metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-[(Z)-1-Ferrocenyl­ethyl­­idene]thio­carbonohydrazide

aChemistry Department & Center of Excellence for Advanced Materials Research (CEAMR), Faculty of Science, King Abdulaziz University, PO Box 80203, Jeddah 21589, Saudi Arabia, bChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203, Jeddah 21589, Saudi Arabia, and cDepartment of Chemistry, Government College University, Faisalabad 38040, Pakistan.
*Correspondence e-mail: aasiri2@kau.edu.sa, hafizshafique@hotmail.com

(Received 17 October 2012; accepted 24 October 2012; online 3 November 2012)

In the title compound, [Fe(C5H5)(C8H11N4S)], the cyclo­penta­dienyl (Cp) rings of the ferrocene unit are close to being eclipsed. They are inclined to one another at an angle of 1.95 (2)° and lie 3.309 (2)Å away from each other. The ethyl­idene­thio­carbonohydrazide fragment is planar, with an r.m.s. deviation of 0.0347 (2) Å from the mean plane of its eight non-H atoms, and makes dihedral angles of 21.78 (1) and 19.97 (1)° with respect to the two Cp rings. The mol­ecule adopts a trans geometry about the C=N double bond. In the crystal, N—H⋯(N/S) and C—H⋯S inter­actions stack the mol­ecules in an inverse fashion along the b axis.

Related literature

For the biological activities of related ferrocene compounds, see: Ornelas (2011[Ornelas, C. (2011). New J. Chem. 35, 1973-1985.]). For related structures, see: Li & Du (2011[Li, X. & Du, L.-Z. (2011). Acta Cryst. E67, m1113.]); Vikneswaran et al. (2010a[Vikneswaran, M. R., Teoh, S. G., Yeap, C. S. & Fun, H.-K. (2010a). Acta Cryst. E66, m679.],b[Vikneswaran, M. R., Teoh, S. G., Yeap, C. S. & Fun, H.-K. (2010b). Acta Cryst. E66, m697-m698.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C5H5)(C8H11N4S)]

  • Mr = 316.21

  • Monoclinic, P 21 /a

  • a = 6.4560 (2) Å

  • b = 13.0664 (3) Å

  • c = 15.8559 (4) Å

  • β = 91.028 (2)°

  • V = 1337.34 (6) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 10.47 mm−1

  • T = 296 K

  • 0.21 × 0.12 × 0.06 mm

Data collection
  • Agilent SuperNova CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]) Tmin = 0.435, Tmax = 1.000

  • 8219 measured reflections

  • 2654 independent reflections

  • 2199 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.155

  • S = 1.06

  • 2654 reflections

  • 185 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.90 e Å−3

  • Δρmin = −0.53 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯N4i 0.85 (5) 2.51 (5) 3.349 (5) 170 (4)
N4—H4A⋯S1ii 0.86 (4) 2.65 (4) 3.501 (3) 169 (4)
N4—H4B⋯N1iii 0.91 (4) 2.62 (4) 3.443 (4) 151 (3)
C6—H6⋯S1iv 0.98 2.81 3.671 (4) 147
N3—H3N⋯N1 1.04 (4) 2.09 (4) 2.565 (4) 105 (3)
Symmetry codes: (i) x+1, y, z; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z]; (iii) -x, -y+1, -z+1; (iv) -x+1, -y+1, -z+1.

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]).

Supporting information


Comment top

Functionalized ferrocene based organometallic compounds have gained much interest in different areas of applied research especially for their use as anti-tumor agents (Ornelas, 2011). Here we report the crystal structure of the title compound, which is closely related to the reported ferrocene derivatives N'-(4-hydroxybenzylidene)ferrocene-1-carbohydrazide (Li & Du, 2011), ferrocene-1-carbaldehyde thiosemicarbazone (Vikneswaran et al., 2010a) & ferrocene-1-carbaldehyde 4-ethylthiosemicarbazone (Vikneswaran et al., 2010b).

