metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

trans-Tetra­aqua­bis­­[2-(4-chloro­phen­­oxy)acetato-κO1]nickel(II)

aInstitute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, M. Ulugbek Str. 83, Tashkent, 700125 Uzbekistan
*Correspondence e-mail: mavlonbek.ziyaev@mail.ru

(Received 11 October 2012; accepted 4 November 2012; online 10 November 2012)

In the title compound, [Ni(C8H6ClO3)2(H2O)4], the NiII ion is located on a crystallographic inversion centre and is octa­hedrally coordinated by two 2-(4-chloro­phen­oxy)acetate ligands in axial positions and by four water mol­ecules in the equatorial plane. The acetate ligands are bound to the NiII ion in a monodentate manner through a carboxyl­ate O atom. In the crystal, O—H⋯O hydrogen bonds link the mol­ecules, forming a two-dimensional supra­molecular network lying parallel to the ab plane.

Related literature

For inter­actions of metal ions with amino acids, see: Daniele et al. (2008[Daniele, P. G., Foti, C., Gianguzza, A., Prenesti, E. & Sammartano, S. (2008). Coord. Chem. Rev. 252, 1093-1107.]); Parkin (2004[Parkin, G. (2004). Chem. Rev. 104, 699-767.]). For the crystal structures of related 4-chloro­phen­oxy­acetate complexes, see: Liwporncharoenvong & Luck (2005[Liwporncharoenvong, T. & Luck, R. L. (2005). Acta Cryst. E61, m1191-m1193.]); Smith et al. (1980[Smith, G., O'Reilly, E. J. & Kennard, C. H. L. (1980). J. Chem. Soc. Dalton Trans. pp. 2462-2466.]); Wang et al. (2008[Wang, Z., Liu, D. S., Zhang, H. H., Huang, C. C., Cao, Y. N. & Yu, X. H. (2008). J. Coord. Chem. 61, 419-425.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C8H6ClO3)2(H2O)4]

  • Mr = 501.93

  • Triclinic, [P \overline 1]

  • a = 4.894 (3) Å

  • b = 5.769 (4) Å

  • c = 18.369 (9) Å

  • α = 97.226 (3)°

  • β = 90.088 (4)°

  • γ = 96.796 (4)°

  • V = 510.8 (5) Å3

  • Z = 1

  • Cu Kα radiation

  • μ = 4.25 mm−1

  • T = 293 K

  • 0.45 × 0.22 × 0.2 mm

Data collection
  • Oxford Diffraction Xcalibur Ruby diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.226, Tmax = 1.000

  • 4607 measured reflections

  • 2059 independent reflections

  • 1759 reflections with I > 2σ(I)

  • Rint = 0.052

Refinement
  • R[F2 > 2σ(F2)] = 0.099

  • wR(F2) = 0.272

  • S = 1.13

  • 2059 reflections

  • 135 parameters

  • H-atom parameters constrained

  • Δρmax = 2.78 e Å−3

  • Δρmin = −1.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2W—H2WA⋯O3 0.87 1.93 2.679 (4) 144
O2W—H2WB⋯O1Wi 0.87 2.01 2.843 (4) 162
O1W—H1WA⋯O3ii 0.86 1.98 2.732 (4) 145
O1W—H1WB⋯O1iii 0.86 2.21 2.978 (4) 148
O1W—H1WB⋯O2iii 0.86 2.18 2.861 (4) 135
Symmetry codes: (i) x-1, y, z; (ii) -x+2, -y, -z+1; (iii) -x+3, -y+1, -z+1.

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The interaction of transition metal ions with biologically active molecules such as amino acids and various organic acids is very important in biological systems (Parkin, 2004; Daniele et al., 2008). 4-chlorophenoxyacetic acid is one such acid that has been used to form various complexes with transition metals (Liwporncharoenvong & Luck, 2005; Smith et al., 1980; Wang et al., 2008). We report herein on the synthesis and crystal structure of a new nickel(II) complex involving this ligand.

In the title compound the NiII ion is located on a crystallographic inversion centre (Fig. 1). The NiII ion is octahedral coordinated by two p-chlorophenoxyacetato ligands in axial positions [Ni—O = 2.060 (3) Å] and by four water molecules in the equatorial plane [Ni—O = 2.084 (3) and 2.039 (3) Å]. The p-chlorophenoxyacetato ligands are bound to the NiII ion in a monodentate manner through a carboxylate O atom.

In the crystal, molecules are linked via O-H···O hydrogen bonds (Table 1), resulting in the formation of a complex two-dimensional supramolecular network lying parallel to the ab plane (Fig. 2).

Related literature top

For interactions of metal ions with amino acids, see: Daniele et al. (2008); Parkin (2004). For the crystal structures of related 4-chlorophenoxyacetate complexes, see: Liwporncharoenvong & Luck (2005); Smith et al. (1980); Wang et al. (2008).

Experimental top

A solution of 4-chlorophenoxyacetic acid (40 mg, 0.2 mmol) in ethanol (3 ml) was added to a solution of Ni(CH3OO)2 [15.96 mg 0.1 mmol] in water (1.5 ml) and stirred for 10 min at 303 K. Slow evaporation of the resulting solution gave green block-like crystals of the title compound suitable for X-ray analysis.

Refinement top

All the H atoms were included in calculated positions and treated as riding: C—H = 0.97 Å (methylene), 0.93 Å (aromatic) and O—H = 0.86 Å, with Uiso(H) = k × Ueq(parent atom), where k = 1.5 for water H atoms and = 1.2 for other H atoms. In the final difference Fourier map the highest residual density peak is located near the metal atom.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom-labeling scheme. Displacement ellipsoids are drawn at the 30% probability level [symmetry code: (a) -x+2, -y+1, -z+1].
[Figure 2] Fig. 2. A view along the a axis of the crystal packing of title compound. Hydrogen bonds are shown as dashed lines - see Table 1 for details.
trans-Tetraaquabis[2-(4-chlorophenoxy)acetato-κO1]nickel(II) top
Crystal data top
[Ni(C8H6ClO3)2(H2O)4]V = 510.8 (5) Å3
Mr = 501.93Z = 1
Triclinic, P1F(000) = 258
Hall symbol: -P 1Dx = 1.632 Mg m3
a = 4.894 (3) ÅCu Kα radiation, λ = 1.54184 Å
b = 5.769 (4) ŵ = 4.25 mm1
c = 18.369 (9) ÅT = 293 K
α = 97.226 (3)°Block, green
β = 90.088 (4)°0.45 × 0.22 × 0.2 mm
γ = 96.796 (4)°
Data collection top
Oxford Diffraction Xcalibur Ruby
diffractometer
2059 independent reflections
Radiation source: fine-focus sealed tube1759 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
Detector resolution: 10.2576 pixels mm-1θmax = 75.9°, θmin = 4.9°
ω scansh = 56
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 76
Tmin = 0.226, Tmax = 1.000l = 1923
4607 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.099Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.272H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.2P)2]
where P = (Fo2 + 2Fc2)/3
2059 reflections(Δ/σ)max = 0.002
135 parametersΔρmax = 2.78 e Å3
0 restraintsΔρmin = 1.32 e Å3
Crystal data top
[Ni(C8H6ClO3)2(H2O)4]γ = 96.796 (4)°
Mr = 501.93V = 510.8 (5) Å3
Triclinic, P1Z = 1
a = 4.894 (3) ÅCu Kα radiation
b = 5.769 (4) ŵ = 4.25 mm1
c = 18.369 (9) ÅT = 293 K
α = 97.226 (3)°0.45 × 0.22 × 0.2 mm
β = 90.088 (4)°
Data collection top
Oxford Diffraction Xcalibur Ruby
diffractometer
2059 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
1759 reflections with I > 2σ(I)
Tmin = 0.226, Tmax = 1.000Rint = 0.052
4607 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0990 restraints
wR(F2) = 0.272H-atom parameters constrained
S = 1.13Δρmax = 2.78 e Å3
2059 reflectionsΔρmin = 1.32 e Å3
135 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni11.00000.50000.50000.0282 (4)
Cl12.2639 (4)0.3457 (4)0.04767 (9)0.0837 (7)
O2W0.7333 (6)0.2008 (5)0.50078 (16)0.0359 (7)
H2WA0.72140.11920.45770.054*
H2WB0.57060.23540.51310.054*
O11.5117 (7)0.3222 (6)0.29609 (16)0.0413 (8)
O1W1.2630 (6)0.3692 (5)0.56991 (15)0.0344 (7)
H1WA1.16890.28860.59990.052*
H1WB1.36600.48340.59510.052*
O30.9237 (6)0.0301 (5)0.37074 (15)0.0379 (7)
O21.2116 (7)0.3526 (5)0.41255 (16)0.0369 (7)
C11.6813 (9)0.3129 (8)0.2362 (2)0.0383 (10)
C71.3174 (9)0.1227 (7)0.3018 (2)0.0358 (9)
H7A1.41280.01220.30750.043*
H7B1.20490.08630.25740.043*
C81.1359 (8)0.1725 (6)0.36740 (19)0.0293 (8)
C21.8536 (13)0.5167 (10)0.2301 (3)0.0539 (13)
H21.84890.64720.26510.065*
C61.6845 (11)0.1169 (10)0.1845 (3)0.0491 (12)
H61.56710.01990.18850.059*
C51.8678 (12)0.1279 (12)0.1261 (3)0.0564 (13)
H51.87400.00290.09120.068*
C42.0382 (12)0.3318 (12)0.1203 (3)0.0556 (13)
C32.0336 (14)0.5284 (12)0.1721 (3)0.0621 (15)
H32.14950.66590.16800.075*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0331 (6)0.0178 (6)0.0305 (6)0.0016 (4)0.0044 (4)0.0044 (4)
Cl10.0815 (12)0.1170 (16)0.0516 (9)0.0067 (10)0.0316 (8)0.0111 (9)
O2W0.0349 (15)0.0225 (14)0.0465 (16)0.0025 (11)0.0093 (12)0.0043 (11)
O10.0472 (18)0.0345 (16)0.0357 (15)0.0041 (13)0.0120 (13)0.0122 (12)
O1W0.0383 (16)0.0235 (13)0.0385 (14)0.0042 (11)0.0019 (11)0.0007 (10)
O30.0471 (18)0.0272 (15)0.0356 (14)0.0039 (12)0.0041 (12)0.0025 (11)
O20.0440 (17)0.0270 (15)0.0350 (14)0.0025 (12)0.0047 (12)0.0085 (11)
C10.040 (2)0.041 (2)0.0317 (18)0.0007 (18)0.0084 (16)0.0002 (16)
C70.040 (2)0.028 (2)0.0350 (19)0.0020 (16)0.0032 (16)0.0069 (15)
C80.035 (2)0.0217 (18)0.0299 (17)0.0043 (14)0.0009 (14)0.0035 (13)
C20.067 (4)0.041 (3)0.047 (3)0.008 (2)0.014 (2)0.004 (2)
C60.057 (3)0.046 (3)0.039 (2)0.000 (2)0.010 (2)0.0071 (19)
C50.058 (3)0.067 (4)0.040 (2)0.006 (3)0.011 (2)0.010 (2)
C40.056 (3)0.068 (4)0.042 (2)0.001 (3)0.010 (2)0.008 (2)
C30.068 (4)0.060 (3)0.055 (3)0.009 (3)0.021 (3)0.009 (3)
Geometric parameters (Å, º) top
Ni1—O2Wi2.039 (3)O2—C81.263 (5)
Ni1—O2W2.039 (3)C1—C21.380 (7)
Ni1—O22.060 (3)C1—C61.383 (7)
Ni1—O2i2.060 (3)C7—C81.516 (5)
Ni1—O1Wi2.084 (3)C7—H7A0.9700
Ni1—O1W2.084 (3)C7—H7B0.9700
Cl1—C41.737 (5)C2—C31.386 (7)
O2W—H2WA0.8668C2—H20.9300
O2W—H2WB0.8667C6—C51.403 (7)
O1—C11.379 (5)C6—H60.9300
O1—C71.419 (5)C5—C41.375 (9)
O1W—H1WA0.8641C5—H50.9300
O1W—H1WB0.8642C4—C31.388 (9)
O3—C81.252 (5)C3—H30.9300
O2Wi—Ni1—O2W180.0C2—C1—C6120.6 (4)
O2Wi—Ni1—O287.58 (12)O1—C7—C8109.7 (3)
O2W—Ni1—O292.42 (12)O1—C7—H7A109.7
O2Wi—Ni1—O2i92.42 (12)C8—C7—H7A109.7
O2W—Ni1—O2i87.58 (12)O1—C7—H7B109.7
O2—Ni1—O2i180.00 (11)C8—C7—H7B109.7
O2Wi—Ni1—O1Wi89.06 (12)H7A—C7—H7B108.2
O2W—Ni1—O1Wi90.94 (13)O3—C8—O2126.7 (4)
O2—Ni1—O1Wi91.59 (13)O3—C8—C7116.0 (3)
O2i—Ni1—O1Wi88.41 (13)O2—C8—C7117.3 (4)
O2Wi—Ni1—O1W90.95 (13)C1—C2—C3120.6 (5)
O2W—Ni1—O1W89.05 (12)C1—C2—H2119.7
O2—Ni1—O1W88.41 (13)C3—C2—H2119.7
O2i—Ni1—O1W91.59 (13)C1—C6—C5118.9 (5)
O1Wi—Ni1—O1W180.00 (12)C1—C6—H6120.6
Ni1—O2W—H2WA110.5C5—C6—H6120.6
Ni1—O2W—H2WB110.4C4—C5—C6120.1 (5)
H2WA—O2W—H2WB108.4C4—C5—H5120.0
C1—O1—C7117.3 (3)C6—C5—H5120.0
Ni1—O1W—H1WA110.3C5—C4—C3120.8 (5)
Ni1—O1W—H1WB110.4C5—C4—Cl1120.1 (5)
H1WA—O1W—H1WB108.6C3—C4—Cl1119.1 (4)
C8—O2—Ni1128.6 (3)C2—C3—C4119.0 (5)
O1—C1—C2115.3 (4)C2—C3—H3120.5
O1—C1—C6124.0 (4)C4—C3—H3120.5
Symmetry code: (i) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2W—H2WA···O30.871.932.679 (4)144
O2W—H2WB···O1Wii0.872.012.843 (4)162
O1W—H1WA···O3iii0.861.982.732 (4)145
O1W—H1WB···O1iv0.862.212.978 (4)148
O1W—H1WB···O2iv0.862.182.861 (4)135
Symmetry codes: (ii) x1, y, z; (iii) x+2, y, z+1; (iv) x+3, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Ni(C8H6ClO3)2(H2O)4]
Mr501.93
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)4.894 (3), 5.769 (4), 18.369 (9)
α, β, γ (°)97.226 (3), 90.088 (4), 96.796 (4)
V3)510.8 (5)
Z1
Radiation typeCu Kα
µ (mm1)4.25
Crystal size (mm)0.45 × 0.22 × 0.2
Data collection
DiffractometerOxford Diffraction Xcalibur Ruby
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.226, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
4607, 2059, 1759
Rint0.052
(sin θ/λ)max1)0.629
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.099, 0.272, 1.13
No. of reflections2059
No. of parameters135
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.78, 1.32

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2W—H2WA···O30.871.932.679 (4)144.2
O2W—H2WB···O1Wi0.872.012.843 (4)161.5
O1W—H1WA···O3ii0.861.982.732 (4)144.5
O1W—H1WB···O1iii0.862.212.978 (4)148.0
O1W—H1WB···O2iii0.862.182.861 (4)135.2
Symmetry codes: (i) x1, y, z; (ii) x+2, y, z+1; (iii) x+3, y+1, z+1.
 

Acknowledgements

This work was supported by a Grant for Fundamental Research from the Center of Science and Technology, Uzbekistan (No. F7-T04841)

References

First citationDaniele, P. G., Foti, C., Gianguzza, A., Prenesti, E. & Sammartano, S. (2008). Coord. Chem. Rev. 252, 1093–1107.  Web of Science CrossRef CAS Google Scholar
First citationLiwporncharoenvong, T. & Luck, R. L. (2005). Acta Cryst. E61, m1191–m1193.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationParkin, G. (2004). Chem. Rev. 104, 699–767.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G., O'Reilly, E. J. & Kennard, C. H. L. (1980). J. Chem. Soc. Dalton Trans. pp. 2462–2466.  CSD CrossRef Web of Science Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Z., Liu, D. S., Zhang, H. H., Huang, C. C., Cao, Y. N. & Yu, X. H. (2008). J. Coord. Chem. 61, 419–425.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds