metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­chlorido(η6-p-cymene)(eth­­oxy­di­phenyl­phosphane)ruthenium(II)

aDepartment of Chemistry, 1253 University of Oregon, Eugene, Oregon 97403-1253, USA
*Correspondence e-mail: dtyler@uoregon.edu

(Received 22 October 2012; accepted 3 November 2012; online 10 November 2012)

The title compound, [RuCl2(C10H14)(C14H15OP)], is an RuII complex in which an η6-p-cymene ligand, two chloride anions and the P atom of an ethoxydiphenylphosphane ligand form a piano-stool coordination environment about the central RuII atom.

Related literature

For related structures [Ru(η6-p-cymene)Cl2PPh3] and [Ru(η6-p-cymene)Cl2PPhOEt2], see: Elsegood et al. (2006[Elsegood, M. R. J., Smith, M. B. & Sanchez-Ballester, N. M. (2006). Acta Cryst. E62, m2838-m2840.]) and Alber­tin et al. (2010[Albertin, G., Antoniutti, S., Castro, J. & Paganelli, S. (2010). J. Organomet. Chem. 695, 2142-2152.]), respectively. For the application of similar complexes as nitrile hydration catalysts, see: Ahmed et al. (2009[Ahmed, T. J., Fox, B. R., Knapp, S. M. M., Yelle, R. B., Juliette, J. J. & Tyler, D. R. (2009). Inorg. Chem. 48, 7828-7837.]); Cavarzan et al. (2010[Cavarzan, A., Scarso, A. & Strukul, G. (2010). Green Chem. 12, 790-794.]); Cadierno et al. (2008[Cadierno, V., Francos, J. & Gimeno, J. (2008). Chem. Eur. J. 14, 6601-6605.]); García-Álvarez et al. (2010[García-Álvarez, R., Díez, J., Crochet, P. & Cadierno, V. (2010). Organo­metallics, 29, 3955-3965.], 2011[García-Álvarez, R., Díez, J., Crochet, P. & Cadierno, V. (2011). Organo­metallics, 30, 5442-5451.]); Knapp et al. (2012[Knapp, S. M. M., Sherbow, T. J., Juliette, J. J. & Tyler, D. R. (2012). Organometallics, 31, 2941-2944.]).

[Scheme 1]

Experimental

Crystal data
  • [RuCl2(C10H14)(C14H15OP)]

  • Mr = 536.41

  • Monoclinic, P 21 /n

  • a = 13.1818 (7) Å

  • b = 10.8481 (6) Å

  • c = 16.6888 (9) Å

  • β = 95.060 (1)°

  • V = 2377.2 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.97 mm−1

  • T = 173 K

  • 0.23 × 0.18 × 0.06 mm

Data collection
  • Bruker APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1995[Sheldrick, G. M. (1995). SADABS. University of Göttingen, Germany.]) Tmin = 0.809, Tmax = 0.944

  • 15739 measured reflections

  • 5164 independent reflections

  • 4294 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.068

  • S = 1.05

  • 5164 reflections

  • 378 parameters

  • All H-atom parameters refined

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.47 e Å−3

Table 1
Selected geometric parameters (Å, °) for the title compound and related compounds

Σ angles = sum of P—Ru—Cl1, P—Ru—Cl2, and Cl1—Ru— Cl2 angles.

  Title compound [Ru(η6-p-cymene)Cl2PPhOEt2]a [Ru(η6-p-cymene)Cl2PPh3]b
Ru—P 2.3147 (6) 2.2807 (7) 2.3438 (6)
Ru—Cl1 2.4124 (6) 2.4171 (7) 2.4154 (6)
Ru—Cl2 2.3992 (6) 2.4038 (7) 2.4151 (6)
Ru—C(av) 2.217 (1) 2.218 (4) 2.218 (2)
P—Ru – Cl1 90.67 (2) 87.59 (2) 87.094 (19)
P—Ru – Cl2 84.75 (2) 87.89 (2) 90.27 (2)
Cl1—Ru – Cl2 90.04 (2) 88.81 (2) 88.41 (2)
Σ angles 265.46 264.29 265.77
Notes: (a) Albertin et al. (2010[Albertin, G., Antoniutti, S., Castro, J. & Paganelli, S. (2010). J. Organomet. Chem. 695, 2142-2152.]); (b) Elsegood et al. (2006[Elsegood, M. R. J., Smith, M. B. & Sanchez-Ballester, N. M. (2006). Acta Cryst. E62, m2838-m2840.]).

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Investigations in our laboratory have focused on the synthesis and study of nitrile hydration catalysts for the hydration of cyanohydrins (Ahmed et al., 2009). Application of other similar complexes as nitrile hydration catalysts have also been reported (Cavarzan, et al., 2010; Cadierno, et al., 2008; García-Álvarez, et al., 2010, 2011; Knapp, et al., 2012). These catalysts have been found to be susceptible to poisoning by cyanide, which forms when cyanohydrins decompose in aqueous solutions. The title compound [Ru(η6-p-cymene)Cl2PPh2OEt] (1), as well as the similar compounds [Ru(η6-p-cymene)Cl2PPhOEt2], (Albertin, et al., 2010), (2), and [Ru(η6-p- cymene)Cl2PPh3] (3), (Elsegood, et al., 2006), have been used previously to hydrate nitriles in aqueous solutions, where addition of surfactant was used to increase the solubility of the catalyst by promoting the formation of micelles (Cavarzan, et al., 2010). It was hypothesized that a hydrophobic catalyst would be resistant to cyanide poisoning under biphasic conditions, because the cyanide would be in the aqueous phase and the catalyst in the organic phase. Therefore, 1 was synthesized and used as a nitrile hydration catalyst under biphasic conditions using 1,1,2,2-tetrachloroethane at 100 °C. Hydration of the model nitriles acetonitrile and 3-hydroxypropionitrile went to completion within 48 h under these conditions. Unfortunately, no hydration of the cyanohydrins glycolonitrile, lactonitrile, or acetone cyanohydrin was observed.

The structure of complex 1 reported here adopts the classic piano stool structure with a pseudo-tetrahedral arrangement of the p-cymene, chloride anions and the phosphane about the ruthenium metal center. The bond lengths and angles about the Ru core compare well with 2 (Albertin, et al., 2010) and 3 (Elsegood, et al., 2006), which have been investigated previously (Table 1). The average Ru – C distance is 2.217 (3) Å, which is very similar to the previously reported Ru – C distances of 2.218 (4) Å and 2.218 (2) Å for 2 and 3, respectively. The Ru – C bonds trans to the phosphane are lengthened, as has been observed previously (Elsegood, et al., 2006), where Ru – C2 (2.228 (3) Å) and Ru – C3 (2.242 (2) Å) are longer than the other Ru – C bonds (average length 2.208 (3) Å). A comparison of the sum of the P – Ru – Cl1, P – Ru – Cl2, and Cl1 – Ru – Cl2 angles between 13 indicates that, as expected, 1 is more sterically hindered than 2 and less hindered than 3 (Table 1).

Related literature top

For related structures, see: [Ru(η6-p-cymene)Cl2PPh3] (Elsegood et al., 2006) and [Ru(η6-p-cymene)Cl2PPhOEt2] (Albertin et al., 2010). For the application of similar complexes as nitrile hydration catalysts, see: Ahmed et al. (2009); Cavarzan et al. (2010); Cadierno et al. (2008); García-Álvarez et al. (2010, 2011); Knapp et al. (2012).

Experimental top

The title compound was prepared following literature procedures (Albertin, et al., 2010). The red solid was dissolved in THF under a nitrogen atmosphere, and single crystals were obtained by slow evaporation of THF.

Refinement top

H atoms were found on the residual density and refined with isotropic thermal parameters.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The crystal structure of dichloro(η6-p-cymene)(ethoxydiphenylphosphane)ruthenium(II) with 50% probability displacement ellipsoids and the atom-numbering scheme. H atoms are omitted for clarity.
Dichlorido(η6-p-cymene)(ethoxydiphenylphosphane)ruthenium(II) top
Crystal data top
[RuCl2(C10H14)(C14H15OP)]F(000) = 1096
Mr = 536.41Dx = 1.499 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4833 reflections
a = 13.1818 (7) Åθ = 2.2–28.2°
b = 10.8481 (6) ŵ = 0.97 mm1
c = 16.6888 (9) ÅT = 173 K
β = 95.060 (1)°Plate, red
V = 2377.2 (2) Å30.23 × 0.18 × 0.06 mm
Z = 4
Data collection top
Bruker APEX CCD area-detector
diffractometer
5164 independent reflections
Radiation source: fine-focus sealed tube4294 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ϕ and ω scansθmax = 27.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1995)
h = 1216
Tmin = 0.809, Tmax = 0.944k = 1312
15739 measured reflectionsl = 2021
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: difference Fourier map
wR(F2) = 0.068All H-atom parameters refined
S = 1.05 w = 1/[σ2(Fo2) + (0.0316P)2 + 0.5053P]
where P = (Fo2 + 2Fc2)/3
5164 reflections(Δ/σ)max = 0.002
378 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = 0.47 e Å3
Crystal data top
[RuCl2(C10H14)(C14H15OP)]V = 2377.2 (2) Å3
Mr = 536.41Z = 4
Monoclinic, P21/nMo Kα radiation
a = 13.1818 (7) ŵ = 0.97 mm1
b = 10.8481 (6) ÅT = 173 K
c = 16.6888 (9) Å0.23 × 0.18 × 0.06 mm
β = 95.060 (1)°
Data collection top
Bruker APEX CCD area-detector
diffractometer
5164 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1995)
4294 reflections with I > 2σ(I)
Tmin = 0.809, Tmax = 0.944Rint = 0.028
15739 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.068All H-atom parameters refined
S = 1.05Δρmax = 0.50 e Å3
5164 reflectionsΔρmin = 0.47 e Å3
378 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken

into account individually in the estimation of e.s.d.'s in distances, angles

and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and

goodness of fit S are based on F2, conventional R-factors R are based

on F, with F set to zero for negative F2. The threshold expression of

F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is

not relevant to the choice of reflections for refinement. R-factors based

on F2 are statistically about twice as large as those based on F, and R-

factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ru10.922759 (14)0.993847 (17)0.179893 (11)0.02079 (7)
Cl10.85769 (5)1.20143 (6)0.16713 (4)0.03260 (15)
Cl21.08699 (5)1.06510 (6)0.14859 (4)0.02962 (14)
P10.98348 (5)1.03105 (5)0.31207 (4)0.02006 (13)
O10.90032 (12)1.01438 (14)0.37705 (10)0.0244 (4)
C10.76577 (19)0.9210 (2)0.15958 (17)0.0346 (6)
C20.8041 (2)0.9389 (3)0.08317 (16)0.0347 (6)
C30.8954 (2)0.8889 (3)0.06431 (16)0.0335 (6)
C40.95485 (19)0.8142 (2)0.12134 (15)0.0292 (6)
C50.9169 (2)0.7927 (2)0.19614 (16)0.0287 (6)
C60.8235 (2)0.8463 (2)0.21485 (16)0.0307 (6)
C70.6666 (3)0.9770 (4)0.1789 (3)0.0537 (9)
C81.0545 (2)0.7606 (3)0.09785 (19)0.0407 (7)
C91.0331 (3)0.6736 (4)0.0262 (3)0.0617 (10)
C101.1180 (3)0.6994 (4)0.1653 (3)0.0686 (12)
C111.07110 (18)0.9129 (2)0.35063 (14)0.0245 (5)
C121.0370 (2)0.8121 (2)0.39239 (15)0.0319 (6)
C131.1040 (2)0.7190 (3)0.41857 (18)0.0444 (8)
C141.2050 (2)0.7263 (3)0.40394 (18)0.0446 (8)
C151.2399 (2)0.8264 (3)0.36299 (17)0.0403 (7)
C161.1739 (2)0.9189 (3)0.33660 (16)0.0327 (6)
C171.05088 (17)1.1723 (2)0.34448 (14)0.0238 (5)
C181.0912 (2)1.1768 (3)0.42473 (16)0.0336 (6)
C191.1478 (2)1.2776 (3)0.45319 (18)0.0447 (7)
C201.1628 (2)1.3750 (3)0.40183 (19)0.0448 (8)
C211.1217 (2)1.3722 (3)0.32335 (18)0.0384 (7)
C221.0657 (2)1.2705 (2)0.29405 (16)0.0297 (6)
C230.8140 (2)1.0977 (3)0.37466 (17)0.0317 (6)
C240.7362 (2)1.0397 (3)0.4228 (2)0.0446 (8)
H20.770 (2)0.993 (2)0.0517 (17)0.033 (8)*
H30.9204 (18)0.910 (2)0.0173 (15)0.029 (7)*
H50.956 (2)0.751 (3)0.2361 (16)0.038 (8)*
H60.8040 (18)0.836 (2)0.2656 (15)0.027 (7)*
H7A0.612 (3)0.942 (3)0.147 (2)0.065 (11)*
H7B0.649 (3)0.982 (3)0.234 (3)0.093 (15)*
H7C0.667 (2)1.058 (3)0.1647 (19)0.053 (10)*
H81.092 (2)0.827 (3)0.0773 (19)0.059 (10)*
H9A0.991 (3)0.704 (4)0.019 (3)0.109 (18)*
H9B0.997 (3)0.593 (4)0.046 (2)0.091 (13)*
H9C1.100 (3)0.650 (3)0.010 (2)0.072 (11)*
H10A1.179 (3)0.667 (3)0.148 (2)0.072 (11)*
H10B1.129 (3)0.747 (4)0.213 (3)0.100 (15)*
H10C1.077 (2)0.625 (3)0.1826 (18)0.051 (10)*
H120.964 (2)0.806 (2)0.4018 (15)0.036 (7)*
H131.0801 (19)0.650 (2)0.4488 (15)0.033 (7)*
H141.249 (2)0.662 (3)0.4195 (17)0.047 (8)*
H151.309 (2)0.828 (3)0.3514 (16)0.042 (8)*
H161.192 (2)0.985 (2)0.3115 (16)0.029 (7)*
H181.0840 (19)1.115 (3)0.4602 (16)0.036 (8)*
H191.175 (2)1.280 (3)0.5067 (18)0.052 (9)*
H201.202 (2)1.435 (3)0.4187 (16)0.038 (8)*
H211.133 (2)1.438 (3)0.2895 (18)0.050 (9)*
H221.0405 (18)1.269 (2)0.2397 (15)0.026 (7)*
H23A0.790 (2)1.104 (3)0.3202 (18)0.051 (9)*
H23B0.8364 (19)1.178 (3)0.3987 (15)0.034 (7)*
H24A0.709 (3)0.965 (3)0.396 (2)0.063 (11)*
H24B0.762 (3)1.026 (3)0.479 (2)0.064 (11)*
H24C0.681 (3)1.094 (3)0.4211 (19)0.067 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru10.02214 (11)0.02052 (11)0.01992 (10)0.00193 (8)0.00301 (7)0.00024 (7)
Cl10.0357 (4)0.0261 (3)0.0359 (3)0.0058 (3)0.0025 (3)0.0038 (3)
Cl20.0299 (3)0.0306 (3)0.0299 (3)0.0086 (3)0.0110 (3)0.0030 (3)
P10.0208 (3)0.0191 (3)0.0207 (3)0.0008 (2)0.0042 (2)0.0004 (2)
O10.0241 (9)0.0250 (9)0.0251 (9)0.0060 (7)0.0082 (7)0.0024 (7)
C10.0259 (14)0.0330 (15)0.0448 (16)0.0073 (11)0.0019 (12)0.0089 (12)
C20.0365 (16)0.0329 (15)0.0321 (15)0.0023 (12)0.0104 (12)0.0027 (12)
C30.0435 (16)0.0358 (15)0.0214 (13)0.0113 (12)0.0046 (12)0.0073 (11)
C40.0293 (14)0.0235 (13)0.0357 (14)0.0078 (10)0.0072 (11)0.0098 (11)
C50.0335 (15)0.0207 (13)0.0312 (14)0.0063 (10)0.0008 (12)0.0019 (10)
C60.0343 (15)0.0290 (14)0.0302 (14)0.0125 (11)0.0103 (12)0.0018 (11)
C70.0286 (17)0.055 (2)0.078 (3)0.0012 (15)0.0034 (18)0.013 (2)
C80.0367 (16)0.0306 (15)0.0564 (19)0.0051 (13)0.0132 (14)0.0133 (14)
C90.060 (2)0.067 (3)0.062 (2)0.002 (2)0.025 (2)0.030 (2)
C100.058 (3)0.074 (3)0.075 (3)0.030 (2)0.008 (2)0.018 (2)
C110.0262 (13)0.0260 (13)0.0215 (12)0.0047 (10)0.0043 (10)0.0031 (10)
C120.0340 (15)0.0308 (14)0.0319 (14)0.0081 (11)0.0091 (12)0.0053 (11)
C130.0538 (19)0.0371 (17)0.0446 (18)0.0145 (14)0.0173 (15)0.0175 (14)
C140.0479 (19)0.0487 (19)0.0380 (16)0.0287 (15)0.0087 (14)0.0106 (14)
C150.0295 (15)0.0545 (19)0.0377 (16)0.0183 (13)0.0068 (13)0.0021 (14)
C160.0306 (15)0.0373 (16)0.0307 (14)0.0054 (12)0.0060 (11)0.0030 (12)
C170.0221 (12)0.0241 (12)0.0256 (12)0.0005 (10)0.0047 (10)0.0040 (10)
C180.0402 (16)0.0344 (15)0.0263 (13)0.0053 (12)0.0039 (12)0.0008 (12)
C190.056 (2)0.0455 (18)0.0320 (16)0.0122 (15)0.0005 (14)0.0122 (14)
C200.0526 (19)0.0357 (17)0.0466 (18)0.0199 (15)0.0068 (15)0.0145 (14)
C210.0488 (18)0.0270 (15)0.0405 (16)0.0090 (13)0.0107 (13)0.0018 (12)
C220.0351 (15)0.0269 (14)0.0272 (13)0.0018 (11)0.0025 (11)0.0022 (11)
C230.0311 (15)0.0308 (15)0.0346 (15)0.0120 (11)0.0121 (12)0.0054 (12)
C240.0333 (17)0.059 (2)0.0442 (19)0.0145 (15)0.0171 (14)0.0121 (16)
Geometric parameters (Å, º) top
Ru1—C62.180 (2)C9—H9C0.98 (4)
Ru1—C52.201 (2)C10—H10A0.95 (4)
Ru1—C12.213 (2)C10—H10B0.95 (4)
Ru1—C22.228 (3)C10—H10C1.03 (3)
Ru1—C42.237 (2)C11—C121.393 (3)
Ru1—C32.242 (2)C11—C161.397 (3)
Ru1—P12.3147 (6)C12—C131.386 (4)
Ru1—Cl22.3992 (6)C12—H120.98 (3)
Ru1—Cl12.4124 (6)C13—C141.377 (4)
P1—O11.6187 (17)C13—H130.97 (3)
P1—C111.805 (2)C14—C151.383 (4)
P1—C171.829 (2)C14—H140.92 (3)
O1—C231.451 (3)C15—C161.375 (4)
C1—C61.401 (4)C15—H150.95 (3)
C1—C21.426 (4)C16—H160.87 (3)
C1—C71.502 (4)C17—C221.382 (3)
C2—C31.382 (4)C17—C181.398 (3)
C2—H20.88 (3)C18—C191.383 (4)
C3—C41.430 (4)C18—H180.91 (3)
C3—H30.91 (2)C19—C201.386 (4)
C4—C51.404 (3)C19—H190.93 (3)
C4—C81.519 (4)C20—C211.373 (4)
C5—C61.422 (4)C20—H200.86 (3)
C5—H50.92 (3)C21—C221.391 (4)
C6—H60.91 (2)C21—H210.93 (3)
C7—H7A0.94 (4)C22—H220.94 (2)
C7—H7B0.98 (4)C23—C241.497 (4)
C7—H7C0.91 (3)C23—H23A0.94 (3)
C8—C101.497 (5)C23—H23B1.00 (3)
C8—C91.530 (4)C24—H24A0.98 (3)
C8—H80.96 (3)C24—H24B0.98 (4)
C9—H9A0.95 (4)C24—H24C0.94 (3)
C9—H9B1.06 (4)
C6—Ru1—C537.88 (10)C1—C6—H6120.1 (16)
C6—Ru1—C137.18 (10)C5—C6—H6118.3 (16)
C5—Ru1—C167.83 (10)Ru1—C6—H6124.3 (16)
C6—Ru1—C266.27 (10)C1—C7—H7A110 (2)
C5—Ru1—C278.12 (10)C1—C7—H7B121 (3)
C1—Ru1—C237.45 (10)H7A—C7—H7B109 (3)
C6—Ru1—C467.57 (9)C1—C7—H7C108 (2)
C5—Ru1—C436.88 (9)H7A—C7—H7C106 (3)
C1—Ru1—C480.35 (9)H7B—C7—H7C102 (3)
C2—Ru1—C466.31 (10)C10—C8—C4114.5 (3)
C6—Ru1—C378.61 (10)C10—C8—C9111.5 (3)
C5—Ru1—C366.28 (10)C4—C8—C9109.5 (3)
C1—Ru1—C367.02 (10)C10—C8—H8109.3 (19)
C2—Ru1—C336.02 (10)C4—C8—H8106.9 (19)
C4—Ru1—C337.24 (10)C9—C8—H8104.6 (19)
C6—Ru1—P192.19 (7)C8—C9—H9A117 (3)
C5—Ru1—P193.92 (7)C8—C9—H9B109 (2)
C1—Ru1—P1116.63 (7)H9A—C9—H9B106 (3)
C2—Ru1—P1154.01 (8)C8—C9—H9C106 (2)
C4—Ru1—P1120.35 (7)H9A—C9—H9C110 (3)
C3—Ru1—P1157.59 (8)H9B—C9—H9C108 (3)
C6—Ru1—Cl2150.41 (8)C8—C10—H10A112 (2)
C5—Ru1—Cl2112.84 (7)C8—C10—H10B115 (3)
C1—Ru1—Cl2158.61 (7)H10A—C10—H10B112 (3)
C2—Ru1—Cl2121.18 (8)C8—C10—H10C106.6 (17)
C4—Ru1—Cl288.65 (6)H10A—C10—H10C106 (3)
C3—Ru1—Cl293.21 (7)H10B—C10—H10C104 (3)
P1—Ru1—Cl284.75 (2)C12—C11—C16118.7 (2)
C6—Ru1—Cl1119.46 (7)C12—C11—P1120.77 (18)
C5—Ru1—Cl1156.97 (7)C16—C11—P1120.46 (19)
C1—Ru1—Cl189.97 (7)C13—C12—C11120.4 (3)
C2—Ru1—Cl187.95 (8)C13—C12—H12120.1 (16)
C4—Ru1—Cl1148.65 (7)C11—C12—H12119.5 (16)
C3—Ru1—Cl1111.67 (8)C14—C13—C12120.0 (3)
P1—Ru1—Cl190.67 (2)C14—C13—H13120.1 (15)
Cl2—Ru1—Cl190.04 (2)C12—C13—H13119.8 (15)
O1—P1—C1197.57 (10)C13—C14—C15120.2 (3)
O1—P1—C17103.62 (10)C13—C14—H14119.6 (18)
C11—P1—C17102.15 (11)C15—C14—H14120.2 (18)
O1—P1—Ru1114.92 (7)C16—C15—C14120.1 (3)
C11—P1—Ru1111.87 (8)C16—C15—H15121.0 (17)
C17—P1—Ru1123.10 (8)C14—C15—H15118.8 (17)
C23—O1—P1119.18 (15)C15—C16—C11120.6 (3)
C6—C1—C2117.0 (2)C15—C16—H16123.9 (18)
C6—C1—C7121.6 (3)C11—C16—H16115.5 (18)
C2—C1—C7121.4 (3)C22—C17—C18119.6 (2)
C6—C1—Ru170.10 (14)C22—C17—P1123.84 (18)
C2—C1—Ru171.82 (15)C18—C17—P1116.54 (19)
C7—C1—Ru1130.0 (2)C19—C18—C17120.3 (3)
C3—C2—C1122.3 (3)C19—C18—H18116.4 (17)
C3—C2—Ru172.54 (15)C17—C18—H18123.2 (17)
C1—C2—Ru170.73 (15)C18—C19—C20119.5 (3)
C3—C2—H2122.3 (19)C18—C19—H19119.9 (19)
C1—C2—H2114.8 (19)C20—C19—H19120.6 (19)
Ru1—C2—H2123.0 (17)C21—C20—C19120.4 (3)
C2—C3—C4120.5 (2)C21—C20—H20120.2 (19)
C2—C3—Ru171.44 (15)C19—C20—H20119.2 (19)
C4—C3—Ru171.21 (14)C20—C21—C22120.4 (3)
C2—C3—H3119.4 (16)C20—C21—H21119.5 (19)
C4—C3—H3119.8 (16)C22—C21—H21120.1 (19)
Ru1—C3—H3125.2 (16)C17—C22—C21119.7 (2)
C5—C4—C3118.0 (2)C17—C22—H22121.4 (15)
C5—C4—C8123.3 (3)C21—C22—H22118.8 (15)
C3—C4—C8118.7 (2)O1—C23—C24107.2 (2)
C5—C4—Ru170.18 (14)O1—C23—H23A105.7 (18)
C3—C4—Ru171.56 (14)C24—C23—H23A111.1 (18)
C8—C4—Ru1130.35 (17)O1—C23—H23B109.4 (15)
C4—C5—C6120.7 (2)C24—C23—H23B110.2 (15)
C4—C5—Ru172.94 (14)H23A—C23—H23B113 (2)
C6—C5—Ru170.22 (14)C23—C24—H24A109.7 (19)
C4—C5—H5120.3 (16)C23—C24—H24B113 (2)
C6—C5—H5118.6 (16)H24A—C24—H24B113 (3)
Ru1—C5—H5123.4 (17)C23—C24—H24C107 (2)
C1—C6—C5121.5 (2)H24A—C24—H24C105 (3)
C1—C6—Ru172.72 (15)H24B—C24—H24C109 (3)
C5—C6—Ru171.89 (14)
C6—Ru1—P1—O135.73 (10)P1—Ru1—C4—C549.58 (16)
C5—Ru1—P1—O173.63 (9)Cl2—Ru1—C4—C5132.70 (15)
C1—Ru1—P1—O16.51 (10)Cl1—Ru1—C4—C5139.44 (14)
C2—Ru1—P1—O12.91 (19)C6—Ru1—C4—C3100.96 (17)
C4—Ru1—P1—O1100.89 (10)C5—Ru1—C4—C3130.2 (2)
C3—Ru1—P1—O1100.5 (2)C1—Ru1—C4—C364.48 (16)
Cl2—Ru1—P1—O1173.77 (7)C2—Ru1—C4—C328.07 (15)
Cl1—Ru1—P1—O183.79 (7)P1—Ru1—C4—C3179.78 (13)
C6—Ru1—P1—C1174.33 (11)Cl2—Ru1—C4—C397.10 (14)
C5—Ru1—P1—C1136.43 (11)Cl1—Ru1—C4—C39.2 (2)
C1—Ru1—P1—C11103.55 (12)C6—Ru1—C4—C8146.6 (3)
C2—Ru1—P1—C11107.15 (19)C5—Ru1—C4—C8117.4 (3)
C4—Ru1—P1—C119.17 (11)C1—Ru1—C4—C8176.9 (3)
C3—Ru1—P1—C119.5 (2)C2—Ru1—C4—C8140.5 (3)
Cl2—Ru1—P1—C1176.17 (9)C3—Ru1—C4—C8112.4 (3)
Cl1—Ru1—P1—C11166.15 (9)P1—Ru1—C4—C867.8 (3)
C6—Ru1—P1—C17163.51 (12)Cl2—Ru1—C4—C815.3 (2)
C5—Ru1—P1—C17158.59 (11)Cl1—Ru1—C4—C8103.2 (3)
C1—Ru1—P1—C17134.29 (12)C3—C4—C5—C61.5 (3)
C2—Ru1—P1—C17130.70 (19)C8—C4—C5—C6179.5 (2)
C4—Ru1—P1—C17131.33 (11)Ru1—C4—C5—C653.6 (2)
C3—Ru1—P1—C17131.7 (2)C3—C4—C5—Ru155.1 (2)
Cl2—Ru1—P1—C1745.98 (9)C8—C4—C5—Ru1125.9 (2)
Cl1—Ru1—P1—C1743.99 (9)C6—Ru1—C5—C4132.7 (2)
C11—P1—O1—C23176.00 (19)C1—Ru1—C5—C4103.97 (17)
C17—P1—O1—C2371.5 (2)C2—Ru1—C5—C466.18 (16)
Ru1—P1—O1—C2365.57 (19)C3—Ru1—C5—C430.32 (15)
C5—Ru1—C1—C629.19 (15)P1—Ru1—C5—C4138.82 (14)
C2—Ru1—C1—C6128.8 (2)Cl2—Ru1—C5—C452.87 (16)
C4—Ru1—C1—C665.40 (16)Cl1—Ru1—C5—C4120.15 (18)
C3—Ru1—C1—C6101.78 (17)C1—Ru1—C5—C628.68 (15)
P1—Ru1—C1—C653.82 (16)C2—Ru1—C5—C666.47 (16)
Cl2—Ru1—C1—C6125.43 (19)C4—Ru1—C5—C6132.7 (2)
Cl1—Ru1—C1—C6144.56 (15)C3—Ru1—C5—C6102.33 (17)
C6—Ru1—C1—C2128.8 (2)P1—Ru1—C5—C688.53 (14)
C5—Ru1—C1—C299.58 (17)Cl2—Ru1—C5—C6174.48 (13)
C4—Ru1—C1—C263.37 (17)Cl1—Ru1—C5—C612.5 (3)
C3—Ru1—C1—C226.99 (16)C2—C1—C6—C51.1 (4)
P1—Ru1—C1—C2177.41 (14)C7—C1—C6—C5179.5 (3)
Cl2—Ru1—C1—C23.3 (3)Ru1—C1—C6—C555.1 (2)
Cl1—Ru1—C1—C286.67 (16)C2—C1—C6—Ru156.2 (2)
C6—Ru1—C1—C7115.1 (4)C7—C1—C6—Ru1125.4 (3)
C5—Ru1—C1—C7144.3 (3)C4—C5—C6—C10.6 (4)
C2—Ru1—C1—C7116.1 (4)Ru1—C5—C6—C155.5 (2)
C4—Ru1—C1—C7179.5 (3)C4—C5—C6—Ru154.8 (2)
C3—Ru1—C1—C7143.1 (3)C5—Ru1—C6—C1132.7 (2)
P1—Ru1—C1—C761.3 (3)C2—Ru1—C6—C131.19 (16)
Cl2—Ru1—C1—C7119.4 (3)C4—Ru1—C6—C1104.13 (17)
Cl1—Ru1—C1—C729.4 (3)C3—Ru1—C6—C166.83 (16)
C6—C1—C2—C32.0 (4)P1—Ru1—C6—C1133.78 (15)
C7—C1—C2—C3179.6 (3)Cl2—Ru1—C6—C1143.00 (14)
Ru1—C1—C2—C353.3 (2)Cl1—Ru1—C6—C141.76 (17)
C6—C1—C2—Ru155.3 (2)C1—Ru1—C6—C5132.7 (2)
C7—C1—C2—Ru1126.3 (3)C2—Ru1—C6—C5101.47 (17)
C6—Ru1—C2—C3103.75 (19)C4—Ru1—C6—C528.53 (15)
C5—Ru1—C2—C365.80 (17)C3—Ru1—C6—C565.83 (16)
C1—Ru1—C2—C3134.7 (3)P1—Ru1—C6—C593.57 (14)
C4—Ru1—C2—C328.96 (16)Cl2—Ru1—C6—C510.3 (2)
P1—Ru1—C2—C3140.02 (16)Cl1—Ru1—C6—C5174.42 (12)
Cl2—Ru1—C2—C343.85 (19)C5—C4—C8—C109.4 (4)
Cl1—Ru1—C2—C3132.65 (16)C3—C4—C8—C10171.6 (3)
C6—Ru1—C2—C130.98 (16)Ru1—C4—C8—C1082.1 (4)
C5—Ru1—C2—C168.93 (16)C5—C4—C8—C9116.6 (3)
C4—Ru1—C2—C1105.77 (18)C3—C4—C8—C962.3 (4)
C3—Ru1—C2—C1134.7 (3)Ru1—C4—C8—C9151.9 (3)
P1—Ru1—C2—C15.3 (3)O1—P1—C11—C1227.2 (2)
Cl2—Ru1—C2—C1178.57 (13)C17—P1—C11—C12132.9 (2)
Cl1—Ru1—C2—C192.62 (15)Ru1—P1—C11—C1293.6 (2)
C1—C2—C3—C41.1 (4)O1—P1—C11—C16155.1 (2)
Ru1—C2—C3—C453.6 (2)C17—P1—C11—C1649.3 (2)
C1—C2—C3—Ru152.5 (2)Ru1—P1—C11—C1684.2 (2)
C6—Ru1—C3—C265.11 (18)C16—C11—C12—C130.7 (4)
C5—Ru1—C3—C2102.84 (18)P1—C11—C12—C13177.0 (2)
C1—Ru1—C3—C227.99 (17)C11—C12—C13—C140.6 (4)
C4—Ru1—C3—C2132.9 (2)C12—C13—C14—C150.2 (5)
P1—Ru1—C3—C2132.40 (19)C13—C14—C15—C160.1 (5)
Cl2—Ru1—C3—C2143.59 (16)C14—C15—C16—C110.1 (4)
Cl1—Ru1—C3—C252.27 (18)C12—C11—C16—C150.5 (4)
C6—Ru1—C3—C467.78 (15)P1—C11—C16—C15177.3 (2)
C5—Ru1—C3—C430.05 (14)O1—P1—C17—C22128.6 (2)
C1—Ru1—C3—C4104.90 (17)C11—P1—C17—C22130.4 (2)
C2—Ru1—C3—C4132.9 (2)Ru1—P1—C17—C223.9 (2)
P1—Ru1—C3—C40.5 (3)O1—P1—C17—C1853.3 (2)
Cl2—Ru1—C3—C483.53 (14)C11—P1—C17—C1847.7 (2)
Cl1—Ru1—C3—C4174.85 (12)Ru1—P1—C17—C18174.27 (16)
C2—C3—C4—C50.7 (4)C22—C17—C18—C191.5 (4)
Ru1—C3—C4—C554.4 (2)P1—C17—C18—C19176.7 (2)
C2—C3—C4—C8179.7 (2)C17—C18—C19—C201.0 (5)
Ru1—C3—C4—C8126.5 (2)C18—C19—C20—C210.3 (5)
C2—C3—C4—Ru153.8 (2)C19—C20—C21—C221.1 (5)
C6—Ru1—C4—C529.25 (15)C18—C17—C22—C210.8 (4)
C1—Ru1—C4—C565.72 (16)P1—C17—C22—C21177.3 (2)
C2—Ru1—C4—C5102.14 (17)C20—C21—C22—C170.5 (4)
C3—Ru1—C4—C5130.2 (2)P1—O1—C23—C24163.4 (2)

Experimental details

Crystal data
Chemical formula[RuCl2(C10H14)(C14H15OP)]
Mr536.41
Crystal system, space groupMonoclinic, P21/n
Temperature (K)173
a, b, c (Å)13.1818 (7), 10.8481 (6), 16.6888 (9)
β (°) 95.060 (1)
V3)2377.2 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.97
Crystal size (mm)0.23 × 0.18 × 0.06
Data collection
DiffractometerBruker APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1995)
Tmin, Tmax0.809, 0.944
No. of measured, independent and
observed [I > 2σ(I)] reflections
15739, 5164, 4294
Rint0.028
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.068, 1.05
No. of reflections5164
No. of parameters378
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.50, 0.47

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, °) for the title compound and related compounds top
Σ angles = sum of P—Ru—Cl1, P—Ru—Cl2, and Cl1—Ru—Cl2 angles.
Title compound[Ru(η6-p-cymene)Cl2PPhOEt2]a[Ru(η6-p-cymene)Cl2PPh3]b
Ru—P2.3147 (6)2.2807 (7)2.3438 (6)
Ru—Cl12.4124 (6)2.4171 (7)2.4154 (6)
Ru—Cl22.3992 (6)2.4038 (7)2.4151 (6)
Ru—C(av)2.217 (1)2.218 (4)2.218 (2)
P—Ru – Cl190.67 (2)87.59 (2)87.094 (19)
P—Ru – Cl284.75 (2)87.89 (2)90.27 (2)
Cl1—Ru – Cl290.04 (2)88.81 (2)88.41 (2)
Σ angles265.46264.29265.77
Notes: (a) Albertin et al. (2010); (b) Elsegood et al. (2006).
 

Acknowledgements

Acknowledgement is made to the NSF (CHE-0719171) for the support of research carried out in the authors' laboratory. SMMK also wishes to acknowledge the US Department of Education (P200A070436) and the NSF Graduate STEM Fellows in K-12 Education (GK-12) program (DGE-0742540) for additional support.

References

First citationAhmed, T. J., Fox, B. R., Knapp, S. M. M., Yelle, R. B., Juliette, J. J. & Tyler, D. R. (2009). Inorg. Chem. 48, 7828–7837.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAlbertin, G., Antoniutti, S., Castro, J. & Paganelli, S. (2010). J. Organomet. Chem. 695, 2142–2152.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCadierno, V., Francos, J. & Gimeno, J. (2008). Chem. Eur. J. 14, 6601–6605.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCavarzan, A., Scarso, A. & Strukul, G. (2010). Green Chem. 12, 790–794.  Web of Science CrossRef CAS Google Scholar
First citationElsegood, M. R. J., Smith, M. B. & Sanchez-Ballester, N. M. (2006). Acta Cryst. E62, m2838–m2840.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGarcía-Álvarez, R., Díez, J., Crochet, P. & Cadierno, V. (2010). Organo­metallics, 29, 3955–3965.  Google Scholar
First citationGarcía-Álvarez, R., Díez, J., Crochet, P. & Cadierno, V. (2011). Organo­metallics, 30, 5442–5451.  Google Scholar
First citationKnapp, S. M. M., Sherbow, T. J., Juliette, J. J. & Tyler, D. R. (2012). Organometallics, 31, 2941–2944.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1995). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds