metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

trans-Tris(4-bromo­phen­yl)di­chlorido­antimony(V)

aCollege of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China
*Correspondence e-mail: jchcui@163.com

(Received 2 November 2012; accepted 22 November 2012; online 28 November 2012)

The SbV atom in the title compound, [SbCl2(C6H4Br)3], has an almost regular trigonal–bipyramidal geometry with the equatorial plane made up of three C atoms of the bromo­phenyl groups and the axial positions occupied by two Cl ions in a trans configuration. In the crystal, C—H⋯Br hydrogen bonds link the mol­ecules into zigzag chains along the b-axis direction. Pairs of C—H⋯Cl hydrogen bonds further link mol­ecules into cyclic dimers with R22(10) ring motifs, generating a three-dimensional network.

Related literature

For related structures, see: Mahalakshmi et al. (2001[Mahalakshmi, H., Jain, V. K. & Tiekink, E. R. T. (2001). Main Group Met. Chem. pp. 391-392.]); Sharutin et al. (2010[Sharutin, V. V., Senchurin, V. S., Sharutina, O. K. & Chagarova, O. V. (2010). Russ J. Gen. Chem. pp. 1789-1792.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • [SbCl2(C6H4Br)3]

  • Mr = 660.66

  • Monoclinic, C 2/c

  • a = 15.1050 (13) Å

  • b = 20.124 (2) Å

  • c = 15.1701 (14) Å

  • β = 117.748 (1)°

  • V = 4081.0 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 7.49 mm−1

  • T = 298 K

  • 0.26 × 0.22 × 0.12 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.246, Tmax = 0.467

  • 10608 measured reflections

  • 3582 independent reflections

  • 2159 reflections with I > 2σ(I)

  • Rint = 0.060

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.097

  • S = 0.91

  • 3582 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 0.90 e Å−3

  • Δρmin = −0.61 e Å−3

Table 1
Selected bond lengths (Å)

Sb1—C1 2.129 (6)
Sb1—C7 2.119 (6)
Sb1—C13 2.132 (7)
Sb1—Cl1 2.4566 (16)
Sb1—Cl2 2.4716 (17)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯Cl2i 0.93 2.93 3.723 (7) 144
C17—H17⋯Br1ii 0.93 2.99 3.900 (9) 167
Symmetry codes: (i) [-x+1, y, -z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The molecular structure of the compound is depicted in Fig.1. The Sb atom has an almost regular trigonal bipyramid geometry with the equatorial plane made up of three C atoms, C1, C7 and C13 of the bromophenyl ligands and the axial positions occupied by two Cl- ions. C17—H17···Br1 hydrogen bonds link the molecules into zig-zag chains along b. Pairs of C2—H2···Cl2 hydrogen bonds further link molecules into cyclic dimers with R222(10) ring motifs (Bernstein et al., 1995) generating a three-dimensional network.

Related literature top

For related structures, see: Mahalakshmi et al. (2001); Sharutin et al. (2010). For hydrogen-bond motifs, see: Bernstein et al. (1995)

Experimental top

All operations were carried out under a protective nitrogen atmosphere. 1,4-dibromobenzene (0.5 mol), dissolved in dry ether was added dropwise to Mg turnings (0.5 mol) at 0 °C. The resulting Grignard solution was cooled to -12 °C and antimony(III)chloride (0.1 mol) dissolved in dry ether was added. This mixture was stirred for an additional hour at room temperature and after completion of the reaction was treated with a saturated NH4Cl solution. The ether layer was separated and dried over Na2SO4. The solvent was then evaporated from the solution in vacuo and the residue recrystallized from ethanol. The resulting solid, tris(4-bromophenyl)antimony, was dissolved in petroleum ether at 6 °C and then chlorine was passed slowly into the solution to yield the title compound as a white powder which was recrystallised from dichloromethane (Yield 43%). Anal. Calcd (%) for C18H12Cl2Br3Sb (Mr = 660.67): C, 32.72; H, 1.83; Cl, 10.73; Br, 36.28. Found (%): C, 32.66; H, 1.78; Cl, 10.81; Br, 36.23.

Refinement top

The C–H H atoms were positioned with idealized geometry and were refined isotropically with Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the compound, showing 50% probability displacement ellipsoids. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. Packing diagram.
trans-Tris(4-bromophenyl)dichloridoantimony(V) top
Crystal data top
[SbCl2(C6H4Br)3]F(000) = 2480
Mr = 660.66Dx = 2.151 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2728 reflections
a = 15.1050 (13) Åθ = 2.9–26.1°
b = 20.124 (2) ŵ = 7.49 mm1
c = 15.1701 (14) ÅT = 298 K
β = 117.748 (1)°Block, colourless
V = 4081.0 (7) Å30.26 × 0.22 × 0.12 mm
Z = 8
Data collection top
Bruker SMART CCD area-detector
diffractometer
3582 independent reflections
Radiation source: fine-focus sealed tube2159 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.060
ϕ and ω scansθmax = 25.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1716
Tmin = 0.246, Tmax = 0.467k = 2315
10608 measured reflectionsl = 1817
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H-atom parameters constrained
S = 0.91 w = 1/[σ2(Fo2) + (0.0456P)2]
where P = (Fo2 + 2Fc2)/3
3582 reflections(Δ/σ)max < 0.001
217 parametersΔρmax = 0.90 e Å3
0 restraintsΔρmin = 0.61 e Å3
Crystal data top
[SbCl2(C6H4Br)3]V = 4081.0 (7) Å3
Mr = 660.66Z = 8
Monoclinic, C2/cMo Kα radiation
a = 15.1050 (13) ŵ = 7.49 mm1
b = 20.124 (2) ÅT = 298 K
c = 15.1701 (14) Å0.26 × 0.22 × 0.12 mm
β = 117.748 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3582 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2159 reflections with I > 2σ(I)
Tmin = 0.246, Tmax = 0.467Rint = 0.060
10608 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 0.91Δρmax = 0.90 e Å3
3582 reflectionsΔρmin = 0.61 e Å3
217 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sb10.47083 (3)0.31132 (2)0.45721 (3)0.05088 (16)
C10.3297 (5)0.3457 (3)0.3455 (5)0.0502 (16)
C20.3204 (5)0.3658 (4)0.2544 (5)0.065 (2)
H20.37510.36320.24200.078*
C30.2300 (5)0.3899 (4)0.1816 (5)0.069 (2)
H30.22250.40270.11960.083*
C40.1522 (5)0.3943 (3)0.2032 (5)0.0574 (18)
C50.1589 (5)0.3734 (4)0.2912 (6)0.0641 (19)
H50.10390.37640.30300.077*
C60.2484 (5)0.3475 (3)0.3632 (5)0.0580 (18)
H60.25350.33160.42290.070*
C70.5462 (5)0.3531 (3)0.6018 (5)0.0496 (16)
C80.6001 (5)0.3122 (3)0.6817 (5)0.0620 (18)
H80.60030.26660.67190.074*
C90.6535 (5)0.3378 (4)0.7757 (5)0.066 (2)
H90.69090.31010.82930.079*
C100.6509 (5)0.4053 (4)0.7895 (5)0.0617 (19)
C110.5935 (5)0.4463 (4)0.7094 (5)0.070 (2)
H110.59000.49160.71940.084*
C120.5421 (5)0.4199 (4)0.6156 (5)0.0609 (19)
H120.50460.44730.56160.073*
C130.5404 (5)0.2323 (3)0.4187 (4)0.0532 (17)
C140.6240 (6)0.2423 (4)0.4084 (6)0.079 (2)
H140.65180.28450.41690.095*
C150.6669 (6)0.1895 (5)0.3854 (7)0.096 (3)
H150.72430.19630.37860.115*
C160.6274 (6)0.1278 (4)0.3725 (5)0.067 (2)
C170.5454 (6)0.1176 (4)0.3810 (6)0.080 (2)
H170.51890.07500.37260.096*
C180.4980 (6)0.1699 (4)0.4024 (6)0.072 (2)
H180.43880.16280.40560.087*
Cl10.38762 (13)0.23427 (9)0.52062 (13)0.0672 (5)
Cl20.55520 (13)0.39558 (9)0.40399 (13)0.0642 (5)
Br10.03004 (6)0.43361 (5)0.10847 (6)0.0882 (3)
Br20.72426 (7)0.44321 (5)0.91767 (6)0.0951 (3)
Br30.68965 (7)0.05538 (5)0.34275 (8)0.1048 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sb10.0547 (3)0.0527 (3)0.0488 (3)0.0014 (3)0.0270 (2)0.0039 (2)
C10.052 (4)0.049 (4)0.051 (4)0.001 (3)0.025 (3)0.003 (3)
C20.064 (5)0.081 (5)0.052 (4)0.000 (4)0.029 (4)0.009 (4)
C30.073 (5)0.082 (6)0.051 (4)0.007 (5)0.029 (4)0.011 (4)
C40.056 (4)0.042 (4)0.065 (5)0.004 (4)0.021 (4)0.009 (4)
C50.057 (5)0.067 (5)0.073 (5)0.007 (4)0.034 (4)0.003 (4)
C60.067 (5)0.066 (5)0.054 (4)0.007 (4)0.039 (4)0.007 (4)
C70.055 (4)0.053 (4)0.046 (4)0.002 (4)0.028 (3)0.008 (3)
C80.072 (5)0.045 (4)0.063 (5)0.001 (4)0.027 (4)0.003 (4)
C90.078 (5)0.060 (5)0.049 (5)0.005 (4)0.019 (4)0.013 (4)
C100.064 (5)0.065 (5)0.056 (4)0.002 (4)0.028 (4)0.005 (4)
C110.084 (5)0.062 (5)0.055 (5)0.008 (4)0.025 (4)0.001 (4)
C120.067 (5)0.056 (5)0.050 (4)0.012 (4)0.019 (4)0.013 (4)
C130.058 (4)0.059 (5)0.041 (4)0.006 (4)0.022 (3)0.001 (3)
C140.080 (6)0.067 (5)0.112 (7)0.016 (5)0.062 (5)0.017 (5)
C150.079 (6)0.094 (7)0.138 (8)0.013 (6)0.071 (6)0.018 (7)
C160.063 (5)0.077 (6)0.058 (5)0.010 (5)0.025 (4)0.006 (4)
C170.088 (6)0.068 (6)0.087 (6)0.011 (5)0.044 (5)0.016 (5)
C180.077 (5)0.067 (5)0.085 (6)0.007 (5)0.048 (5)0.008 (4)
Cl10.0733 (12)0.0662 (12)0.0739 (13)0.0075 (10)0.0442 (10)0.0113 (10)
Cl20.0704 (12)0.0661 (12)0.0652 (11)0.0121 (10)0.0390 (10)0.0037 (10)
Br10.0780 (6)0.0830 (6)0.0792 (6)0.0122 (5)0.0160 (5)0.0039 (5)
Br20.1167 (7)0.0916 (7)0.0552 (5)0.0110 (6)0.0218 (5)0.0049 (5)
Br30.1026 (7)0.0967 (7)0.1100 (8)0.0208 (6)0.0453 (6)0.0252 (6)
Geometric parameters (Å, º) top
Sb1—C12.129 (6)C8—H80.9300
Sb1—C72.119 (6)C9—C101.377 (10)
Sb1—C132.132 (7)C9—H90.9300
Sb1—Cl12.4566 (16)C10—C111.388 (9)
Sb1—Cl22.4716 (17)C10—Br21.893 (7)
C1—C61.373 (8)C11—C121.372 (9)
C1—C21.384 (8)C11—H110.9300
C2—C31.385 (9)C12—H120.9300
C2—H20.9300C13—C141.357 (8)
C3—C41.363 (9)C13—C181.380 (9)
C3—H30.9300C14—C151.371 (10)
C4—C51.357 (9)C14—H140.9300
C4—Br11.904 (7)C15—C161.351 (10)
C5—C61.384 (9)C15—H150.9300
C5—H50.9300C16—C171.320 (9)
C6—H60.9300C16—Br31.900 (7)
C7—C121.366 (9)C17—C181.392 (10)
C7—C81.375 (9)C17—H170.9300
C8—C91.370 (9)C18—H180.9300
C7—Sb1—C1123.5 (2)C9—C8—H8119.6
C7—Sb1—C13118.9 (2)C7—C8—H8119.6
C1—Sb1—C13117.6 (2)C8—C9—C10118.9 (7)
C7—Sb1—Cl188.37 (17)C8—C9—H9120.5
C1—Sb1—Cl190.64 (18)C10—C9—H9120.5
C13—Sb1—Cl192.52 (19)C9—C10—C11120.2 (7)
C7—Sb1—Cl287.45 (17)C9—C10—Br2120.6 (6)
C1—Sb1—Cl289.71 (17)C11—C10—Br2119.2 (6)
C13—Sb1—Cl291.56 (19)C12—C11—C10119.9 (7)
Cl1—Sb1—Cl2175.20 (6)C12—C11—H11120.0
C6—C1—C2120.3 (6)C10—C11—H11120.0
C6—C1—Sb1120.6 (5)C7—C12—C11119.7 (6)
C2—C1—Sb1119.2 (5)C7—C12—H12120.1
C1—C2—C3120.1 (6)C11—C12—H12120.1
C1—C2—H2119.9C14—C13—C18119.5 (7)
C3—C2—H2119.9C14—C13—Sb1121.7 (6)
C4—C3—C2118.2 (6)C18—C13—Sb1118.8 (5)
C4—C3—H3120.9C13—C14—C15119.3 (7)
C2—C3—H3120.9C13—C14—H14120.3
C5—C4—C3122.6 (6)C15—C14—H14120.3
C5—C4—Br1118.3 (5)C16—C15—C14121.3 (7)
C3—C4—Br1119.1 (6)C16—C15—H15119.4
C4—C5—C6119.4 (6)C14—C15—H15119.4
C4—C5—H5120.3C17—C16—C15120.0 (8)
C6—C5—H5120.3C17—C16—Br3119.7 (7)
C1—C6—C5119.3 (6)C15—C16—Br3120.4 (7)
C1—C6—H6120.4C16—C17—C18120.9 (8)
C5—C6—H6120.4C16—C17—H17119.6
C12—C7—C8120.3 (6)C18—C17—H17119.6
C12—C7—Sb1120.5 (5)C13—C18—C17118.9 (7)
C8—C7—Sb1119.2 (5)C13—C18—H18120.5
C9—C8—C7120.8 (7)C17—C18—H18120.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···Cl2i0.932.933.723 (7)144
C17—H17···Br1ii0.932.993.900 (9)167
Symmetry codes: (i) x+1, y, z+1/2; (ii) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[SbCl2(C6H4Br)3]
Mr660.66
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)15.1050 (13), 20.124 (2), 15.1701 (14)
β (°) 117.748 (1)
V3)4081.0 (7)
Z8
Radiation typeMo Kα
µ (mm1)7.49
Crystal size (mm)0.26 × 0.22 × 0.12
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.246, 0.467
No. of measured, independent and
observed [I > 2σ(I)] reflections
10608, 3582, 2159
Rint0.060
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.097, 0.91
No. of reflections3582
No. of parameters217
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.90, 0.61

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Sb1—C12.129 (6)Sb1—Cl12.4566 (16)
Sb1—C72.119 (6)Sb1—Cl22.4716 (17)
Sb1—C132.132 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···Cl2i0.932.933.723 (7)143.5
C17—H17···Br1ii0.932.993.900 (9)167.3
Symmetry codes: (i) x+1, y, z+1/2; (ii) x+1/2, y1/2, z+1/2.
 

Acknowledgements

We acknowledge the National Natural Foundation of China (21105042), the National Basic Research Program (No. 2010CB234601) and the Natural Science Foundation of Shandong Province (ZR2011BM007, ZR2010BQ021) for financial support.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMahalakshmi, H., Jain, V. K. & Tiekink, E. R. T. (2001). Main Group Met. Chem. pp. 391–392.  Google Scholar
First citationSharutin, V. V., Senchurin, V. S., Sharutina, O. K. & Chagarova, O. V. (2010). Russ J. Gen. Chem. pp. 1789–1792.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds