organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(4-Bromo­phen­yl)-2-(2-chloro­phen­­oxy)ethanone

aNational Institute of Technology-Karnataka, Department of Chemistry, Surathkal, Mangalore 575 025, India, and bNelson Mandela Metropolitan University, Summerstrand Campus, Department of Chemistry, University Way, Summerstrand, PO Box 77000, Port Elizabeth, 6031, South Africa
*Correspondence e-mail: richard.betz@webmail.co.za

(Received 10 November 2012; accepted 21 November 2012; online 30 November 2012)

In the title compound, C14H10BrClO2, a twofold halogenated derivative of phenyl­ated phenyl­oxyethanone, the least-squares planes defined by the C atoms of the aromatic rings subtend an angle of 71.31 (17)°. In the crystal, C—H⋯O contacts connect the mol­ecules into chains along the b-axis direction.

Related literature

For the biological properties of phen­oxy­acetic acid derivatives, see: Ali & Shaharyar (2007[Ali, M. A. & Shaharyar, M. (2007). Bioorg. Med. Chem. 15, 1896-1902.]); Kunsch et al. (2005[Kunsch, C., Luchoomun, J., Chen, X. L., Dodd, G. L., Karu, K. S., Meng, C. Q., Marino, E. M., Olliff, L. K., Piper, J. D., Qiu, F. H., Sikorski, J. A., Somers, P. K., Suen, K.-L., Thomas, S., Whalen, A. M., Wasserman, M. A. & Sundell, C. L. (2005). J. Pharmacol. Exp. Ther. 313, 492-501.]); Iqbal et al. (2007[Iqbal, A., Siddiqui, H. L., Ashraf, C. M., Ahmad, M. & Weaver, G. W. (2007). Molecules, 12, 245-254.]); Sato et al. (2002[Sato, S., Komoto, T., Kanamaru, Y., Kawamoto, N., Okada, T., Kaiho, T., Mogi, M., Morimoto, S., Umehara, N., Koda, T., Miyashita, A., Sakamoto, T., Niino, Y. & Oka, T. (2002). Chem. Pharm. Bull. 50, 292-297.]); Kitagawa et al. (1991[Kitagawa, M., Yamamoto, K., Katakura, S., Kanno, H., Yamada, K., Nagahara, T. & Tanaka, M. (1991). Chem. Pharm. Bull. (Tokyo), 39, 2681-2690.]); Bicking et al. (1976[Bicking, J. B., Robb, C. M., Watson, L. S. & Cragoe, E. J. Jr (1976). J. Med. Chem. 19, 544-547.]); Osborne et al. (1955[Osborne, D. J., Blackman, G. E., Novoa, S., Sudzuki, F. & Powell, R. G. (1955). J. Exp. Bot. 6, 392-408.]). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • C14H10BrClO2

  • Mr = 325.58

  • Monoclinic, P 21 /c

  • a = 15.2653 (8) Å

  • b = 4.5541 (2) Å

  • c = 23.7336 (9) Å

  • β = 129.135 (2)°

  • V = 1279.80 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.41 mm−1

  • T = 200 K

  • 0.36 × 0.07 × 0.06 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.377, Tmax = 0.811

  • 15447 measured reflections

  • 3040 independent reflections

  • 1953 reflections with I > 2σ(I)

  • Rint = 0.076

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.125

  • S = 1.02

  • 3040 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.65 e Å−3

  • Δρmin = −1.04 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1B⋯O2i 0.99 2.57 3.457 (4) 149
C16—H16⋯O2i 0.95 2.57 3.425 (4) 150
Symmetry code: (i) x, y+1, z.

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Derivatives of phenoxyacetic acid are among the most potent fungicides. They demonstrate a variety of biological properties such as antimycobacterial (Ali & Shaharyar, 2007), anti-inflammatory and antioxidant (Kunsch et al., 2005), antibacterial (Iqbal et al., 2007), analgesic (Sato et al., 2002), diuretic (Kitagawa et al., 1991; Bicking et al., 1976) and growth regulatory (Osborne et al., 1955) activity. In continuation of our ongoing interest in bioactive compounds, the title compound was synthesized and its crystal structure was determined.

The O–C–C–O dihedral angle is found at -0.8 (4) °. A statistics of values for dihedral angles of comparable compounds whose molecular and crystal structure has been deposited with the CSD (Allen, 2002) shows that this eclipsed conformation is considerably smaller than the average angle found for the majority of these compounds. The least-squares planes defined by the carbon atoms of the two aromatic moieties enclose an angle of 71.31 (17) ° (Fig. 1 and Fig. 2).

In the crystal, intermolecular C–H···O contacts whose range falls by more than 0.1 Å below the sum of van-der-Waals radii of the atoms participating are apparent. These are supported by one of the hydrogen atoms of the methylene group as well as the hydrogen atom in ortho position to the oxygen atom on the chlorophenyl moiety as donors and have the ketonic oxygen atom as acceptor. These connect the molecules to chains along the crystallographic b axis. Information about metrical parameters as well as the symmetry of these contacts is summarized in Table 1. In terms of graph-set analysis (Etter et al., 1990; Bernstein et al., 1995), the descriptor for these contacts is C11(4)C11(7) on the unary level. In addition, a dispersive Br···Br contact (3.583 (5) Å) was detected. The shortest intercentroid distance between two aromatic systems was measured at 4.554 (2) Å and is present between the chlorinated phenyl moiety and its symmetry-generated equivalent as well as between the brominated phenyl moiety and its symmetry-generated equivalent (Fig. 3). This value is in agreement with the length of cell axis b.

The packing of the title compound in the crystal structure is shown in Figure 4.

Related literature top

For the biological properties of phenoxyacetic acid derivatives, see: Ali & Shaharyar (2007); Kunsch et al. (2005); Iqbal et al. (2007); Sato et al. (2002); Kitagawa et al. (1991); Bicking et al. (1976); Osborne et al. (1955). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990); Bernstein et al. (1995). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental top

A mixture of 2-bromo-1-(4-bromophenyl)ethanone (200 mg, 0.00072 mol), potassium carbonate (44.3 mg, 0.00079 mol) and 4-chlorophenol (92.56 mg, 0.00072 mol) in DMF (10 ml) was stirred at room temperature for 2 h. On cooling, colourless needle-shaped crystals of the title compound begin to separate. These were collected by filtration and recrystallized from ethanol, yield: 213.6 mg (91.2%).

Refinement top

Carbon-bound H atoms were placed in calculated positions (C–H 0.95 Å for aromatic carbon atoms and C–H 0.99 Å for methylene groups) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and anisotropic displacement ellipsoids (drawn at 50% probability level).
[Figure 2] Fig. 2. Observed distribution of O–C–C–O dihedral angles (data based on CSD search including all deposited crystal structures up to November 2011).
[Figure 3] Fig. 3. Intermolecular contacts, viewed along [-1 0 0]. Displacement ellipsoids are drawn at the 50% probability level. Symmetry operators: (i) x, y - 1, z; (ii) x, y + 1, z.
[Figure 4] Fig. 4. Molecular packing of the title compound, viewed along [0 1 0] (anisotropic displacement ellipsoids drawn at 50% probability level).
1-(4-Bromophenyl)-2-(2-chlorophenoxy)ethanone top
Crystal data top
C14H10BrClO2F(000) = 648
Mr = 325.58Dx = 1.690 Mg m3
Monoclinic, P21/cMelting point = 388–387 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 15.2653 (8) ÅCell parameters from 8161 reflections
b = 4.5541 (2) Åθ = 2.7–28.2°
c = 23.7336 (9) ŵ = 3.41 mm1
β = 129.135 (2)°T = 200 K
V = 1279.80 (10) Å3Needle, colourless
Z = 40.36 × 0.07 × 0.06 mm
Data collection top
Bruker APEXII CCD
diffractometer
3040 independent reflections
Radiation source: fine-focus sealed tube1953 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.076
ϕ and ω scansθmax = 28.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 2017
Tmin = 0.377, Tmax = 0.811k = 56
15447 measured reflectionsl = 2831
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0791P)2 + 0.0906P]
where P = (Fo2 + 2Fc2)/3
3040 reflections(Δ/σ)max = 0.001
163 parametersΔρmax = 0.65 e Å3
0 restraintsΔρmin = 1.04 e Å3
Crystal data top
C14H10BrClO2V = 1279.80 (10) Å3
Mr = 325.58Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.2653 (8) ŵ = 3.41 mm1
b = 4.5541 (2) ÅT = 200 K
c = 23.7336 (9) Å0.36 × 0.07 × 0.06 mm
β = 129.135 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
3040 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
1953 reflections with I > 2σ(I)
Tmin = 0.377, Tmax = 0.811Rint = 0.076
15447 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.125H-atom parameters constrained
S = 1.02Δρmax = 0.65 e Å3
3040 reflectionsΔρmin = 1.04 e Å3
163 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.47277 (3)0.61050 (9)0.417783 (13)0.05712 (18)
Cl10.03928 (6)0.09989 (17)0.16076 (3)0.0401 (2)
O10.07748 (15)0.1858 (5)0.02338 (8)0.0382 (5)
O20.27246 (18)0.0310 (6)0.09698 (10)0.0438 (5)
C10.1230 (2)0.3184 (8)0.04422 (12)0.0369 (7)
H1A0.06760.30280.05280.044*
H1B0.13660.52940.04240.044*
C20.2335 (2)0.1727 (7)0.10682 (12)0.0306 (6)
C110.1262 (2)0.2570 (7)0.05457 (12)0.0324 (7)
C120.0776 (2)0.1275 (7)0.12175 (12)0.0316 (6)
C130.1196 (3)0.1825 (8)0.15782 (14)0.0428 (8)
H130.08560.09390.20360.051*
C140.2109 (3)0.3659 (8)0.12732 (16)0.0483 (9)
H140.24120.40130.15150.058*
C150.2582 (3)0.4979 (9)0.06159 (15)0.0453 (8)
H150.31980.62920.04130.054*
C160.2173 (2)0.4421 (8)0.02466 (14)0.0403 (7)
H160.25200.53100.02120.048*
C210.2890 (2)0.2917 (7)0.18133 (11)0.0290 (6)
C220.3935 (2)0.1744 (8)0.23899 (13)0.0373 (7)
H220.42710.02700.22980.045*
C230.4487 (2)0.2704 (8)0.30945 (13)0.0398 (7)
H230.52070.19380.34850.048*
C240.3973 (2)0.4787 (8)0.32182 (12)0.0361 (7)
C250.2928 (2)0.5983 (7)0.26559 (13)0.0379 (7)
H250.25820.74130.27510.046*
C260.2403 (2)0.5033 (8)0.19527 (12)0.0332 (6)
H260.16960.58540.15610.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0536 (2)0.0768 (4)0.02415 (17)0.00832 (17)0.01652 (15)0.01059 (11)
Cl10.0349 (3)0.0493 (6)0.0267 (3)0.0069 (3)0.0150 (3)0.0092 (2)
O10.0282 (8)0.0587 (16)0.0232 (8)0.0105 (9)0.0142 (7)0.0105 (8)
O20.0493 (12)0.0416 (16)0.0369 (10)0.0035 (11)0.0255 (9)0.0058 (9)
C10.0286 (12)0.054 (2)0.0227 (10)0.0008 (13)0.0136 (9)0.0059 (11)
C20.0279 (11)0.036 (2)0.0276 (11)0.0055 (12)0.0171 (9)0.0044 (10)
C110.0263 (11)0.043 (2)0.0243 (10)0.0033 (12)0.0143 (9)0.0022 (10)
C120.0290 (12)0.035 (2)0.0242 (10)0.0031 (11)0.0134 (9)0.0024 (9)
C130.0496 (16)0.049 (2)0.0318 (12)0.0052 (15)0.0265 (12)0.0039 (12)
C140.0552 (19)0.054 (3)0.0468 (16)0.0000 (16)0.0372 (15)0.0092 (13)
C150.0404 (15)0.046 (2)0.0441 (15)0.0032 (15)0.0242 (13)0.0077 (14)
C160.0327 (13)0.047 (2)0.0289 (12)0.0016 (13)0.0134 (11)0.0006 (11)
C210.0240 (11)0.0334 (19)0.0255 (10)0.0054 (11)0.0137 (9)0.0034 (10)
C220.0246 (11)0.050 (2)0.0313 (12)0.0016 (12)0.0148 (10)0.0000 (11)
C230.0249 (11)0.055 (2)0.0288 (11)0.0004 (13)0.0121 (9)0.0036 (12)
C240.0320 (12)0.050 (2)0.0208 (10)0.0104 (13)0.0141 (10)0.0063 (10)
C250.0343 (13)0.047 (2)0.0276 (12)0.0023 (13)0.0171 (10)0.0071 (10)
C260.0265 (12)0.041 (2)0.0256 (11)0.0014 (12)0.0133 (9)0.0028 (10)
Geometric parameters (Å, º) top
Br1—C241.887 (2)C14—H140.9500
Cl1—C121.740 (3)C15—C161.383 (4)
O1—C111.379 (3)C15—H150.9500
O1—C11.419 (3)C16—H160.9500
O2—C21.202 (4)C21—C261.378 (4)
C1—C21.526 (4)C21—C221.396 (4)
C1—H1A0.9900C22—C231.385 (4)
C1—H1B0.9900C22—H220.9500
C2—C211.499 (3)C23—C241.376 (5)
C11—C161.380 (4)C23—H230.9500
C11—C121.395 (3)C24—C251.391 (4)
C12—C131.379 (4)C25—C261.388 (3)
C13—C141.375 (5)C25—H250.9500
C13—H130.9500C26—H260.9500
C14—C151.376 (5)
C11—O1—C1117.5 (2)C14—C15—H15119.5
O1—C1—C2111.6 (2)C16—C15—H15119.5
O1—C1—H1A109.3C11—C16—C15119.9 (3)
C2—C1—H1A109.3C11—C16—H16120.1
O1—C1—H1B109.3C15—C16—H16120.1
C2—C1—H1B109.3C26—C21—C22119.2 (2)
H1A—C1—H1B108.0C26—C21—C2123.2 (2)
O2—C2—C21121.9 (2)C22—C21—C2117.6 (3)
O2—C2—C1121.7 (2)C23—C22—C21120.7 (3)
C21—C2—C1116.5 (2)C23—C22—H22119.6
O1—C11—C16125.3 (2)C21—C22—H22119.6
O1—C11—C12115.8 (2)C24—C23—C22118.7 (2)
C16—C11—C12118.9 (2)C24—C23—H23120.6
C13—C12—C11120.8 (3)C22—C23—H23120.6
C13—C12—Cl1120.0 (2)C23—C24—C25121.9 (2)
C11—C12—Cl1119.2 (2)C23—C24—Br1118.72 (19)
C14—C13—C12119.9 (3)C25—C24—Br1119.4 (2)
C14—C13—H13120.1C26—C25—C24118.3 (3)
C12—C13—H13120.1C26—C25—H25120.9
C13—C14—C15119.6 (3)C24—C25—H25120.9
C13—C14—H14120.2C21—C26—C25121.1 (2)
C15—C14—H14120.2C21—C26—H26119.4
C14—C15—C16121.0 (3)C25—C26—H26119.4
C11—O1—C1—C277.1 (3)C14—C15—C16—C111.5 (6)
O1—C1—C2—O20.8 (4)O2—C2—C21—C26172.8 (3)
O1—C1—C2—C21179.2 (2)C1—C2—C21—C265.6 (4)
C1—O1—C11—C161.5 (4)O2—C2—C21—C225.4 (4)
C1—O1—C11—C12178.6 (3)C1—C2—C21—C22176.2 (3)
O1—C11—C12—C13179.8 (3)C26—C21—C22—C230.6 (4)
C16—C11—C12—C130.1 (4)C2—C21—C22—C23178.9 (3)
O1—C11—C12—Cl11.5 (4)C21—C22—C23—C241.6 (5)
C16—C11—C12—Cl1178.6 (2)C22—C23—C24—C251.1 (5)
C11—C12—C13—C140.3 (5)C22—C23—C24—Br1179.8 (2)
Cl1—C12—C13—C14179.0 (3)C23—C24—C25—C260.3 (5)
C12—C13—C14—C151.3 (5)Br1—C24—C25—C26178.4 (2)
C13—C14—C15—C161.9 (6)C22—C21—C26—C250.8 (4)
O1—C11—C16—C15179.6 (3)C2—C21—C26—C25177.3 (3)
C12—C11—C16—C150.5 (5)C24—C25—C26—C211.3 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1B···O2i0.992.573.457 (4)149
C16—H16···O2i0.952.573.425 (4)150
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC14H10BrClO2
Mr325.58
Crystal system, space groupMonoclinic, P21/c
Temperature (K)200
a, b, c (Å)15.2653 (8), 4.5541 (2), 23.7336 (9)
β (°) 129.135 (2)
V3)1279.80 (10)
Z4
Radiation typeMo Kα
µ (mm1)3.41
Crystal size (mm)0.36 × 0.07 × 0.06
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.377, 0.811
No. of measured, independent and
observed [I > 2σ(I)] reflections
15447, 3040, 1953
Rint0.076
(sin θ/λ)max1)0.660
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.125, 1.02
No. of reflections3040
No. of parameters163
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.65, 1.04

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2010), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 2012) and Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1B···O2i0.992.573.457 (4)149.3
C16—H16···O2i0.952.573.425 (4)150.1
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

AMI thanks the Board for Research in Nuclear Sciences, Department of Atomic Energy, Government of India, for a Young Scientist award.

References

First citationAli, M. A. & Shaharyar, M. (2007). Bioorg. Med. Chem. 15, 1896–1902.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBicking, J. B., Robb, C. M., Watson, L. S. & Cragoe, E. J. Jr (1976). J. Med. Chem. 19, 544–547.  CrossRef PubMed CAS Web of Science Google Scholar
First citationBruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationIqbal, A., Siddiqui, H. L., Ashraf, C. M., Ahmad, M. & Weaver, G. W. (2007). Molecules, 12, 245–254.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKitagawa, M., Yamamoto, K., Katakura, S., Kanno, H., Yamada, K., Nagahara, T. & Tanaka, M. (1991). Chem. Pharm. Bull. (Tokyo), 39, 2681–2690.  CrossRef PubMed CAS Google Scholar
First citationKunsch, C., Luchoomun, J., Chen, X. L., Dodd, G. L., Karu, K. S., Meng, C. Q., Marino, E. M., Olliff, L. K., Piper, J. D., Qiu, F. H., Sikorski, J. A., Somers, P. K., Suen, K.-L., Thomas, S., Whalen, A. M., Wasserman, M. A. & Sundell, C. L. (2005). J. Pharmacol. Exp. Ther. 313, 492–501.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOsborne, D. J., Blackman, G. E., Novoa, S., Sudzuki, F. & Powell, R. G. (1955). J. Exp. Bot. 6, 392–408.  CrossRef CAS Web of Science Google Scholar
First citationSato, S., Komoto, T., Kanamaru, Y., Kawamoto, N., Okada, T., Kaiho, T., Mogi, M., Morimoto, S., Umehara, N., Koda, T., Miyashita, A., Sakamoto, T., Niino, Y. & Oka, T. (2002). Chem. Pharm. Bull. 50, 292–297.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds