metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 12| December 2012| Pages m1442-m1443

trans-Bis(1,3-di­phenyl­propane-1,3-dionato)(methanol)oxidovanadium(IV) methanol disolvate

aDepartment of Chemistry, University of the Free State, PO Box 339, Bloemfontein 9300, South Africa
*Correspondence e-mail: CPretorius@ufs.ac.za

(Received 25 September 2012; accepted 29 October 2012; online 3 October 2012)

In the title compound, [V(C15H11O2)2O(CH3OH)]·2CH3OH, the VIV atom is coordinated by two 1,3-diphenyl­propane-1,3-dionate ligands and an oxide ligand in an axial position. The sixth position is occupied by the O atom of a methanol group bonded trans to the oxide atom. The octa­hedral geometry is significantly distorted, with the VIV atom lying 0.330 (3) Å above the equatorial plane formed by the O atoms of the two β-diketonate ligands. In the crystal, O—H⋯O hydrogen bonds between the coordinating methanol group in the complex and the two methanol solvent mol­ecules lead to the formation of polymeric chains along the c-axis direction. Weak C—H⋯O contacts are also observed.

Related literature

For synthetic background, see: Schilde et al. (1995[Schilde, U., Bannse, W., Ludwig, E. & Uhlemann, E. (1995). Z. Kristallogr. 210, 627-628.]). For other methanol-substituted vanadium complexes, see: Gao et al. (1998[Gao, S., Weng, Z. & Liu, S. (1998). Polyhedron, 17, 3595-3606.]); Chen et al. (2004[Chen, C. T., Lin, J. S., Kuo, J. H., Weng, S. S., Cuo, T. S., Lin, Y. W., Cheng, C. C., Huang, Y. C., Yu, J. K. & Chou, P. T. (2004). Org. Lett. 6, 4471-4474.]); Tasiopoulos et al. (1999[Tasiopoulos, A. J., Troganis, A. N., Evangelou, A., Raptopoulou, C. P., Terzis, A., Deligiannakis, Y. & Kabanos, T. A. (1999). Chem. Eur. J. 5, 910-921.]). For meth­oxy-substituted vanadium complexes, see: Bansse et al. (1992[Bansse, W., Ludwig, E., Uhlemann, E., Weller, F., Dehnicke, K. & Herrmann, W. (1992). Z. Anorg. Allg. Chem. 613, 36-44.]).

[Scheme 1]

Experimental

Crystal data
  • [V(C15H11O2)2O(CH4O)]·2CH4O

  • Mr = 609.54

  • Monoclinic, P 21 /c

  • a = 16.1411 (1) Å

  • b = 10.7450 (6) Å

  • c = 18.5378 (13) Å

  • β = 113.579 (2)°

  • V = 2946.7 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.39 mm−1

  • T = 100 K

  • 0.47 × 0.07 × 0.05 mm

Data collection
  • Bruker APEXII KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.968, Tmax = 0.981

  • 38614 measured reflections

  • 7317 independent reflections

  • 5545 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.102

  • S = 1.03

  • 7317 reflections

  • 412 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.43 e Å−3

Table 1
Selected bond lengths (Å)

O1—V1 1.5965 (13)
O2—V1 1.9972 (12)
O3—V1 2.0045 (12)
O4—V1 1.9847 (12)
O5—V1 1.9935 (12)
O6—V1 2.3020 (15)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H6A⋯O7 0.82 (3) 1.83 (3) 2.644 (2) 169 (3)
O7—H7A⋯O8i 0.87 (3) 1.90 (3) 2.749 (2) 168 (3)
O8—H8A⋯O3 0.90 (3) 1.96 (3) 2.853 (2) 178 (3)
C13—H13⋯O1ii 0.95 2.58 3.487 (2) 160
C32—H32B⋯O1i 0.98 (3) 2.43 (3) 3.360 (3) 159 (2)
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2011[Bruker (2011). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2008[Bruker (2008). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]), PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The complex has two coordinated 1,3-diphenylpropane-1,3-dionato (dbm) ligands in the equatorial plane, the same as in the [VO(dbm)2] structure described by Schilde (Schilde et al., 1995). The oxido group is in the axial position and no significant change in bond length is reported for the O1—V1 bond of 1.5964 (3) Å as compared to the [VO(dbm)2] structure (1.5922 (4) Å). The sixth coordination position at the vanadium centre trans to the oxido is occupied by a methanol molecule. The rather long bond length of 2.302 (2) Å is similar to methanol coordination in structures by Gao (2.346 Å) (Gao et al., 1998), Chen (2.333 Å) (Chen et al., 2004) and Tasiopoulos (2.301 Å) (Tasiopoulos et al., 1999). A methoxy group bonded to a vanadium metal centre would have a V-OMe bond length of approximately 1.755 Å (Bansse et al., 1992).

Intermolecular O6—H6A···O7 hydrogen bonding in the order of 2.644 (2) Å was observed with a methanol solvent molecule. Additional intermolecular hydrogen bonding was also noted between O7—H7A···O8i of the order 2.749 (2) Å and O8—H8A···O3 in the order of 2.853 (2) Å. These interactions eventually lead to the formation of polymeric chains of the complex along the c-axis, as illustrated in Figure 2.

Weaker intermolecular hydrogen bonding was also noted between C13—H13···O1ii in the order of 3.487 (2) Å and C32—H32B···O1i in the order of 3.360 (3) Å.

Related literature top

For synthetic background, see: Schilde et al. (1995). For other methanol-substituted vanadium complexes, see: Gao et al. (1998); Chen et al. (2004); Tasiopoulos et al. (1999). For methoxy-substituted vanadium complexes, see: Bansse et al. (1992).

Experimental top

V2O5 (1.0 g, 5.5 mmol) was added to a mixture of ethanol, water and sulfuric acid (5 cm3, 2 cm3 and 2 cm3 respectively) and refluxed for one hour, after which the yellow mixture turned a brilliant blue colour. A solution of 1,3-diphenylpropane-1,3-dione (4.93 g, 22 mmol) in ethanol (10 cm3) was added to the reaction mixture which was then stirred for ca 10 min. A saturated solution of sodium carbonate in water (20 cm3) was added to the mixture and the resulting green precipitate was collected by filtration. The precipitate was recrystallized from methanol and, after two weeks, small red needle-like crystals of [VO(dbm)2(MeOH)] were formed (yield: 2.35 g, 70%).

Refinement top

The methyl and aromatic H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.95 and 0.98 Å and Uiso(H) = 1.5Ueq(C) and 1.2Ueq(C), respectively. The hydrogen atoms of the methine groups, the methanol hydroxyl groups as well as the H atoms on C32 were located on the Fourier difference map and refined isotropically. The highest residual electron density was located 0.54 Å from H31C and the deepest hole was 0.68 Å from V1.

Computing details top

Data collection: APEX2 (Bruker, 2011); cell refinement: SAINT-Plus (Bruker, 2008); data reduction: SAINT-Plus (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 1999), publCIF (Westrip, 2010), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability displacement level. Solvent molecules have been omitted for clarity.
[Figure 2] Fig. 2. Hydrogen bonds (indicated in blue) linking one of the compound molecules and a solvent molecule leads to the formation of polymeric chains of the compound along the c-axis.
trans-Bis(1,3-diphenylpropane-1,3-dionato)(methanol)oxidovanadium(IV) methanol disolvate top
Crystal data top
[V(C15H11O2)2O(CH4O)]·2CH4OF(000) = 1276
Mr = 609.54Dx = 1.374 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7652 reflections
a = 16.1411 (1) Åθ = 2.2–27.7°
b = 10.7450 (6) ŵ = 0.39 mm1
c = 18.5378 (13) ÅT = 100 K
β = 113.579 (2)°Needle, red
V = 2946.7 (3) Å30.47 × 0.07 × 0.05 mm
Z = 4
Data collection top
Bruker APEXII KappaCCD
diffractometer
7317 independent reflections
Radiation source: fine-focus sealed tube5545 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
Detector resolution: 512 pixels mm-1θmax = 28.3°, θmin = 2.2°
ϕ and ω scansh = 2121
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
k = 148
Tmin = 0.968, Tmax = 0.981l = 2424
38614 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0383P)2 + 2.0104P]
where P = (Fo2 + 2Fc2)/3
7317 reflections(Δ/σ)max = 0.001
412 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.43 e Å3
0 constraints
Crystal data top
[V(C15H11O2)2O(CH4O)]·2CH4OV = 2946.7 (3) Å3
Mr = 609.54Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.1411 (1) ŵ = 0.39 mm1
b = 10.7450 (6) ÅT = 100 K
c = 18.5378 (13) Å0.47 × 0.07 × 0.05 mm
β = 113.579 (2)°
Data collection top
Bruker APEXII KappaCCD
diffractometer
7317 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
5545 reflections with I > 2σ(I)
Tmin = 0.968, Tmax = 0.981Rint = 0.046
38614 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.45 e Å3
7317 reflectionsΔρmin = 0.43 e Å3
412 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.36765 (12)0.39961 (16)0.05770 (10)0.0162 (4)
C20.43706 (12)0.32029 (17)0.10546 (11)0.0173 (4)
C30.42559 (12)0.20489 (16)0.13327 (10)0.0169 (4)
C40.39167 (12)0.52183 (16)0.03351 (11)0.0167 (4)
C50.33514 (12)0.57289 (17)0.03831 (11)0.0200 (4)
H50.28260.5290.07150.024*
C60.35509 (13)0.68762 (17)0.06167 (12)0.0226 (4)
H60.31660.72190.1110.027*
C70.43106 (13)0.75208 (17)0.01303 (12)0.0234 (4)
H70.44410.83120.02880.028*
C80.48820 (13)0.70229 (17)0.05840 (12)0.0246 (4)
H80.54050.74690.09130.03*
C90.46897 (13)0.58668 (17)0.08203 (11)0.0218 (4)
H90.50820.5520.13090.026*
C100.50605 (12)0.12914 (17)0.18099 (10)0.0177 (4)
C110.58991 (13)0.18430 (19)0.22357 (11)0.0226 (4)
H110.59580.27230.22410.027*
C120.66476 (13)0.1110 (2)0.26513 (12)0.0274 (5)
H120.72160.14920.29370.033*
C130.65718 (14)0.0174 (2)0.26531 (12)0.0278 (5)
H130.70860.06720.29380.033*
C140.57377 (14)0.07296 (19)0.22355 (12)0.0252 (4)
H140.56820.1610.22360.03*
C150.49862 (13)0.00043 (17)0.18183 (11)0.0205 (4)
H150.44180.03910.15370.025*
C160.11816 (12)0.00936 (16)0.01969 (11)0.0161 (4)
C170.05536 (12)0.05557 (16)0.08338 (11)0.0179 (4)
C180.05763 (12)0.18349 (16)0.09553 (10)0.0159 (4)
C190.11005 (12)0.14649 (16)0.01373 (10)0.0157 (4)
C200.18785 (12)0.21569 (16)0.02779 (10)0.0172 (4)
H200.24410.17450.05390.021*
C210.18344 (13)0.34458 (17)0.03109 (11)0.0191 (4)
H210.23670.39110.05920.023*
C220.10189 (13)0.40532 (17)0.00637 (11)0.0209 (4)
H220.09930.49360.00490.025*
C230.02358 (13)0.33711 (17)0.04628 (11)0.0213 (4)
H230.03270.37870.07110.026*
C240.02754 (12)0.20826 (16)0.04996 (11)0.0178 (4)
H240.02610.1620.07720.021*
C250.01309 (12)0.24140 (16)0.16673 (11)0.0173 (4)
C260.05067 (12)0.17798 (17)0.23829 (11)0.0200 (4)
H260.03380.09420.24170.024*
C270.11255 (13)0.23700 (19)0.30452 (11)0.0237 (4)
H270.13690.19430.35340.028*
C280.13888 (13)0.35818 (19)0.29931 (12)0.0253 (4)
H280.18160.39820.34460.03*
C290.10314 (13)0.42114 (18)0.22823 (12)0.0255 (4)
H290.12220.50360.22450.031*
C300.03947 (12)0.36340 (17)0.16254 (11)0.0211 (4)
H300.01370.40760.11420.025*
C310.33537 (13)0.05156 (17)0.04292 (12)0.0227 (4)
H31A0.30450.02520.03930.034*
H31B0.39280.05840.00310.034*
H31C0.34710.04970.09090.034*
C320.17157 (17)0.2844 (3)0.21685 (16)0.0405 (6)
C330.24944 (16)0.0441 (2)0.22012 (13)0.0351 (5)
H33A0.23820.0780.26450.053*
H33B0.2640.11220.1920.053*
H33C0.19530.00060.18420.053*
O10.19196 (8)0.26454 (12)0.11198 (8)0.0212 (3)
O20.28326 (8)0.37464 (11)0.03141 (7)0.0186 (3)
O30.34775 (8)0.15408 (11)0.11931 (7)0.0182 (3)
O40.18704 (8)0.04098 (11)0.03497 (7)0.0188 (3)
O50.11722 (8)0.25860 (11)0.04987 (7)0.0181 (3)
O60.27966 (9)0.15603 (13)0.04550 (8)0.0239 (3)
O70.26609 (11)0.29178 (17)0.16870 (10)0.0416 (4)
O80.32366 (10)0.04114 (15)0.24890 (9)0.0311 (3)
V10.22608 (2)0.21767 (3)0.046818 (18)0.01557 (9)
H20.4932 (14)0.3447 (18)0.1177 (11)0.017 (5)*
H6A0.2815 (17)0.203 (2)0.0798 (15)0.041 (7)*
H7A0.2918 (18)0.340 (3)0.1908 (16)0.052 (8)*
H8A0.3325 (19)0.078 (3)0.2091 (18)0.065 (9)*
H170.0095 (13)0.0099 (18)0.1201 (12)0.018 (5)*
H32A0.1461 (18)0.210 (2)0.1987 (15)0.049 (7)*
H32B0.1601 (19)0.273 (3)0.2725 (19)0.066 (9)*
H32C0.1388 (17)0.365 (2)0.2115 (15)0.045 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0170 (9)0.0157 (8)0.0157 (9)0.0014 (7)0.0065 (7)0.0038 (7)
C20.0115 (9)0.0199 (9)0.0188 (9)0.0003 (7)0.0044 (7)0.0004 (7)
C30.0156 (9)0.0194 (9)0.0144 (9)0.0002 (7)0.0049 (7)0.0023 (7)
C40.0149 (9)0.0147 (8)0.0223 (9)0.0013 (7)0.0091 (8)0.0006 (7)
C50.0154 (9)0.0204 (9)0.0238 (10)0.0005 (7)0.0074 (8)0.0007 (8)
C60.0203 (10)0.0221 (9)0.0266 (10)0.0050 (8)0.0107 (8)0.0062 (8)
C70.0243 (10)0.0169 (9)0.0342 (11)0.0005 (8)0.0173 (9)0.0025 (8)
C80.0222 (10)0.0211 (9)0.0301 (11)0.0057 (8)0.0100 (9)0.0044 (8)
C90.0216 (10)0.0208 (9)0.0203 (10)0.0014 (8)0.0056 (8)0.0010 (7)
C100.0161 (9)0.0209 (9)0.0155 (9)0.0028 (7)0.0057 (7)0.0029 (7)
C110.0199 (10)0.0251 (9)0.0197 (10)0.0005 (8)0.0046 (8)0.0049 (8)
C120.0173 (10)0.0373 (12)0.0226 (10)0.0020 (9)0.0027 (8)0.0070 (9)
C130.0238 (10)0.0364 (11)0.0225 (10)0.0135 (9)0.0086 (9)0.0113 (9)
C140.0306 (11)0.0234 (10)0.0227 (10)0.0067 (8)0.0119 (9)0.0064 (8)
C150.0201 (9)0.0225 (9)0.0172 (9)0.0014 (8)0.0057 (8)0.0020 (7)
C160.0137 (8)0.0160 (8)0.0189 (9)0.0006 (7)0.0070 (7)0.0018 (7)
C170.0162 (9)0.0159 (8)0.0178 (9)0.0017 (7)0.0028 (8)0.0024 (7)
C180.0136 (8)0.0189 (8)0.0149 (9)0.0012 (7)0.0053 (7)0.0017 (7)
C190.0180 (9)0.0145 (8)0.0148 (9)0.0004 (7)0.0067 (7)0.0000 (7)
C200.0156 (9)0.0186 (8)0.0160 (9)0.0013 (7)0.0049 (7)0.0009 (7)
C210.0200 (9)0.0187 (9)0.0199 (9)0.0055 (7)0.0091 (8)0.0037 (7)
C220.0270 (10)0.0147 (8)0.0224 (10)0.0009 (8)0.0112 (8)0.0015 (7)
C230.0208 (9)0.0192 (9)0.0238 (10)0.0042 (8)0.0090 (8)0.0010 (8)
C240.0167 (9)0.0182 (8)0.0180 (9)0.0016 (7)0.0065 (7)0.0006 (7)
C250.0142 (9)0.0178 (8)0.0176 (9)0.0004 (7)0.0040 (7)0.0016 (7)
C260.0178 (9)0.0194 (9)0.0213 (10)0.0010 (7)0.0064 (8)0.0011 (7)
C270.0181 (10)0.0332 (11)0.0166 (9)0.0029 (8)0.0036 (8)0.0004 (8)
C280.0179 (9)0.0318 (11)0.0222 (10)0.0022 (8)0.0038 (8)0.0095 (8)
C290.0223 (10)0.0201 (9)0.0296 (11)0.0048 (8)0.0058 (9)0.0061 (8)
C300.0192 (9)0.0196 (9)0.0203 (10)0.0002 (7)0.0036 (8)0.0001 (7)
C310.0214 (10)0.0191 (9)0.0273 (10)0.0017 (8)0.0095 (8)0.0016 (8)
C320.0373 (14)0.0536 (16)0.0319 (13)0.0119 (12)0.0153 (11)0.0011 (12)
C330.0395 (13)0.0309 (11)0.0319 (12)0.0014 (10)0.0111 (10)0.0019 (9)
O10.0164 (6)0.0228 (7)0.0219 (7)0.0014 (5)0.0050 (6)0.0022 (5)
O20.0136 (6)0.0157 (6)0.0228 (7)0.0008 (5)0.0035 (5)0.0003 (5)
O30.0140 (6)0.0173 (6)0.0200 (7)0.0010 (5)0.0034 (5)0.0016 (5)
O40.0170 (6)0.0152 (6)0.0184 (7)0.0024 (5)0.0009 (5)0.0010 (5)
O50.0153 (6)0.0155 (6)0.0188 (7)0.0003 (5)0.0019 (5)0.0004 (5)
O60.0289 (8)0.0198 (7)0.0249 (7)0.0063 (6)0.0129 (6)0.0057 (6)
O70.0356 (9)0.0487 (10)0.0377 (10)0.0030 (8)0.0115 (8)0.0180 (8)
O80.0288 (8)0.0391 (9)0.0259 (8)0.0001 (7)0.0113 (7)0.0019 (7)
V10.01259 (15)0.01394 (14)0.01701 (16)0.00089 (12)0.00259 (12)0.00022 (12)
Geometric parameters (Å, º) top
C1—O21.278 (2)C21—C221.382 (3)
C1—C21.404 (2)C21—H210.95
C1—C41.488 (2)C22—C231.391 (3)
C2—C31.383 (3)C22—H220.95
C2—H20.88 (2)C23—C241.389 (2)
C3—O31.298 (2)C23—H230.95
C3—O31.298 (2)C24—H240.95
C3—C101.487 (2)C25—C301.390 (2)
C4—C51.391 (3)C25—C261.396 (3)
C4—C91.398 (3)C26—C271.388 (3)
C5—C61.387 (3)C26—H260.95
C5—H50.95C27—C281.385 (3)
C6—C71.383 (3)C27—H270.95
C6—H60.95C28—C291.385 (3)
C7—C81.383 (3)C28—H280.95
C7—H70.95C29—C301.387 (3)
C8—C91.393 (3)C29—H290.95
C8—H80.95C30—H300.95
C9—H90.95C31—O61.427 (2)
C10—C111.397 (3)C31—H31A0.98
C10—C151.398 (2)C31—H31B0.98
C11—C121.389 (3)C31—H31C0.98
C11—H110.95C32—O71.429 (3)
C12—C131.385 (3)C32—O71.429 (3)
C12—H120.95C32—H32A1.02 (3)
C13—C141.391 (3)C32—H32B0.98 (3)
C13—H130.95C32—H32C1.04 (3)
C14—C151.388 (3)C33—O81.431 (3)
C14—H140.95C33—H33A0.98
C15—H150.95C33—H33B0.98
C16—O41.286 (2)C33—H33C0.98
C16—C171.397 (2)O1—V11.5965 (13)
C16—C191.487 (2)O2—V11.9972 (12)
C17—C181.396 (2)O3—V12.0045 (12)
C17—H170.92 (2)O4—V11.9847 (12)
C18—O51.281 (2)O5—V11.9935 (12)
C18—C251.492 (2)O6—V12.3020 (15)
C19—C201.396 (2)O6—H6A0.82 (3)
C19—C241.396 (2)O7—H7A0.87 (3)
C20—C211.389 (2)O8—H8A0.90 (3)
C20—H200.95V1—O32.0045 (12)
O2—C1—C2124.94 (16)C23—C24—H24119.9
O2—C1—C4115.89 (15)C19—C24—H24119.9
C2—C1—C4119.16 (16)C30—C25—C26119.14 (17)
C3—C2—C1125.94 (17)C30—C25—C18119.14 (16)
C3—C2—H2116.6 (13)C26—C25—C18121.66 (16)
C1—C2—H2117.4 (13)C27—C26—C25120.20 (17)
O3—C3—C2124.48 (16)C27—C26—H26119.9
O3—C3—C2124.48 (16)C25—C26—H26119.9
O3—C3—C10115.71 (15)C28—C27—C26120.01 (18)
O3—C3—C10115.71 (15)C28—C27—H27120
C2—C3—C10119.79 (16)C26—C27—H27120
C5—C4—C9119.63 (17)C27—C28—C29120.19 (18)
C5—C4—C1119.09 (16)C27—C28—H28119.9
C9—C4—C1121.27 (16)C29—C28—H28119.9
C6—C5—C4120.29 (17)C28—C29—C30119.81 (18)
C6—C5—H5119.9C28—C29—H29120.1
C4—C5—H5119.9C30—C29—H29120.1
C7—C6—C5119.86 (18)C29—C30—C25120.60 (18)
C7—C6—H6120.1C29—C30—H30119.7
C5—C6—H6120.1C25—C30—H30119.7
C6—C7—C8120.56 (18)O6—C31—H31A109.5
C6—C7—H7119.7O6—C31—H31B109.5
C8—C7—H7119.7H31A—C31—H31B109.5
C7—C8—C9119.92 (18)O6—C31—H31C109.5
C7—C8—H8120H31A—C31—H31C109.5
C9—C8—H8120H31B—C31—H31C109.5
C8—C9—C4119.74 (18)O7—C32—H32A108.0 (15)
C8—C9—H9120.1O7—C32—H32A108.0 (15)
C4—C9—H9120.1O7—C32—H32B111.6 (17)
C11—C10—C15118.96 (17)O7—C32—H32B111.6 (17)
C11—C10—C3121.47 (16)H32A—C32—H32B109 (2)
C15—C10—C3119.55 (16)O7—C32—H32C110.7 (14)
C12—C11—C10120.26 (18)O7—C32—H32C110.7 (14)
C12—C11—H11119.9H32A—C32—H32C110 (2)
C10—C11—H11119.9H32B—C32—H32C108 (2)
C13—C12—C11120.54 (19)O8—C33—H33A109.5
C13—C12—H12119.7O8—C33—H33B109.5
C11—C12—H12119.7H33A—C33—H33B109.5
C12—C13—C14119.54 (18)O8—C33—H33C109.5
C12—C13—H13120.2H33A—C33—H33C109.5
C14—C13—H13120.2H33B—C33—H33C109.5
C15—C14—C13120.31 (18)C1—O2—V1127.28 (11)
C15—C14—H14119.8C3—O3—V1126.95 (11)
C13—C14—H14119.8C16—O4—V1128.73 (11)
C14—C15—C10120.38 (18)C18—O5—V1127.87 (11)
C14—C15—H15119.8C31—O6—V1128.35 (12)
C10—C15—H15119.8C31—O6—H6A107.1 (18)
O4—C16—C17124.21 (16)V1—O6—H6A122.5 (18)
O4—C16—C19115.61 (15)C32—O7—H7A109.3 (18)
C17—C16—C19120.13 (16)C33—O8—H8A111.0 (19)
C18—C17—C16124.84 (17)O1—V1—O4101.25 (6)
C18—C17—H17118.1 (12)O1—V1—O599.43 (6)
C16—C17—H17117.1 (12)O4—V1—O589.13 (5)
O5—C18—C17125.10 (16)O1—V1—O299.25 (6)
O5—C18—C25115.35 (15)O4—V1—O2159.47 (6)
C17—C18—C25119.55 (16)O5—V1—O288.66 (5)
C20—C19—C24119.11 (16)O1—V1—O398.18 (6)
C20—C19—C16118.82 (16)O4—V1—O386.02 (5)
C24—C19—C16122.05 (16)O5—V1—O3162.32 (5)
C21—C20—C19120.30 (17)O2—V1—O389.94 (5)
C21—C20—H20119.8O1—V1—O398.18 (6)
C19—C20—H20119.8O4—V1—O386.02 (5)
C22—C21—C20120.26 (17)O5—V1—O3162.32 (5)
C22—C21—H21119.9O2—V1—O389.94 (5)
C20—C21—H21119.9O3—V1—O30.00 (12)
C21—C22—C23119.92 (17)O1—V1—O6177.74 (6)
C21—C22—H22120O4—V1—O680.77 (5)
C23—C22—H22120O5—V1—O681.56 (5)
C24—C23—C22120.10 (17)O2—V1—O678.71 (5)
C24—C23—H23120O3—V1—O680.89 (5)
C22—C23—H23120O3—V1—O680.89 (5)
C23—C24—C19120.27 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6A···O70.82 (3)1.83 (3)2.644 (2)169 (3)
O7—H7A···O8i0.87 (3)1.90 (3)2.749 (2)168 (3)
O8—H8A···O30.90 (3)1.96 (3)2.853 (2)178 (3)
C13—H13···O1ii0.952.583.487 (2)160
C32—H32B···O1i0.98 (3)2.43 (3)3.360 (3)159 (2)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[V(C15H11O2)2O(CH4O)]·2CH4O
Mr609.54
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)16.1411 (1), 10.7450 (6), 18.5378 (13)
β (°) 113.579 (2)
V3)2946.7 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.39
Crystal size (mm)0.47 × 0.07 × 0.05
Data collection
DiffractometerBruker APEXII KappaCCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.968, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
38614, 7317, 5545
Rint0.046
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.102, 1.03
No. of reflections7317
No. of parameters412
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.45, 0.43

Computer programs: APEX2 (Bruker, 2011), SAINT-Plus (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2008), WinGX (Farrugia, 1999), publCIF (Westrip, 2010), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Selected bond lengths (Å) top
O1—V11.5965 (13)O4—V11.9847 (12)
O2—V11.9972 (12)O5—V11.9935 (12)
O3—V12.0045 (12)O6—V12.3020 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6A···O70.82 (3)1.83 (3)2.644 (2)169 (3)
O7—H7A···O8i0.87 (3)1.90 (3)2.749 (2)168 (3)
O8—H8A···O30.90 (3)1.96 (3)2.853 (2)178 (3)
C13—H13···O1ii0.952.583.487 (2)159.9
C32—H32B···O1i0.98 (3)2.43 (3)3.360 (3)159 (2)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y1/2, z+1/2.
 

Acknowledgements

Financial assistance from the University of the Free State Strategic Academic Cluster Initiative (Materials and Nanosciences), SASOL and the South African National Research Foundation (SA-NRF/THRIP) is gratefully acknowledged.

References

First citationBansse, W., Ludwig, E., Uhlemann, E., Weller, F., Dehnicke, K. & Herrmann, W. (1992). Z. Anorg. Allg. Chem. 613, 36–44.  CSD CrossRef CAS Web of Science Google Scholar
First citationBruker (2008). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2011). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, C. T., Lin, J. S., Kuo, J. H., Weng, S. S., Cuo, T. S., Lin, Y. W., Cheng, C. C., Huang, Y. C., Yu, J. K. & Chou, P. T. (2004). Org. Lett. 6, 4471–4474.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGao, S., Weng, Z. & Liu, S. (1998). Polyhedron, 17, 3595–3606.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationSchilde, U., Bannse, W., Ludwig, E. & Uhlemann, E. (1995). Z. Kristallogr. 210, 627–628.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTasiopoulos, A. J., Troganis, A. N., Evangelou, A., Raptopoulou, C. P., Terzis, A., Deligiannakis, Y. & Kabanos, T. A. (1999). Chem. Eur. J. 5, 910–921.  CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 12| December 2012| Pages m1442-m1443
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds