metal-organic compounds
trans-Tetraaquabis[2-(4-chlorophenoxy)acetato-κO1]nickel(II)
aInstitute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, M. Ulugbek Str. 83, Tashkent, 700125 Uzbekistan
*Correspondence e-mail: mavlonbek.ziyaev@mail.ru
In the title compound, [Ni(C8H6ClO3)2(H2O)4], the NiII ion is located on a crystallographic inversion centre and is octahedrally coordinated by two 2-(4-chlorophenoxy)acetate ligands in axial positions and by four water molecules in the equatorial plane. The acetate ligands are bound to the NiII ion in a monodentate manner through a carboxylate O atom. In the crystal, O—H⋯O hydrogen bonds link the molecules, forming a two-dimensional supramolecular network lying parallel to the ab plane.
Related literature
For interactions of metal ions with amino acids, see: Daniele et al. (2008); Parkin (2004). For the crystal structures of related 4-chlorophenoxyacetate complexes, see: Liwporncharoenvong & Luck (2005); Smith et al. (1980); Wang et al. (2008).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536812045540/su2512sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812045540/su2512Isup2.hkl
A solution of 4-chlorophenoxyacetic acid (40 mg, 0.2 mmol) in ethanol (3 ml) was added to a solution of Ni(CH3OO)2 [15.96 mg 0.1 mmol] in water (1.5 ml) and stirred for 10 min at 303 K. Slow evaporation of the resulting solution gave green block-like crystals of the title compound suitable for X-ray analysis.
All the H atoms were included in calculated positions and treated as riding: C—H = 0.97 Å (methylene), 0.93 Å (aromatic) and O—H = 0.86 Å, with Uiso(H) = k × Ueq(parent atom), where k = 1.5 for water H atoms and = 1.2 for other H atoms. In the final difference Fourier map the highest residual density peak is located near the metal atom.
Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell
CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).[Ni(C8H6ClO3)2(H2O)4] | V = 510.8 (5) Å3 |
Mr = 501.93 | Z = 1 |
Triclinic, P1 | F(000) = 258 |
Hall symbol: -P 1 | Dx = 1.632 Mg m−3 |
a = 4.894 (3) Å | Cu Kα radiation, λ = 1.54184 Å |
b = 5.769 (4) Å | µ = 4.25 mm−1 |
c = 18.369 (9) Å | T = 293 K |
α = 97.226 (3)° | Block, green |
β = 90.088 (4)° | 0.45 × 0.22 × 0.2 mm |
γ = 96.796 (4)° |
Oxford Diffraction Xcalibur Ruby diffractometer | 2059 independent reflections |
Radiation source: fine-focus sealed tube | 1759 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.052 |
Detector resolution: 10.2576 pixels mm-1 | θmax = 75.9°, θmin = 4.9° |
ω scans | h = −5→6 |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) | k = −7→6 |
Tmin = 0.226, Tmax = 1.000 | l = −19→23 |
4607 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.099 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.272 | H-atom parameters constrained |
S = 1.13 | w = 1/[σ2(Fo2) + (0.2P)2] where P = (Fo2 + 2Fc2)/3 |
2059 reflections | (Δ/σ)max = 0.002 |
135 parameters | Δρmax = 2.78 e Å−3 |
0 restraints | Δρmin = −1.32 e Å−3 |
[Ni(C8H6ClO3)2(H2O)4] | γ = 96.796 (4)° |
Mr = 501.93 | V = 510.8 (5) Å3 |
Triclinic, P1 | Z = 1 |
a = 4.894 (3) Å | Cu Kα radiation |
b = 5.769 (4) Å | µ = 4.25 mm−1 |
c = 18.369 (9) Å | T = 293 K |
α = 97.226 (3)° | 0.45 × 0.22 × 0.2 mm |
β = 90.088 (4)° |
Oxford Diffraction Xcalibur Ruby diffractometer | 2059 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) | 1759 reflections with I > 2σ(I) |
Tmin = 0.226, Tmax = 1.000 | Rint = 0.052 |
4607 measured reflections |
R[F2 > 2σ(F2)] = 0.099 | 0 restraints |
wR(F2) = 0.272 | H-atom parameters constrained |
S = 1.13 | Δρmax = 2.78 e Å−3 |
2059 reflections | Δρmin = −1.32 e Å−3 |
135 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Ni1 | 1.0000 | 0.5000 | 0.5000 | 0.0282 (4) | |
Cl1 | 2.2639 (4) | 0.3457 (4) | 0.04767 (9) | 0.0837 (7) | |
O2W | 0.7333 (6) | 0.2008 (5) | 0.50078 (16) | 0.0359 (7) | |
H2WA | 0.7214 | 0.1192 | 0.4577 | 0.054* | |
H2WB | 0.5706 | 0.2354 | 0.5131 | 0.054* | |
O1 | 1.5117 (7) | 0.3222 (6) | 0.29609 (16) | 0.0413 (8) | |
O1W | 1.2630 (6) | 0.3692 (5) | 0.56991 (15) | 0.0344 (7) | |
H1WA | 1.1689 | 0.2886 | 0.5999 | 0.052* | |
H1WB | 1.3660 | 0.4834 | 0.5951 | 0.052* | |
O3 | 0.9237 (6) | 0.0301 (5) | 0.37074 (15) | 0.0379 (7) | |
O2 | 1.2116 (7) | 0.3526 (5) | 0.41255 (16) | 0.0369 (7) | |
C1 | 1.6813 (9) | 0.3129 (8) | 0.2362 (2) | 0.0383 (10) | |
C7 | 1.3174 (9) | 0.1227 (7) | 0.3018 (2) | 0.0358 (9) | |
H7A | 1.4128 | −0.0122 | 0.3075 | 0.043* | |
H7B | 1.2049 | 0.0863 | 0.2574 | 0.043* | |
C8 | 1.1359 (8) | 0.1725 (6) | 0.36740 (19) | 0.0293 (8) | |
C2 | 1.8536 (13) | 0.5167 (10) | 0.2301 (3) | 0.0539 (13) | |
H2 | 1.8489 | 0.6472 | 0.2651 | 0.065* | |
C6 | 1.6845 (11) | 0.1169 (10) | 0.1845 (3) | 0.0491 (12) | |
H6 | 1.5671 | −0.0199 | 0.1885 | 0.059* | |
C5 | 1.8678 (12) | 0.1279 (12) | 0.1261 (3) | 0.0564 (13) | |
H5 | 1.8740 | −0.0029 | 0.0912 | 0.068* | |
C4 | 2.0382 (12) | 0.3318 (12) | 0.1203 (3) | 0.0556 (13) | |
C3 | 2.0336 (14) | 0.5284 (12) | 0.1721 (3) | 0.0621 (15) | |
H3 | 2.1495 | 0.6659 | 0.1680 | 0.075* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.0331 (6) | 0.0178 (6) | 0.0305 (6) | −0.0016 (4) | 0.0044 (4) | −0.0044 (4) |
Cl1 | 0.0815 (12) | 0.1170 (16) | 0.0516 (9) | 0.0067 (10) | 0.0316 (8) | 0.0111 (9) |
O2W | 0.0349 (15) | 0.0225 (14) | 0.0465 (16) | −0.0025 (11) | 0.0093 (12) | −0.0043 (11) |
O1 | 0.0472 (18) | 0.0345 (16) | 0.0357 (15) | −0.0041 (13) | 0.0120 (13) | −0.0122 (12) |
O1W | 0.0383 (16) | 0.0235 (13) | 0.0385 (14) | −0.0042 (11) | −0.0019 (11) | −0.0007 (10) |
O3 | 0.0471 (18) | 0.0272 (15) | 0.0356 (14) | −0.0039 (12) | 0.0041 (12) | −0.0025 (11) |
O2 | 0.0440 (17) | 0.0270 (15) | 0.0350 (14) | −0.0025 (12) | 0.0047 (12) | −0.0085 (11) |
C1 | 0.040 (2) | 0.041 (2) | 0.0317 (18) | 0.0007 (18) | 0.0084 (16) | −0.0002 (16) |
C7 | 0.040 (2) | 0.028 (2) | 0.0350 (19) | −0.0020 (16) | 0.0032 (16) | −0.0069 (15) |
C8 | 0.035 (2) | 0.0217 (18) | 0.0299 (17) | 0.0043 (14) | −0.0009 (14) | −0.0035 (13) |
C2 | 0.067 (4) | 0.041 (3) | 0.047 (3) | −0.008 (2) | 0.014 (2) | −0.004 (2) |
C6 | 0.057 (3) | 0.046 (3) | 0.039 (2) | 0.000 (2) | 0.010 (2) | −0.0071 (19) |
C5 | 0.058 (3) | 0.067 (4) | 0.040 (2) | 0.006 (3) | 0.011 (2) | −0.010 (2) |
C4 | 0.056 (3) | 0.068 (4) | 0.042 (2) | 0.001 (3) | 0.010 (2) | 0.008 (2) |
C3 | 0.068 (4) | 0.060 (3) | 0.055 (3) | −0.009 (3) | 0.021 (3) | 0.009 (3) |
Ni1—O2Wi | 2.039 (3) | O2—C8 | 1.263 (5) |
Ni1—O2W | 2.039 (3) | C1—C2 | 1.380 (7) |
Ni1—O2 | 2.060 (3) | C1—C6 | 1.383 (7) |
Ni1—O2i | 2.060 (3) | C7—C8 | 1.516 (5) |
Ni1—O1Wi | 2.084 (3) | C7—H7A | 0.9700 |
Ni1—O1W | 2.084 (3) | C7—H7B | 0.9700 |
Cl1—C4 | 1.737 (5) | C2—C3 | 1.386 (7) |
O2W—H2WA | 0.8668 | C2—H2 | 0.9300 |
O2W—H2WB | 0.8667 | C6—C5 | 1.403 (7) |
O1—C1 | 1.379 (5) | C6—H6 | 0.9300 |
O1—C7 | 1.419 (5) | C5—C4 | 1.375 (9) |
O1W—H1WA | 0.8641 | C5—H5 | 0.9300 |
O1W—H1WB | 0.8642 | C4—C3 | 1.388 (9) |
O3—C8 | 1.252 (5) | C3—H3 | 0.9300 |
O2Wi—Ni1—O2W | 180.0 | C2—C1—C6 | 120.6 (4) |
O2Wi—Ni1—O2 | 87.58 (12) | O1—C7—C8 | 109.7 (3) |
O2W—Ni1—O2 | 92.42 (12) | O1—C7—H7A | 109.7 |
O2Wi—Ni1—O2i | 92.42 (12) | C8—C7—H7A | 109.7 |
O2W—Ni1—O2i | 87.58 (12) | O1—C7—H7B | 109.7 |
O2—Ni1—O2i | 180.00 (11) | C8—C7—H7B | 109.7 |
O2Wi—Ni1—O1Wi | 89.06 (12) | H7A—C7—H7B | 108.2 |
O2W—Ni1—O1Wi | 90.94 (13) | O3—C8—O2 | 126.7 (4) |
O2—Ni1—O1Wi | 91.59 (13) | O3—C8—C7 | 116.0 (3) |
O2i—Ni1—O1Wi | 88.41 (13) | O2—C8—C7 | 117.3 (4) |
O2Wi—Ni1—O1W | 90.95 (13) | C1—C2—C3 | 120.6 (5) |
O2W—Ni1—O1W | 89.05 (12) | C1—C2—H2 | 119.7 |
O2—Ni1—O1W | 88.41 (13) | C3—C2—H2 | 119.7 |
O2i—Ni1—O1W | 91.59 (13) | C1—C6—C5 | 118.9 (5) |
O1Wi—Ni1—O1W | 180.00 (12) | C1—C6—H6 | 120.6 |
Ni1—O2W—H2WA | 110.5 | C5—C6—H6 | 120.6 |
Ni1—O2W—H2WB | 110.4 | C4—C5—C6 | 120.1 (5) |
H2WA—O2W—H2WB | 108.4 | C4—C5—H5 | 120.0 |
C1—O1—C7 | 117.3 (3) | C6—C5—H5 | 120.0 |
Ni1—O1W—H1WA | 110.3 | C5—C4—C3 | 120.8 (5) |
Ni1—O1W—H1WB | 110.4 | C5—C4—Cl1 | 120.1 (5) |
H1WA—O1W—H1WB | 108.6 | C3—C4—Cl1 | 119.1 (4) |
C8—O2—Ni1 | 128.6 (3) | C2—C3—C4 | 119.0 (5) |
O1—C1—C2 | 115.3 (4) | C2—C3—H3 | 120.5 |
O1—C1—C6 | 124.0 (4) | C4—C3—H3 | 120.5 |
Symmetry code: (i) −x+2, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O2W—H2WA···O3 | 0.87 | 1.93 | 2.679 (4) | 144 |
O2W—H2WB···O1Wii | 0.87 | 2.01 | 2.843 (4) | 162 |
O1W—H1WA···O3iii | 0.86 | 1.98 | 2.732 (4) | 145 |
O1W—H1WB···O1iv | 0.86 | 2.21 | 2.978 (4) | 148 |
O1W—H1WB···O2iv | 0.86 | 2.18 | 2.861 (4) | 135 |
Symmetry codes: (ii) x−1, y, z; (iii) −x+2, −y, −z+1; (iv) −x+3, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [Ni(C8H6ClO3)2(H2O)4] |
Mr | 501.93 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 4.894 (3), 5.769 (4), 18.369 (9) |
α, β, γ (°) | 97.226 (3), 90.088 (4), 96.796 (4) |
V (Å3) | 510.8 (5) |
Z | 1 |
Radiation type | Cu Kα |
µ (mm−1) | 4.25 |
Crystal size (mm) | 0.45 × 0.22 × 0.2 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur Ruby diffractometer |
Absorption correction | Multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) |
Tmin, Tmax | 0.226, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4607, 2059, 1759 |
Rint | 0.052 |
(sin θ/λ)max (Å−1) | 0.629 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.099, 0.272, 1.13 |
No. of reflections | 2059 |
No. of parameters | 135 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 2.78, −1.32 |
Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
O2W—H2WA···O3 | 0.87 | 1.93 | 2.679 (4) | 144.2 |
O2W—H2WB···O1Wi | 0.87 | 2.01 | 2.843 (4) | 161.5 |
O1W—H1WA···O3ii | 0.86 | 1.98 | 2.732 (4) | 144.5 |
O1W—H1WB···O1iii | 0.86 | 2.21 | 2.978 (4) | 148.0 |
O1W—H1WB···O2iii | 0.86 | 2.18 | 2.861 (4) | 135.2 |
Symmetry codes: (i) x−1, y, z; (ii) −x+2, −y, −z+1; (iii) −x+3, −y+1, −z+1. |
Acknowledgements
This work was supported by a Grant for Fundamental Research from the Center of Science and Technology, Uzbekistan (No. F7-T04841)
References
Daniele, P. G., Foti, C., Gianguzza, A., Prenesti, E. & Sammartano, S. (2008). Coord. Chem. Rev. 252, 1093–1107. Web of Science CrossRef CAS Google Scholar
Liwporncharoenvong, T. & Luck, R. L. (2005). Acta Cryst. E61, m1191–m1193. Web of Science CSD CrossRef IUCr Journals Google Scholar
Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Parkin, G. (2004). Chem. Rev. 104, 699–767. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Smith, G., O'Reilly, E. J. & Kennard, C. H. L. (1980). J. Chem. Soc. Dalton Trans. pp. 2462–2466. CSD CrossRef Web of Science Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wang, Z., Liu, D. S., Zhang, H. H., Huang, C. C., Cao, Y. N. & Yu, X. H. (2008). J. Coord. Chem. 61, 419–425. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The interaction of transition metal ions with biologically active molecules such as amino acids and various organic acids is very important in biological systems (Parkin, 2004; Daniele et al., 2008). 4-chlorophenoxyacetic acid is one such acid that has been used to form various complexes with transition metals (Liwporncharoenvong & Luck, 2005; Smith et al., 1980; Wang et al., 2008). We report herein on the synthesis and crystal structure of a new nickel(II) complex involving this ligand.
In the title compound the NiII ion is located on a crystallographic inversion centre (Fig. 1). The NiII ion is octahedral coordinated by two p-chlorophenoxyacetato ligands in axial positions [Ni—O = 2.060 (3) Å] and by four water molecules in the equatorial plane [Ni—O = 2.084 (3) and 2.039 (3) Å]. The p-chlorophenoxyacetato ligands are bound to the NiII ion in a monodentate manner through a carboxylate O atom.
In the crystal, molecules are linked via O-H···O hydrogen bonds (Table 1), resulting in the formation of a complex two-dimensional supramolecular network lying parallel to the ab plane (Fig. 2).