In the title compound, the distances of the Fe1 atom from the centroids of each Cp ring are 1.649 (3) Å Cp1 (C1—C5) & 1.661 (5) Å Cp2 (C5—C10). The dihedral angle between the mean planes of the two Cp rings is 1.95 (2)° and the rings are approximately eclipsed. The mean plane of (ethylidene)thiocarbonohydrazide is twisted 21.78 (1)°, 19.97 (1)° with respect to the Cp1 & Cp2. In the crystal structure intermolecular N—H···(N/S) & C—H···S hydrogen bonding interactions (Table. 1, Fig. 2) stack the molecules in an inverse fashions along the b axis.

Related literature top

For the biological activities of related ferrocene compounds, see: Ornelas (2011). For related structures, see: Li & Du (2011); Vikneswaran et al. (2010a,b).

Experimental top

Thiocarbonohydrazide was refluxed with an equimolar amount of 1-acetylferrocene for 3 h in ethanol to give an orange yellow solution. The volume was reduced under vacum and on cooling gave the title compound as a very stable orange-yellow solid. This was recrystallized from dichloromethane under slow evaporation to obtain suitable orange crystals.

Refinement top

All the C—H H-atoms were positioned with idealized geometry with C—H = 0.93 Å for Cp, & C—H = 0.96 Å for methyl groups. H-atoms were refined as riding with Uiso(H) = Ueq(C), where k = 1.2 for Cp and 1.5 for methyl H-atoms.

All H atoms bound to N were located in a difference Fourier map and refined freely with N—H = 0.85 (5)—1.04 (4) Å, Uiso(H) = 1.2 Ueq(N).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 1999) and X-SEED (Barbour, 2001).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with 50% displacement ellipsoids.
[Figure 2] Fig. 2. Unit cell packing diagram showing intermolecular hydrogen bonds, drawn using dashed lines.
1-[(1Z)-1-Ferrocenylethylidene]thiocarbonohydrazide top
Crystal data top
[Fe(C5H5)(C8H11N4S)]F(000) = 656
Mr = 316.21Dx = 1.571 Mg m3
Monoclinic, P21/aCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2yabCell parameters from 3298 reflections
a = 6.4560 (2) Åθ = 2.8–74.4°
b = 13.0664 (3) ŵ = 10.47 mm1
c = 15.8559 (4) ÅT = 296 K
β = 91.028 (2)°Prismatic, orange
V = 1337.34 (6) Å30.21 × 0.12 × 0.06 mm
Z = 4
Data collection top
Agilent SuperNova (Dual, Cu at zero, Atlas) CCD
diffractometer
2654 independent reflections
Radiation source: SuperNova (Cu) X-ray Source2199 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.044
ω scansθmax = 74.6°, θmin = 2.8°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
h = 78
Tmin = 0.435, Tmax = 1.000k = 1516
8219 measured reflectionsl = 1619
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.155H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.1061P)2 + 0.0547P]
where P = (Fo2 + 2Fc2)/3
2654 reflections(Δ/σ)max = 0.001
185 parametersΔρmax = 0.90 e Å3
0 restraintsΔρmin = 0.53 e Å3
Crystal data top
[Fe(C5H5)(C8H11N4S)]V = 1337.34 (6) Å3
Mr = 316.21Z = 4
Monoclinic, P21/aCu Kα radiation
a = 6.4560 (2) ŵ = 10.47 mm1
b = 13.0664 (3) ÅT = 296 K
c = 15.8559 (4) Å0.21 × 0.12 × 0.06 mm
β = 91.028 (2)°
Data collection top
Agilent SuperNova (Dual, Cu at zero, Atlas) CCD
diffractometer
2654 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
2199 reflections with I > 2σ(I)
Tmin = 0.435, Tmax = 1.000Rint = 0.044
8219 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.155H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.90 e Å3
2654 reflectionsΔρmin = 0.53 e Å3
185 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.25938 (7)0.50404 (3)0.15149 (3)0.0371 (2)
S10.17096 (16)0.37123 (7)0.62411 (5)0.0523 (3)
N10.1806 (4)0.38168 (19)0.37809 (17)0.0384 (6)
N20.2477 (5)0.3779 (2)0.46126 (18)0.0415 (6)
N30.0929 (5)0.3759 (2)0.49333 (19)0.0456 (7)
N40.2709 (5)0.3764 (3)0.5435 (2)0.0506 (7)
C10.2337 (5)0.3837 (2)0.2332 (2)0.0399 (7)
C20.3377 (6)0.3530 (3)0.1576 (2)0.0461 (8)
H20.47840.32510.15480.055*
C30.2023 (7)0.3694 (3)0.0887 (2)0.0531 (9)
H30.23330.35570.02950.064*
C40.0139 (6)0.4114 (3)0.1191 (2)0.0524 (9)
H40.10700.43110.08450.063*
C50.0333 (5)0.4206 (3)0.2077 (2)0.0456 (7)
H50.07240.44760.24530.055*
C60.4169 (8)0.6184 (3)0.2136 (3)0.0606 (11)
H60.47520.61490.27100.073*
C70.5197 (7)0.5906 (3)0.1381 (3)0.0609 (10)
H70.66170.56470.13450.073*
C80.3836 (7)0.6080 (3)0.0701 (3)0.0567 (9)
H80.41300.59630.01050.068*
C90.1983 (7)0.6459 (3)0.1024 (3)0.0595 (10)
H90.07500.66460.06880.071*
C100.2169 (8)0.6521 (3)0.1906 (3)0.0614 (10)
H100.11040.67630.22920.074*
C110.3164 (5)0.3790 (2)0.3196 (2)0.0389 (7)
C120.5448 (6)0.3701 (3)0.3352 (2)0.0512 (8)
H12A0.59640.43280.35920.077*
H12B0.61250.35700.28290.077*
H12C0.57220.31480.37370.077*
C130.1014 (5)0.3755 (2)0.5219 (2)0.0385 (7)
H4A0.273 (6)0.318 (3)0.569 (3)0.046*
H3N0.116 (6)0.380 (3)0.428 (3)0.046*
H4B0.250 (6)0.426 (3)0.583 (3)0.046*
H2N0.375 (7)0.378 (3)0.476 (3)0.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0375 (3)0.0404 (3)0.0333 (3)0.00125 (18)0.0015 (2)0.00105 (17)
S10.0663 (6)0.0548 (5)0.0357 (4)0.0002 (4)0.0060 (4)0.0019 (3)
N10.0401 (14)0.0415 (13)0.0337 (12)0.0000 (10)0.0007 (10)0.0027 (10)
N20.0377 (15)0.0476 (16)0.0391 (14)0.0008 (11)0.0026 (11)0.0017 (11)
N30.0402 (16)0.0554 (17)0.0412 (15)0.0007 (12)0.0024 (11)0.0054 (12)
N40.0487 (18)0.0489 (17)0.0547 (19)0.0019 (13)0.0149 (14)0.0061 (14)
C10.0407 (17)0.0364 (15)0.0428 (17)0.0035 (12)0.0067 (13)0.0007 (12)
C20.0477 (19)0.0410 (16)0.0501 (19)0.0010 (14)0.0126 (15)0.0041 (14)
C30.065 (2)0.052 (2)0.0422 (18)0.0127 (17)0.0075 (16)0.0104 (15)
C40.0442 (19)0.068 (2)0.0451 (19)0.0142 (16)0.0050 (15)0.0037 (16)
C50.0351 (16)0.0561 (19)0.0456 (18)0.0076 (14)0.0023 (13)0.0026 (15)
C60.083 (3)0.048 (2)0.051 (2)0.0168 (18)0.017 (2)0.0041 (15)
C70.047 (2)0.051 (2)0.085 (3)0.0084 (16)0.0028 (19)0.007 (2)
C80.073 (3)0.052 (2)0.0451 (18)0.0113 (18)0.0085 (17)0.0073 (15)
C90.069 (3)0.051 (2)0.058 (2)0.0077 (18)0.0071 (19)0.0122 (17)
C100.082 (3)0.0412 (18)0.061 (2)0.0059 (18)0.011 (2)0.0030 (16)
C110.0378 (16)0.0328 (14)0.0462 (17)0.0005 (11)0.0052 (13)0.0050 (12)
C120.0387 (18)0.060 (2)0.055 (2)0.0031 (15)0.0037 (15)0.0093 (16)
C130.0471 (18)0.0295 (13)0.0389 (15)0.0005 (12)0.0007 (13)0.0011 (11)
Geometric parameters (Å, º) top
Fe1—C22.040 (3)C1—C111.463 (5)
Fe1—C52.040 (3)C2—C31.403 (6)
Fe1—C72.040 (4)C2—H20.9800
Fe1—C12.046 (3)C3—C41.426 (6)
Fe1—C92.046 (4)C3—H30.9800
Fe1—C82.047 (4)C4—C51.414 (5)
Fe1—C62.050 (4)C4—H40.9800
Fe1—C32.052 (4)C5—H50.9800
Fe1—C102.052 (4)C6—C101.405 (7)
Fe1—C42.052 (4)C6—C71.427 (6)
S1—C131.674 (3)C6—H60.9800
N1—C111.288 (4)C7—C81.396 (7)
N1—N21.381 (4)C7—H70.9800
N2—C131.360 (4)C8—C91.400 (6)
N2—H2N0.85 (5)C8—H80.9800
N3—C131.326 (5)C9—C101.405 (6)
N3—N41.409 (4)C9—H90.9800
N3—H3N1.04 (4)C10—H100.9800
N4—H4A0.86 (4)C11—C121.495 (5)
N4—H4B0.91 (4)C12—H12A0.9600
C1—C51.431 (5)C12—H12B0.9600
C1—C21.442 (4)C12—H12C0.9600
C2—Fe1—C568.93 (14)C3—C2—H2125.9
C2—Fe1—C7109.73 (16)C1—C2—H2125.9
C5—Fe1—C7159.92 (18)Fe1—C2—H2125.9
C2—Fe1—C141.34 (12)C2—C3—C4108.7 (3)
C5—Fe1—C141.02 (14)C2—C3—Fe169.5 (2)
C7—Fe1—C1124.65 (17)C4—C3—Fe169.7 (2)
C2—Fe1—C9160.19 (17)C2—C3—H3125.7
C5—Fe1—C9121.08 (17)C4—C3—H3125.7
C7—Fe1—C967.13 (18)Fe1—C3—H3125.7
C1—Fe1—C9156.89 (16)C5—C4—C3107.9 (3)
C2—Fe1—C8124.93 (15)C5—C4—Fe169.3 (2)
C5—Fe1—C8157.19 (17)C3—C4—Fe169.6 (2)
C7—Fe1—C839.95 (18)C5—C4—H4126.1
C1—Fe1—C8161.13 (17)C3—C4—H4126.1
C9—Fe1—C840.00 (18)Fe1—C4—H4126.1
C2—Fe1—C6124.23 (17)C4—C5—C1108.4 (3)
C5—Fe1—C6122.18 (16)C4—C5—Fe170.3 (2)
C7—Fe1—C640.82 (19)C1—C5—Fe169.71 (18)
C1—Fe1—C6107.53 (15)C4—C5—H5125.8
C9—Fe1—C667.21 (17)C1—C5—H5125.8
C8—Fe1—C667.80 (17)Fe1—C5—H5125.8
C2—Fe1—C340.11 (17)C10—C6—C7107.5 (4)
C5—Fe1—C368.27 (15)C10—C6—Fe170.0 (2)
C7—Fe1—C3124.49 (17)C7—C6—Fe169.2 (2)
C1—Fe1—C368.43 (14)C10—C6—H6126.2
C9—Fe1—C3124.11 (19)C7—C6—H6126.2
C8—Fe1—C3109.42 (16)Fe1—C6—H6126.2
C6—Fe1—C3160.33 (19)C8—C7—C6108.1 (4)
C2—Fe1—C10158.85 (17)C8—C7—Fe170.3 (2)
C5—Fe1—C10105.76 (17)C6—C7—Fe169.9 (2)
C7—Fe1—C1067.87 (18)C8—C7—H7126.0
C1—Fe1—C10121.34 (15)C6—C7—H7126.0
C9—Fe1—C1040.09 (18)Fe1—C7—H7126.0
C8—Fe1—C1067.71 (16)C7—C8—C9107.8 (4)
C6—Fe1—C1040.07 (19)C7—C8—Fe169.8 (2)
C3—Fe1—C10158.7 (2)C9—C8—Fe170.0 (2)
C2—Fe1—C468.34 (16)C7—C8—H8126.1
C5—Fe1—C440.43 (14)C9—C8—H8126.1
C7—Fe1—C4159.19 (19)Fe1—C8—H8126.1
C1—Fe1—C468.56 (15)C8—C9—C10109.0 (4)
C9—Fe1—C4107.24 (18)C8—C9—Fe170.0 (2)
C8—Fe1—C4122.89 (17)C10—C9—Fe170.2 (2)
C6—Fe1—C4157.60 (18)C8—C9—H9125.5
C3—Fe1—C440.67 (16)C10—C9—H9125.5
C10—Fe1—C4121.69 (19)Fe1—C9—H9125.5
C11—N1—N2118.7 (3)C9—C10—C6107.6 (4)
C13—N2—N1117.8 (3)C9—C10—Fe169.7 (2)
C13—N2—H2N119 (3)C6—C10—Fe169.9 (2)
N1—N2—H2N123 (3)C9—C10—H10126.2
C13—N3—N4125.7 (3)C6—C10—H10126.2
C13—N3—H3N117 (2)Fe1—C10—H10126.2
N4—N3—H3N117 (2)N1—C11—C1115.6 (3)
N3—N4—H4A107 (3)N1—C11—C12124.4 (3)
N3—N4—H4B106 (3)C1—C11—C12120.1 (3)
H4A—N4—H4B108 (4)C11—C12—H12A109.5
C5—C1—C2106.9 (3)C11—C12—H12B109.5
C5—C1—C11126.3 (3)H12A—C12—H12B109.5
C2—C1—C11126.8 (3)C11—C12—H12C109.5
C5—C1—Fe169.27 (19)H12A—C12—H12C109.5
C2—C1—Fe169.11 (19)H12B—C12—H12C109.5
C11—C1—Fe1126.4 (2)N3—C13—N2115.0 (3)
C3—C2—C1108.1 (3)N3—C13—S1124.5 (3)
C3—C2—Fe170.4 (2)N2—C13—S1120.5 (3)
C1—C2—Fe169.55 (18)
C11—N1—N2—C13176.7 (3)C4—Fe1—C5—C1119.4 (3)
C2—Fe1—C1—C5118.5 (3)C2—Fe1—C6—C10160.6 (2)
C7—Fe1—C1—C5160.9 (2)C5—Fe1—C6—C1075.5 (3)
C9—Fe1—C1—C546.4 (5)C7—Fe1—C6—C10118.7 (4)
C8—Fe1—C1—C5168.3 (4)C1—Fe1—C6—C10118.2 (3)
C6—Fe1—C1—C5119.2 (2)C9—Fe1—C6—C1037.8 (3)
C3—Fe1—C1—C581.2 (2)C8—Fe1—C6—C1081.3 (3)
C10—Fe1—C1—C577.6 (3)C3—Fe1—C6—C10167.0 (4)
C4—Fe1—C1—C537.4 (2)C4—Fe1—C6—C1042.0 (5)
C5—Fe1—C1—C2118.5 (3)C2—Fe1—C6—C780.6 (3)
C7—Fe1—C1—C280.6 (3)C5—Fe1—C6—C7165.7 (2)
C9—Fe1—C1—C2164.9 (4)C1—Fe1—C6—C7123.1 (3)
C8—Fe1—C1—C249.8 (5)C9—Fe1—C6—C780.9 (3)
C6—Fe1—C1—C2122.3 (2)C8—Fe1—C6—C737.4 (3)
C3—Fe1—C1—C237.3 (2)C3—Fe1—C6—C748.3 (6)
C10—Fe1—C1—C2163.9 (2)C10—Fe1—C6—C7118.7 (4)
C4—Fe1—C1—C281.1 (2)C4—Fe1—C6—C7160.7 (4)
C2—Fe1—C1—C11121.0 (4)C10—C6—C7—C80.4 (4)
C5—Fe1—C1—C11120.5 (4)Fe1—C6—C7—C860.2 (3)
C7—Fe1—C1—C1140.4 (4)C10—C6—C7—Fe159.8 (3)
C9—Fe1—C1—C1174.1 (5)C2—Fe1—C7—C8121.3 (3)
C8—Fe1—C1—C1171.2 (6)C5—Fe1—C7—C8156.3 (4)
C6—Fe1—C1—C111.3 (3)C1—Fe1—C7—C8165.1 (2)
C3—Fe1—C1—C11158.3 (3)C9—Fe1—C7—C837.7 (3)
C10—Fe1—C1—C1142.9 (4)C6—Fe1—C7—C8118.8 (4)
C4—Fe1—C1—C11157.9 (3)C3—Fe1—C7—C878.9 (3)
C5—C1—C2—C30.9 (4)C10—Fe1—C7—C881.3 (3)
C11—C1—C2—C3179.4 (3)C4—Fe1—C7—C840.5 (6)
Fe1—C1—C2—C360.1 (2)C2—Fe1—C7—C6119.9 (3)
C5—C1—C2—Fe159.2 (2)C5—Fe1—C7—C637.5 (6)
C11—C1—C2—Fe1120.5 (3)C1—Fe1—C7—C676.1 (3)
C5—Fe1—C2—C380.9 (2)C9—Fe1—C7—C681.1 (3)
C7—Fe1—C2—C3120.5 (3)C8—Fe1—C7—C6118.8 (4)
C1—Fe1—C2—C3119.0 (3)C3—Fe1—C7—C6162.3 (2)
C9—Fe1—C2—C343.4 (5)C10—Fe1—C7—C637.5 (3)
C8—Fe1—C2—C378.5 (3)C4—Fe1—C7—C6159.3 (4)
C6—Fe1—C2—C3163.8 (2)C6—C7—C8—C90.1 (5)
C10—Fe1—C2—C3160.0 (4)Fe1—C7—C8—C959.9 (3)
C4—Fe1—C2—C337.3 (2)C6—C7—C8—Fe160.0 (3)
C5—Fe1—C2—C138.2 (2)C2—Fe1—C8—C778.9 (3)
C7—Fe1—C2—C1120.4 (2)C5—Fe1—C8—C7159.1 (4)
C9—Fe1—C2—C1162.4 (5)C1—Fe1—C8—C740.9 (6)
C8—Fe1—C2—C1162.5 (2)C9—Fe1—C8—C7118.7 (4)
C6—Fe1—C2—C177.2 (3)C6—Fe1—C8—C738.2 (3)
C3—Fe1—C2—C1119.0 (3)C3—Fe1—C8—C7120.9 (3)
C10—Fe1—C2—C140.9 (5)C10—Fe1—C8—C781.7 (3)
C4—Fe1—C2—C181.7 (2)C4—Fe1—C8—C7164.1 (3)
C1—C2—C3—C40.7 (4)C2—Fe1—C8—C9162.3 (3)
Fe1—C2—C3—C458.8 (3)C5—Fe1—C8—C940.4 (5)
C1—C2—C3—Fe159.5 (2)C7—Fe1—C8—C9118.7 (4)
C5—Fe1—C3—C282.7 (2)C1—Fe1—C8—C9159.7 (4)
C7—Fe1—C3—C279.7 (3)C6—Fe1—C8—C980.5 (3)
C1—Fe1—C3—C238.4 (2)C3—Fe1—C8—C9120.3 (3)
C9—Fe1—C3—C2163.7 (2)C10—Fe1—C8—C937.1 (3)
C8—Fe1—C3—C2121.6 (2)C4—Fe1—C8—C977.2 (3)
C6—Fe1—C3—C243.3 (5)C7—C8—C9—C100.2 (5)
C10—Fe1—C3—C2160.1 (4)Fe1—C8—C9—C1059.5 (3)
C4—Fe1—C3—C2120.2 (3)C7—C8—C9—Fe159.8 (3)
C2—Fe1—C3—C4120.2 (3)C2—Fe1—C9—C847.2 (6)
C5—Fe1—C3—C437.5 (2)C5—Fe1—C9—C8163.0 (2)
C7—Fe1—C3—C4160.2 (2)C7—Fe1—C9—C837.7 (3)
C1—Fe1—C3—C481.8 (2)C1—Fe1—C9—C8163.4 (4)
C9—Fe1—C3—C476.2 (3)C6—Fe1—C9—C882.1 (3)
C8—Fe1—C3—C4118.2 (2)C3—Fe1—C9—C879.5 (3)
C6—Fe1—C3—C4163.5 (4)C10—Fe1—C9—C8120.0 (4)
C10—Fe1—C3—C439.9 (5)C4—Fe1—C9—C8121.0 (3)
C2—C3—C4—C50.3 (4)C2—Fe1—C9—C10167.2 (4)
Fe1—C3—C4—C559.0 (3)C5—Fe1—C9—C1077.1 (3)
C2—C3—C4—Fe158.7 (3)C7—Fe1—C9—C1082.3 (3)
C2—Fe1—C4—C582.5 (2)C1—Fe1—C9—C1043.4 (5)
C7—Fe1—C4—C5171.2 (4)C8—Fe1—C9—C10120.0 (4)
C1—Fe1—C4—C537.9 (2)C6—Fe1—C9—C1037.8 (3)
C9—Fe1—C4—C5118.0 (2)C3—Fe1—C9—C10160.5 (3)
C8—Fe1—C4—C5159.0 (2)C4—Fe1—C9—C10119.0 (3)
C6—Fe1—C4—C546.2 (5)C8—C9—C10—C60.5 (5)
C3—Fe1—C4—C5119.3 (3)Fe1—C9—C10—C659.9 (3)
C10—Fe1—C4—C576.6 (3)C8—C9—C10—Fe159.4 (3)
C2—Fe1—C4—C336.8 (2)C7—C6—C10—C90.5 (4)
C5—Fe1—C4—C3119.3 (3)Fe1—C6—C10—C959.8 (3)
C7—Fe1—C4—C351.9 (5)C7—C6—C10—Fe159.3 (3)
C1—Fe1—C4—C381.4 (2)C2—Fe1—C10—C9168.0 (4)
C9—Fe1—C4—C3122.7 (3)C5—Fe1—C10—C9119.8 (3)
C8—Fe1—C4—C381.7 (3)C7—Fe1—C10—C980.3 (3)
C6—Fe1—C4—C3165.5 (4)C1—Fe1—C10—C9161.6 (3)
C10—Fe1—C4—C3164.1 (2)C8—Fe1—C10—C937.0 (3)
C3—C4—C5—C10.3 (4)C6—Fe1—C10—C9118.5 (4)
Fe1—C4—C5—C159.5 (2)C3—Fe1—C10—C949.4 (6)
C3—C4—C5—Fe159.2 (3)C4—Fe1—C10—C978.9 (3)
C2—C1—C5—C40.7 (4)C2—Fe1—C10—C649.4 (5)
C11—C1—C5—C4179.6 (3)C5—Fe1—C10—C6121.6 (3)
Fe1—C1—C5—C459.8 (2)C7—Fe1—C10—C638.2 (3)
C2—C1—C5—Fe159.1 (2)C1—Fe1—C10—C679.9 (3)
C11—C1—C5—Fe1120.6 (3)C9—Fe1—C10—C6118.5 (4)
C2—Fe1—C5—C480.9 (2)C8—Fe1—C10—C681.5 (3)
C7—Fe1—C5—C4170.9 (4)C3—Fe1—C10—C6168.0 (4)
C1—Fe1—C5—C4119.4 (3)C4—Fe1—C10—C6162.6 (2)
C9—Fe1—C5—C480.0 (3)N2—N1—C11—C1179.7 (3)
C8—Fe1—C5—C450.9 (5)N2—N1—C11—C121.1 (4)
C6—Fe1—C5—C4161.1 (2)C5—C1—C11—N119.8 (5)
C3—Fe1—C5—C437.7 (2)C2—C1—C11—N1160.5 (3)
C10—Fe1—C5—C4120.7 (3)Fe1—C1—C11—N1109.6 (3)
C2—Fe1—C5—C138.5 (2)C5—C1—C11—C12161.0 (3)
C7—Fe1—C5—C151.5 (5)C2—C1—C11—C1218.6 (5)
C9—Fe1—C5—C1160.6 (2)Fe1—C1—C11—C1271.3 (4)
C8—Fe1—C5—C1170.3 (4)N4—N3—C13—N2178.3 (3)
C6—Fe1—C5—C179.6 (3)N4—N3—C13—S12.3 (4)
C3—Fe1—C5—C181.7 (2)N1—N2—C13—N30.8 (4)
C10—Fe1—C5—C1119.9 (2)N1—N2—C13—S1179.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···N4i0.85 (5)2.51 (5)3.349 (5)170 (4)
N4—H4A···S1ii0.86 (4)2.65 (4)3.501 (3)169 (4)
N4—H4B···N1iii0.91 (4)2.62 (4)3.443 (4)151 (3)
C6—H6···S1iv0.982.813.671 (4)147
N3—H3N···N11.04 (4)2.09 (4)2.565 (4)105 (3)
Symmetry codes: (i) x+1, y, z; (ii) x1/2, y+1/2, z; (iii) x, y+1, z+1; (iv) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Fe(C5H5)(C8H11N4S)]
Mr316.21
Crystal system, space groupMonoclinic, P21/a
Temperature (K)296
a, b, c (Å)6.4560 (2), 13.0664 (3), 15.8559 (4)
β (°) 91.028 (2)
V3)1337.34 (6)
Z4
Radiation typeCu Kα
µ (mm1)10.47
Crystal size (mm)0.21 × 0.12 × 0.06
Data collection
DiffractometerAgilent SuperNova (Dual, Cu at zero, Atlas) CCD
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2012)
Tmin, Tmax0.435, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
8219, 2654, 2199
Rint0.044
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.155, 1.06
No. of reflections2654
No. of parameters185
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.90, 0.53

Computer programs: CrysAlis PRO (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and Mercury (Macrae et al., 2008), WinGX (Farrugia, 1999) and X-SEED (Barbour, 2001).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···N4i0.85 (5)2.51 (5)3.349 (5)170 (4)
N4—H4A···S1ii0.86 (4)2.65 (4)3.501 (3)169 (4)
N4—H4B···N1iii0.91 (4)2.62 (4)3.443 (4)151 (3)
C6—H6···S1iv0.982.813.671 (4)147.4
N3—H3N···N11.04 (4)2.09 (4)2.565 (4)105 (3)
Symmetry codes: (i) x+1, y, z; (ii) x1/2, y+1/2, z; (iii) x, y+1, z+1; (iv) x+1, y+1, z+1.
 

Acknowledgements

The authors would like to thank the Deanship of Scientific Research at King Abdulaziz University for the support of this research via Research Group Track of grant No. 3-102/428.

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationLi, X. & Du, L.-Z. (2011). Acta Cryst. E67, m1113.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOrnelas, C. (2011). New J. Chem. 35, 1973–1985.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVikneswaran, M. R., Teoh, S. G., Yeap, C. S. & Fun, H.-K. (2010a). Acta Cryst. E66, m679.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationVikneswaran, M. R., Teoh, S. G., Yeap, C. S. & Fun, H.-K. (2010b). Acta Cryst. E66, m697–m698.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds