2)
O2—C411.2043 (18)C43—H430.9300
N1—C11.143 (2)C44—C451.370 (3)
N2—C381.356 (2)C44—H440.9300
N2—C371.366 (2)C45—C461.365 (3)
N2—H20.91 (2)C45—H450.9300
C38—C311.367 (2)C46—C471.375 (2)
C38—H380.9300C46—H460.9300
C37—C361.388 (3)C47—H470.9300
C37—C321.399 (2)C51—C561.377 (2)
C36—C351.358 (3)C51—C521.381 (2)
C36—H360.9300C52—C531.376 (3)
C35—C341.397 (3)C52—H520.9300
C35—H350.9300C53—C541.371 (3)
C34—C331.378 (3)C53—H530.9300
C34—H340.9300C54—C551.387 (2)
C33—C321.392 (2)C54—C61.508 (3)
C33—H330.961 (16)C55—C561.377 (2)
C32—C311.437 (2)C55—H550.9300
C31—C31.441 (2)C56—H560.978 (15)
C3—C21.344 (2)C6—C81.501 (3)
C2—C11.402 (2)C6—C71.533 (3)
C2—C51.513 (2)C6—H60.9800
C5—C511.511 (2)C7—H7A0.9600
C5—C41.552 (2)C7—H7B0.9600
C5—H50.9800C7—H7C0.9600
C4—C411.516 (2)C8—H8A0.9600
C4—H40.9800C8—H8B0.9600
C41—C421.480 (2)C8—H8C0.9600
C42—C471.380 (2)
C3—O1—C4108.23 (11)C43—C42—C41122.63 (15)
C38—N2—C37109.26 (16)C44—C43—C42120.21 (17)
C38—N2—H2124.0 (13)C44—C43—H43119.9
C37—N2—H2126.6 (12)C42—C43—H43119.9
N2—C38—C31109.88 (16)C45—C44—C43120.31 (17)
N2—C38—H38125.1C45—C44—H44119.8
C31—C38—H38125.1C43—C44—H44119.8
N2—C37—C36129.28 (18)C46—C45—C44120.01 (17)
N2—C37—C32108.03 (15)C46—C45—H45120.0
C36—C37—C32122.68 (19)C44—C45—H45120.0
C35—C36—C37117.1 (2)C45—C46—C47119.89 (18)
C35—C36—H36121.4C45—C46—H46120.1
C37—C36—H36121.4C47—C46—H46120.1
C36—C35—C34121.69 (19)C46—C47—C42120.99 (17)
C36—C35—H35119.2C46—C47—H47119.5
C34—C35—H35119.2C42—C47—H47119.5
C33—C34—C35121.1 (2)C56—C51—C52117.70 (15)
C33—C34—H34119.4C56—C51—C5121.09 (13)
C35—C34—H34119.4C52—C51—C5121.15 (15)
C34—C33—C32118.44 (19)C53—C52—C51120.76 (17)
C34—C33—H33122.3 (10)C53—C52—H52119.6
C32—C33—H33119.2 (10)C51—C52—H52119.6
C33—C32—C37118.90 (16)C54—C53—C52122.15 (16)
C33—C32—C31134.73 (15)C54—C53—H53118.9
C37—C32—C31106.34 (15)C52—C53—H53118.9
C38—C31—C32106.48 (14)C53—C54—C55116.79 (16)
C38—C31—C3125.98 (15)C53—C54—C6121.17 (16)
C32—C31—C3127.46 (15)C55—C54—C6121.95 (17)
C2—C3—O1112.70 (13)C56—C55—C54121.53 (17)
C2—C3—C31132.15 (15)C56—C55—H55119.2
O1—C3—C31115.13 (13)C54—C55—H55119.2
C3—C2—C1125.62 (14)C51—C56—C55121.00 (15)
C3—C2—C5110.44 (13)C51—C56—H56118.8 (9)
C1—C2—C5123.86 (14)C55—C56—H56120.2 (9)
N1—C1—C2178.90 (18)C8—C6—C54113.64 (18)
C51—C5—C2112.23 (12)C8—C6—C7112.2 (2)
C51—C5—C4115.45 (13)C54—C6—C7109.29 (17)
C2—C5—C499.01 (11)C8—C6—H6107.1
C51—C5—H5109.9C54—C6—H6107.1
C2—C5—H5109.9C7—C6—H6107.1
C4—C5—H5109.9C6—C7—H7A109.5
O1—C4—C41109.06 (12)C6—C7—H7B109.5
O1—C4—C5107.08 (11)H7A—C7—H7B109.5
C41—C4—C5112.38 (12)C6—C7—H7C109.5
O1—C4—H4109.4H7A—C7—H7C109.5
C41—C4—H4109.4H7B—C7—H7C109.5
C5—C4—H4109.4C6—C8—H8A109.5
O2—C41—C42121.68 (15)C6—C8—H8B109.5
O2—C41—C4120.35 (14)H8A—C8—H8B109.5
C42—C41—C4117.96 (13)C6—C8—H8C109.5
C47—C42—C43118.59 (15)H8A—C8—H8C109.5
C47—C42—C41118.78 (14)H8B—C8—H8C109.5
C37—N2—C38—C310.6 (2)C2—C5—C4—O115.46 (14)
C38—N2—C37—C36179.78 (19)C51—C5—C4—C41135.75 (13)
C38—N2—C37—C320.6 (2)C2—C5—C4—C41104.28 (13)
N2—C37—C36—C35179.8 (2)O1—C4—C41—O27.6 (2)
C32—C37—C36—C350.3 (3)C5—C4—C41—O2110.94 (17)
C37—C36—C35—C341.0 (3)O1—C4—C41—C42173.49 (12)
C36—C35—C34—C331.3 (3)C5—C4—C41—C4267.93 (17)
C35—C34—C33—C320.2 (3)O2—C41—C42—C4710.5 (2)
C34—C33—C32—C371.0 (3)C4—C41—C42—C47168.32 (14)
C34—C33—C32—C31179.20 (18)O2—C41—C42—C43168.36 (17)
N2—C37—C32—C33179.12 (16)C4—C41—C42—C4312.8 (2)
C36—C37—C32—C331.3 (3)C47—C42—C43—C440.6 (3)
N2—C37—C32—C310.42 (19)C41—C42—C43—C44178.27 (16)
C36—C37—C32—C31179.96 (16)C42—C43—C44—C450.5 (3)
N2—C38—C31—C320.32 (19)C43—C44—C45—C460.0 (3)
N2—C38—C31—C3176.61 (15)C44—C45—C46—C470.4 (3)
C33—C32—C31—C38178.46 (19)C45—C46—C47—C420.3 (3)
C37—C32—C31—C380.07 (18)C43—C42—C47—C460.3 (3)
C33—C32—C31—C34.7 (3)C41—C42—C47—C46178.69 (16)
C37—C32—C31—C3176.94 (15)C2—C5—C51—C5663.99 (19)
C4—O1—C3—C25.21 (17)C4—C5—C51—C5648.45 (19)
C4—O1—C3—C31176.25 (13)C2—C5—C51—C52113.25 (17)
C38—C31—C3—C223.4 (3)C4—C5—C51—C52134.30 (16)
C32—C31—C3—C2160.29 (17)C56—C51—C52—C532.1 (3)
C38—C31—C3—O1154.78 (15)C5—C51—C52—C53175.27 (17)
C32—C31—C3—O121.5 (2)C51—C52—C53—C540.1 (3)
O1—C3—C2—C1177.33 (14)C52—C53—C54—C552.1 (3)
C31—C3—C2—C14.4 (3)C52—C53—C54—C6174.53 (19)
O1—C3—C2—C55.75 (18)C53—C54—C55—C561.9 (3)
C31—C3—C2—C5172.48 (16)C6—C54—C55—C56174.67 (17)
C3—C2—C5—C51109.41 (15)C52—C51—C56—C552.2 (2)
C1—C2—C5—C5167.58 (19)C5—C51—C56—C55175.12 (14)
C3—C2—C5—C412.92 (16)C54—C55—C56—C510.2 (3)
C1—C2—C5—C4170.09 (15)C53—C54—C6—C8133.9 (2)
C3—O1—C4—C41108.29 (13)C55—C54—C6—C849.6 (3)
C3—O1—C4—C513.55 (15)C53—C54—C6—C799.9 (2)
C51—C5—C4—O1104.52 (14)C55—C54—C6—C776.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C33—H33···O10.961 (16)2.569 (15)3.081 (2)113.5 (11)
N2—H2···N1i0.91 (2)2.09 (2)2.973 (2)165.2 (17)
C56—H56···O2ii0.978 (15)2.411 (16)3.371 (2)166.9 (13)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC29H24N2O2
Mr432.50
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)17.1073 (4), 8.1230 (2), 17.6160 (4)
β (°) 110.325 (1)
V3)2295.55 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.30 × 0.24 × 0.18
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.978, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
21711, 4455, 2979
Rint0.031
(sin θ/λ)max1)0.615
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.115, 1.03
No. of reflections4455
No. of parameters313
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.14, 0.15

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C33—H33···O10.961 (16)2.569 (15)3.081 (2)113.5 (11)
N2—H2···N1i0.91 (2)2.09 (2)2.973 (2)165.2 (17)
C56—H56···O2ii0.978 (15)2.411 (16)3.371 (2)166.9 (13)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1/2, y1/2, z+1/2.
 

Acknowledgements

The authors thank the SAIF, IIT, Chennai, for the data collection. PG thanks the CSIR, India, for a Research Fellowship. SP thanks the Department of Science and Technology, New Delhi, for funding the Indo-Spanish collaborative major research project (grant DST/INT/SPAIN/ 09).

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBloom, J. W. G. & Wheeler, S. E. (2011). Angew. Chem. Int. Ed. 50, 7847–7849.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin,USA.  Google Scholar
First citationCremer, D. & &Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationMartinez, C. R. & Iverson, B. L. (2012). Chem. Sci. 3, 2191–2201.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuresh, J., Vishnupriya, R., Gunasekaran, P., Perumal, S. & Lakshman, P. L. N. (2012a). Acta Cryst. E68, o1576.  CSD CrossRef IUCr Journals Google Scholar
First citationSuresh, J., Vishnupriya, R., Gunasekaran, P., Perumal, S. & Lakshman, P. L. N. (2012b). Acta Cryst. E68, o1124.  CSD CrossRef IUCr Journals Google Scholar
First citationSuresh, J., Vishnupriya, R., Gunasekaran, P., Perumal, S. & Lakshman, P. L. N. (2012c). Acta Cryst. E68, o2397.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds