organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[2,7-Dibut­­oxy-8-(4-fluoro­benzo­yl)naphthalen-1-yl](4-fluoro­phen­yl)methanone

aDepartment of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture & Technology (TUAT), Koganei, Tokyo 184.8588, Japan
*Correspondence e-mail: aokamoto@cc.tuat.ac.jp

(Received 27 October 2012; accepted 30 October 2012; online 3 November 2012)

In the title compound, C32H30F2O4, the benzene rings of the benzoyl groups make dihedral angles of 74.55 (6) and 74.39 (7)° with the naphthalene ring system. In the crystal, intra- and inter­molecular C—H⋯π inter­actions are observed between the but­oxy group and the aromatic rings. There are also C—H⋯F hydrogen bonds present that link the mol­ecules into chains propagating along [010].

Related literature

For the electrophilic aromatic aroylation of 2,7-dimeth­oxy­naphthalene, see: Okamoto & Yonezawa (2009[Okamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914-915.]); Okamoto et al. (2011[Okamoto, A., Mitsui, R., Oike, H. & Yonezawa, N. (2011). Chem. Lett. 40, 1283-1284.], 2012[Okamoto, A., Hijikata, D., Sakai, N. & Yonezawa, N. (2012). Polym. J. doi: 10.1038/pj.2012.135.]). For the crystal structures of similar compounds, see: Sasagawa et al. (2011[Sasagawa, K., Muto, T., Okamoto, A., Oike, H. & Yonezawa, N. (2011). Acta Cryst. E67, o3354.]); Watanabe et al. (2010[Watanabe, S., Nagasawa, A., Okamoto, A., Noguchi, K. & Yonezawa, N. (2010). Acta Cryst. E66, o329.]).

[Scheme 1]

Experimental

Crystal data
  • C32H30F2O4

  • Mr = 516.56

  • Monoclinic, P 21 /c

  • a = 8.26012 (15) Å

  • b = 20.2309 (4) Å

  • c = 16.5268 (3) Å

  • β = 99.918 (1)°

  • V = 2720.51 (9) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.75 mm−1

  • T = 193 K

  • 0.60 × 0.50 × 0.50 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: numerical (NUMABS; Higashi, 1999[Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.661, Tmax = 0.705

  • 50395 measured reflections

  • 4971 independent reflections

  • 4715 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.116

  • S = 1.03

  • 4971 reflections

  • 346 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C12–C17 and C5–C10 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C27—H27BCg1 0.99 2.79 3.7754 (19) 175
C26—H26ACg2i 0.99 2.54 3.4239 (16) 145
C3—H3⋯F2ii 0.95 2.50 3.4408 (17) 169
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: PROCESS-AUTO; program(s) used to solve structure: Il Milione (Burla et al., 2007[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609-613.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the course of our studies on electrophilic aromatic aroylation of 2,7-dimethoxynaphthalene, peri-aroylnaphthalene compounds have proven to be formed regioselectively with the aid of suitable acidic mediators (Okamoto & Yonezawa, 2009; Okamoto, Mitsui et al., 2011). In one application, the authors have integrated the resulting molecular unit to a poly(ether ketone) backbone via nucleophilic aromatic substitution polycondensation (Okamoto et al., 2012). The poly(ether ketone)s composed of 1,8-diaroylenenaphthalene units show unique thermal properties and solubility for organic solvents. These curious features of the polymers can be explained on the basis of the structural features of the 1,8-diaroylene naphthalene units. Under these circumstances, the authors have undertaken the X-ray crystal structural study of several 1,8-diaroylated naphthalene analogues, exemplified by (2,7-dimethoxynaphthalene-1,8-diyl)bis(4-fluorophenyl)dimethanone (Watanabe et al., 2010) and [8-(4-butoxybenzoyl)-2,7-dimethoxy- naphthalen-1-yl](4-butoxyphenyl)-methanone (Sasagawa et al., 2011). These molecules have essentially the same non-coplanar features. The aroyl groups at the 1,8-positions of the naphthalene rings in these molecules are twisted and bonded in an almost perpendicular fashion, but the benzene ring moieties of the aroyl groups tilt slightly toward the exo sides of the naphthalene rings. As a part of our continuous studies on the molecular structures of this kind of homologous molecules, the X-ray crystal structure of the title compound is presented herein.

The molecular structure of the title compound is displayed in Fig. 1. Two benzoyl groups at the 1,8-positions of the naphthalene ring are situated in opposite directions, with an anti orientation. The benzene rings of the benzoyl groups make dihedral angles with the naphthalene ring system of 74.55 (6) and 74.39 (7)°, respectively. The dihedral angle between these benzene rings is 44.61 (8)°.

In the crystal structure, the molecular packing of the title compound is stabilized mainly by two types of C—H···π interactions: a) an intramolecular C—H···π interaction between the benzene ring of the aroyl group (C12—C17; Cg1) and one methylene H atom (H27B) of the butoxy group (C27—H27B···Cg1= 2.79 Å; Fig. 2 and Table 1); and b) an intermolecular C—H···π interaction between the centroid of the C5—C10 ring (Cg2) and one methylene H atom (H26A) of the butoxy group (C26—H26A···Cg2i= 2.54 Å; Fig. 2 and Table 1). There is also a C-H···F hydrogen bond present (Table 1) that links the molecules to form chains propagating along the b axis direction.

Related literature top

For the electrophilic aromatic aroylation of 2,7-dimethoxynaphthalene, see: Okamoto & Yonezawa (2009); Okamoto et al. (2011, 2012). For the crystal structures of similar compounds, see: Sasagawa et al. (2011); Watanabe et al. (2010).

Experimental top

The title compound was prepared by treating a mixture of 2,7-dibutoxynaphthalene (3.0 mmol, 817 mg) and 4-fluorobenzoic acid (6.6 mmol, 924 mg) with a phosphorus pentoxide—methanesulfonic acid mixture (P2O5—MsOH [1/10 w/w] 13.2 ml). After the reaction mixture had been stirred at 333 K for 1 h, the mixture was poured into ice-cold water and extracted with CHCl3. The organic layer thus obtained was dried over anhydrous MgSO4. The solvent was removed under reduced pressure to give a cake. The crude product was purified by recrystallization from CHCl3– hexane (v/v = 1:2) [39% isolated yield; M.p. 364.5–366 K]. HRMS (m/z): [M + H]+ calcd. for C32H31F2O4, 517.2190; found 517.2163. Block-like colourless crystals of the title compound, suitable for X-ray diffraction analysis, were obtained by crystallization from hexane. Spectroscopic data for the title compound are available in the archived CIF.

Refinement top

All the H atoms were included in calculated positions and treated as riding on their parent atoms: C—H = 0.95 (aromatic ), 0.98 (methyl), 0.99 (methylene) Å, with Uiso(H) = 1.2Ueq(C). The positions of methyl H atoms were rotationally optimized.

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: PROCESS-AUTO (Rigaku, 1998); program(s) used to solve structure: Il Milione (Burla et al., 2007); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of title molecule, with the atom numbering. The displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A partial crystal packing diagram of the title compound. The intra- and intermolecular C—H···π interactions are shown as dashed lines.
[2,7-Dibutoxy-8-(4-fluorobenzoyl)naphthalen-1-yl](4-fluorophenyl)methanone top
Crystal data top
C32H30F2O4F(000) = 1088
Mr = 516.56Dx = 1.261 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54187 Å
Hall symbol: -P 2ybcCell parameters from 45409 reflections
a = 8.26012 (15) Åθ = 3.5–68.2°
b = 20.2309 (4) ŵ = 0.75 mm1
c = 16.5268 (3) ÅT = 193 K
β = 99.918 (1)°Block, colourless
V = 2720.51 (9) Å30.60 × 0.50 × 0.50 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4971 independent reflections
Radiation source: rotating anode4715 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
Detector resolution: 10.000 pixels mm-1θmax = 68.2°, θmin = 3.5°
ω scansh = 99
Absorption correction: numerical
(NUMABS; Higashi, 1999)
k = 2424
Tmin = 0.661, Tmax = 0.705l = 1919
50395 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.116 w = 1/[σ2(Fo2) + (0.0573P)2 + 1.0814P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
4971 reflectionsΔρmax = 0.35 e Å3
346 parametersΔρmin = 0.41 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0198 (6)
Crystal data top
C32H30F2O4V = 2720.51 (9) Å3
Mr = 516.56Z = 4
Monoclinic, P21/cCu Kα radiation
a = 8.26012 (15) ŵ = 0.75 mm1
b = 20.2309 (4) ÅT = 193 K
c = 16.5268 (3) Å0.60 × 0.50 × 0.50 mm
β = 99.918 (1)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4971 independent reflections
Absorption correction: numerical
(NUMABS; Higashi, 1999)
4715 reflections with I > 2σ(I)
Tmin = 0.661, Tmax = 0.705Rint = 0.047
50395 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.116H-atom parameters constrained
S = 1.03Δρmax = 0.35 e Å3
4971 reflectionsΔρmin = 0.41 e Å3
346 parameters
Special details top

Experimental. Spectroscopic data for the title compound:

1HNMR δ (300 MHz, CDCl3): 0.68 (6H, t, J=7.5 Hz), 0.90–1.02 (4H, m), 1.27–1.36 (4H, m) 3.89 (4H, t, J=6.1 Hz), 7.04 (4H, t, J=8.5 Hz), 7.15 (2H, d, J=8.9 Hz), 7.75 (4H, dd, J=8.5, 5.1 Hz), 7.91 (2H, d, J=8.9 Hz) p.p.m.

13CNMR δ (75 MHz, CDCl3): 13.49, 18.63, 30.93, 68.55, 111.63, 114.93 (d, 2JC—F=21.6 Hz), 120.78, 125.28, 130.33, 131.49 (d, 3JC—F=7.9 Hz), 132.23, 135.68(d, 4JC—F=2.8 Hz), 155.94, 165.45(d, 1JC—F=253.5 Hz), 196.16 p.p.m.

IR (KBr): 1659 (CO), 1595, 1508, 1466 (Ar, naphthalene), 1236 (C—O—C) cm-1.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F11.2676 (2)0.02657 (7)0.89453 (9)0.1074 (6)
F20.04618 (12)0.02158 (5)0.58323 (6)0.0579 (3)
O10.56247 (13)0.14733 (5)0.77614 (7)0.0455 (3)
O20.72484 (11)0.12311 (5)0.61173 (6)0.0383 (3)
O30.84151 (15)0.25811 (5)0.87922 (6)0.0486 (3)
O40.44905 (13)0.20244 (5)0.46369 (6)0.0405 (3)
C10.71284 (15)0.24026 (6)0.74515 (8)0.0313 (3)
C20.78418 (17)0.28485 (7)0.80412 (9)0.0353 (3)
C30.79004 (17)0.35302 (7)0.78743 (9)0.0381 (3)
H30.84290.38270.82810.046*
C40.71875 (17)0.37570 (7)0.71201 (9)0.0376 (3)
H40.72080.42180.70100.045*
C50.56894 (17)0.35703 (7)0.57188 (10)0.0392 (3)
H50.56840.40330.56240.047*
C60.49959 (18)0.31636 (7)0.51018 (9)0.0393 (3)
H60.45010.33400.45860.047*
C70.50210 (16)0.24734 (7)0.52385 (8)0.0335 (3)
C80.56831 (15)0.22084 (6)0.59952 (8)0.0301 (3)
C90.64011 (15)0.26306 (6)0.66526 (8)0.0298 (3)
C100.64187 (16)0.33263 (7)0.64976 (9)0.0338 (3)
C110.69783 (18)0.17029 (7)0.77425 (8)0.0347 (3)
C120.8510 (2)0.13180 (7)0.80393 (9)0.0406 (4)
C130.8421 (3)0.07733 (8)0.85437 (11)0.0577 (5)
H130.73980.06430.86820.069*
C140.9857 (4)0.04188 (9)0.88456 (13)0.0755 (7)
H140.98210.00480.91940.091*
C151.1306 (3)0.06148 (10)0.86313 (13)0.0699 (6)
C161.1431 (2)0.11352 (10)0.81259 (12)0.0608 (5)
H161.24550.12510.79770.073*
C171.0016 (2)0.14922 (8)0.78338 (10)0.0462 (4)
H171.00780.18620.74870.055*
C180.58717 (16)0.14675 (6)0.60404 (8)0.0302 (3)
C190.43961 (16)0.10364 (6)0.59768 (8)0.0314 (3)
C200.45880 (19)0.03641 (7)0.58633 (10)0.0414 (3)
H200.56430.01930.58250.050*
C210.3262 (2)0.00605 (8)0.58051 (11)0.0492 (4)
H210.33860.05200.57170.059*
C220.17610 (19)0.02009 (8)0.58782 (9)0.0419 (4)
C230.15121 (18)0.08624 (8)0.59960 (9)0.0413 (3)
H230.04560.10270.60450.050*
C240.28524 (17)0.12828 (7)0.60418 (9)0.0369 (3)
H240.27140.17430.61180.044*
C250.88713 (18)0.29933 (7)0.94971 (9)0.0382 (3)
H25A0.79520.32890.95690.046*
H25B0.98360.32680.94380.046*
C260.92802 (18)0.25342 (8)1.02206 (9)0.0398 (3)
H26A0.83010.22611.02570.048*
H26B0.95220.28031.07280.048*
C271.07163 (19)0.20804 (9)1.01883 (10)0.0479 (4)
H27A1.17070.23491.01620.057*
H27B1.04860.18100.96820.057*
C281.1057 (3)0.16282 (13)1.09237 (14)0.0802 (7)
H28A1.00700.13691.09610.096*
H28B1.13590.18931.14240.096*
H28C1.19630.13291.08640.096*
C290.3849 (2)0.22518 (8)0.38231 (9)0.0450 (4)
H29A0.46140.25730.36400.054*
H29B0.27750.24710.38120.054*
C300.3653 (2)0.16535 (9)0.32649 (10)0.0513 (4)
H30A0.32800.18050.26930.062*
H30B0.47430.14440.32880.062*
C310.2476 (2)0.11429 (10)0.34659 (12)0.0576 (5)
H31A0.14050.13560.34850.069*
H31B0.28950.09610.40180.069*
C320.2216 (3)0.05793 (10)0.28513 (12)0.0640 (5)
H32A0.32840.04040.27730.077*
H32B0.16160.07420.23250.077*
H32C0.15790.02280.30590.077*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.1195 (12)0.0818 (9)0.0989 (10)0.0636 (9)0.0436 (9)0.0190 (8)
F20.0509 (6)0.0487 (5)0.0696 (7)0.0224 (4)0.0023 (5)0.0128 (5)
O10.0498 (6)0.0446 (6)0.0423 (6)0.0115 (5)0.0087 (5)0.0009 (5)
O20.0314 (5)0.0375 (5)0.0448 (6)0.0028 (4)0.0034 (4)0.0010 (4)
O30.0672 (7)0.0353 (5)0.0363 (6)0.0048 (5)0.0103 (5)0.0082 (4)
O40.0463 (6)0.0388 (5)0.0322 (5)0.0041 (4)0.0056 (4)0.0028 (4)
C10.0283 (6)0.0300 (7)0.0351 (7)0.0008 (5)0.0040 (5)0.0022 (5)
C20.0325 (7)0.0353 (7)0.0367 (7)0.0024 (5)0.0017 (6)0.0040 (6)
C30.0348 (7)0.0335 (7)0.0450 (8)0.0030 (6)0.0040 (6)0.0093 (6)
C40.0354 (7)0.0281 (7)0.0494 (8)0.0024 (5)0.0082 (6)0.0016 (6)
C50.0373 (7)0.0292 (7)0.0501 (9)0.0004 (6)0.0048 (6)0.0070 (6)
C60.0354 (7)0.0390 (8)0.0410 (8)0.0004 (6)0.0008 (6)0.0101 (6)
C70.0267 (6)0.0365 (7)0.0360 (7)0.0029 (5)0.0016 (5)0.0016 (6)
C80.0250 (6)0.0307 (7)0.0343 (7)0.0020 (5)0.0043 (5)0.0012 (5)
C90.0238 (6)0.0306 (7)0.0350 (7)0.0009 (5)0.0054 (5)0.0002 (5)
C100.0288 (6)0.0309 (7)0.0421 (8)0.0007 (5)0.0073 (6)0.0008 (6)
C110.0439 (8)0.0330 (7)0.0262 (6)0.0036 (6)0.0030 (5)0.0040 (5)
C120.0572 (9)0.0293 (7)0.0307 (7)0.0032 (6)0.0050 (6)0.0053 (6)
C130.0858 (13)0.0362 (8)0.0443 (9)0.0033 (8)0.0083 (9)0.0017 (7)
C140.124 (2)0.0338 (9)0.0534 (11)0.0130 (11)0.0264 (12)0.0031 (8)
C150.0836 (15)0.0515 (11)0.0615 (12)0.0295 (11)0.0238 (11)0.0164 (9)
C160.0592 (11)0.0634 (12)0.0534 (10)0.0226 (9)0.0078 (8)0.0186 (9)
C170.0502 (9)0.0459 (9)0.0392 (8)0.0112 (7)0.0014 (7)0.0071 (7)
C180.0312 (7)0.0328 (7)0.0253 (6)0.0001 (5)0.0012 (5)0.0007 (5)
C190.0347 (7)0.0310 (7)0.0268 (6)0.0023 (5)0.0002 (5)0.0008 (5)
C200.0403 (8)0.0338 (7)0.0491 (9)0.0004 (6)0.0046 (6)0.0003 (6)
C210.0551 (10)0.0290 (7)0.0616 (10)0.0069 (7)0.0044 (8)0.0001 (7)
C220.0418 (8)0.0389 (8)0.0416 (8)0.0143 (6)0.0025 (6)0.0077 (6)
C230.0332 (7)0.0435 (8)0.0455 (8)0.0037 (6)0.0025 (6)0.0066 (6)
C240.0355 (7)0.0315 (7)0.0422 (8)0.0007 (6)0.0029 (6)0.0014 (6)
C250.0406 (8)0.0385 (8)0.0357 (7)0.0051 (6)0.0067 (6)0.0106 (6)
C260.0393 (8)0.0463 (8)0.0343 (7)0.0035 (6)0.0076 (6)0.0082 (6)
C270.0377 (8)0.0635 (10)0.0422 (8)0.0031 (7)0.0059 (6)0.0009 (7)
C280.0728 (14)0.1043 (18)0.0640 (13)0.0279 (13)0.0127 (10)0.0292 (12)
C290.0511 (9)0.0500 (9)0.0313 (7)0.0034 (7)0.0001 (6)0.0089 (6)
C300.0527 (9)0.0664 (11)0.0341 (8)0.0017 (8)0.0054 (7)0.0011 (7)
C310.0510 (10)0.0684 (12)0.0541 (10)0.0076 (8)0.0113 (8)0.0129 (9)
C320.0810 (13)0.0589 (11)0.0475 (10)0.0034 (10)0.0018 (9)0.0066 (8)
Geometric parameters (Å, º) top
F1—C151.359 (2)C18—C191.4876 (18)
F2—C221.3566 (16)C19—C201.386 (2)
O1—C111.2160 (18)C19—C241.3904 (19)
O2—C181.2199 (16)C20—C211.382 (2)
O3—C21.3620 (17)C20—H200.9500
O3—C251.4294 (16)C21—C221.372 (2)
O4—C71.3622 (17)C21—H210.9500
O4—C291.4337 (17)C22—C231.373 (2)
C1—C21.3830 (19)C23—C241.388 (2)
C1—C91.4297 (19)C23—H230.9500
C1—C111.5070 (19)C24—H240.9500
C2—C31.409 (2)C25—C261.506 (2)
C3—C41.363 (2)C25—H25A0.9900
C3—H30.9500C25—H25B0.9900
C4—C101.413 (2)C26—C271.508 (2)
C4—H40.9500C26—H26A0.9900
C5—C61.358 (2)C26—H26B0.9900
C5—C101.413 (2)C27—C281.508 (3)
C5—H50.9500C27—H27A0.9900
C6—C71.414 (2)C27—H27B0.9900
C6—H60.9500C28—H28A0.9800
C7—C81.3839 (19)C28—H28B0.9800
C8—C91.4281 (18)C28—H28C0.9800
C8—C181.5076 (18)C29—C301.514 (2)
C9—C101.4312 (19)C29—H29A0.9900
C11—C121.495 (2)C29—H29B0.9900
C12—C171.390 (2)C30—C311.495 (3)
C12—C131.391 (2)C30—H30A0.9900
C13—C141.402 (3)C30—H30B0.9900
C13—H130.9500C31—C321.517 (2)
C14—C151.365 (4)C31—H31A0.9900
C14—H140.9500C31—H31B0.9900
C15—C161.359 (3)C32—H32A0.9800
C16—C171.388 (2)C32—H32B0.9800
C16—H160.9500C32—H32C0.9800
C17—H170.9500
C2—O3—C25120.83 (11)C19—C20—H20119.6
C7—O4—C29119.42 (11)C22—C21—C20118.14 (14)
C2—C1—C9120.04 (12)C22—C21—H21120.9
C2—C1—C11115.87 (12)C20—C21—H21120.9
C9—C1—C11123.58 (12)F2—C22—C21118.27 (14)
O3—C2—C1114.97 (12)F2—C22—C23118.52 (14)
O3—C2—C3123.29 (13)C21—C22—C23123.22 (14)
C1—C2—C3121.69 (13)C22—C23—C24117.88 (14)
C4—C3—C2118.98 (13)C22—C23—H23121.1
C4—C3—H3120.5C24—C23—H23121.1
C2—C3—H3120.5C23—C24—C19120.64 (13)
C3—C4—C10121.83 (13)C23—C24—H24119.7
C3—C4—H4119.1C19—C24—H24119.7
C10—C4—H4119.1O3—C25—C26106.19 (12)
C6—C5—C10122.08 (13)O3—C25—H25A110.5
C6—C5—H5119.0C26—C25—H25A110.5
C10—C5—H5119.0O3—C25—H25B110.5
C5—C6—C7119.06 (13)C26—C25—H25B110.5
C5—C6—H6120.5H25A—C25—H25B108.7
C7—C6—H6120.5C25—C26—C27114.69 (12)
O4—C7—C8115.38 (12)C25—C26—H26A108.6
O4—C7—C6123.22 (12)C27—C26—H26A108.6
C8—C7—C6121.31 (13)C25—C26—H26B108.6
C7—C8—C9120.23 (12)C27—C26—H26B108.6
C7—C8—C18116.83 (12)H26A—C26—H26B107.6
C9—C8—C18122.08 (11)C26—C27—C28112.29 (15)
C8—C9—C1124.26 (12)C26—C27—H27A109.1
C8—C9—C10117.89 (12)C28—C27—H27A109.1
C1—C9—C10117.84 (12)C26—C27—H27B109.1
C4—C10—C5121.04 (13)C28—C27—H27B109.1
C4—C10—C9119.56 (13)H27A—C27—H27B107.9
C5—C10—C9119.39 (13)C27—C28—H28A109.5
O1—C11—C12121.51 (13)C27—C28—H28B109.5
O1—C11—C1119.57 (13)H28A—C28—H28B109.5
C12—C11—C1118.86 (12)C27—C28—H28C109.5
C17—C12—C13119.27 (16)H28A—C28—H28C109.5
C17—C12—C11122.02 (14)H28B—C28—H28C109.5
C13—C12—C11118.71 (16)O4—C29—C30107.38 (13)
C12—C13—C14119.3 (2)O4—C29—H29A110.2
C12—C13—H13120.3C30—C29—H29A110.2
C14—C13—H13120.3O4—C29—H29B110.2
C15—C14—C13119.01 (19)C30—C29—H29B110.2
C15—C14—H14120.5H29A—C29—H29B108.5
C13—C14—H14120.5C31—C30—C29115.01 (14)
C16—C15—F1119.4 (2)C31—C30—H30A108.5
C16—C15—C14123.20 (18)C29—C30—H30A108.5
F1—C15—C14117.4 (2)C31—C30—H30B108.5
C15—C16—C17117.9 (2)C29—C30—H30B108.5
C15—C16—H16121.0H30A—C30—H30B107.5
C17—C16—H16121.0C30—C31—C32113.15 (16)
C16—C17—C12121.23 (17)C30—C31—H31A108.9
C16—C17—H17119.4C32—C31—H31A108.9
C12—C17—H17119.4C30—C31—H31B108.9
O2—C18—C19121.02 (12)C32—C31—H31B108.9
O2—C18—C8118.77 (12)H31A—C31—H31B107.8
C19—C18—C8120.20 (11)C31—C32—H32A109.5
C20—C19—C24119.35 (13)C31—C32—H32B109.5
C20—C19—C18118.26 (13)H32A—C32—H32B109.5
C24—C19—C18122.38 (12)C31—C32—H32C109.5
C21—C20—C19120.76 (14)H32A—C32—H32C109.5
C21—C20—H20119.6H32B—C32—H32C109.5
C25—O3—C2—C1167.14 (12)O1—C11—C12—C17163.03 (14)
C25—O3—C2—C310.4 (2)C1—C11—C12—C1719.90 (19)
C9—C1—C2—O3176.55 (12)O1—C11—C12—C1317.7 (2)
C11—C1—C2—O34.41 (18)C1—C11—C12—C13159.41 (13)
C9—C1—C2—C31.0 (2)C17—C12—C13—C141.1 (2)
C11—C1—C2—C3173.19 (13)C11—C12—C13—C14178.22 (15)
O3—C2—C3—C4175.24 (13)C12—C13—C14—C150.5 (3)
C1—C2—C3—C42.2 (2)C13—C14—C15—C161.0 (3)
C2—C3—C4—C101.2 (2)C13—C14—C15—F1179.03 (15)
C10—C5—C6—C70.8 (2)F1—C15—C16—C17178.29 (15)
C29—O4—C7—C8177.39 (12)C14—C15—C16—C171.7 (3)
C29—O4—C7—C60.9 (2)C15—C16—C17—C121.0 (2)
C5—C6—C7—O4173.93 (13)C13—C12—C17—C160.4 (2)
C5—C6—C7—C82.4 (2)C11—C12—C17—C16178.95 (14)
O4—C7—C8—C9174.85 (11)C7—C8—C18—O2108.25 (14)
C6—C7—C8—C91.7 (2)C9—C8—C18—O261.18 (17)
O4—C7—C8—C185.22 (17)C7—C8—C18—C1970.66 (16)
C6—C7—C8—C18171.35 (12)C9—C8—C18—C19119.90 (13)
C7—C8—C9—C1179.36 (12)O2—C18—C19—C2011.03 (19)
C18—C8—C9—C110.28 (19)C8—C18—C19—C20167.86 (13)
C7—C8—C9—C100.46 (18)O2—C18—C19—C24167.79 (13)
C18—C8—C9—C10168.62 (12)C8—C18—C19—C2413.32 (19)
C2—C1—C9—C8177.88 (12)C24—C19—C20—C210.7 (2)
C11—C1—C9—C810.6 (2)C18—C19—C20—C21179.59 (14)
C2—C1—C9—C101.01 (18)C19—C20—C21—C221.2 (2)
C11—C1—C9—C10170.50 (12)C20—C21—C22—F2179.14 (14)
C3—C4—C10—C5179.85 (13)C20—C21—C22—C230.8 (3)
C3—C4—C10—C90.9 (2)F2—C22—C23—C24179.99 (13)
C6—C5—C10—C4177.59 (14)C21—C22—C23—C240.1 (2)
C6—C5—C10—C91.4 (2)C22—C23—C24—C190.5 (2)
C8—C9—C10—C4177.00 (12)C20—C19—C24—C230.2 (2)
C1—C9—C10—C41.96 (18)C18—C19—C24—C23178.65 (13)
C8—C9—C10—C51.97 (18)C2—O3—C25—C26174.59 (12)
C1—C9—C10—C5179.06 (12)O3—C25—C26—C2762.58 (16)
C2—C1—C11—O1112.36 (15)C25—C26—C27—C28179.43 (16)
C9—C1—C11—O159.48 (18)C7—O4—C29—C30170.00 (12)
C2—C1—C11—C1264.77 (16)O4—C29—C30—C3161.91 (19)
C9—C1—C11—C12123.39 (14)C29—C30—C31—C32175.40 (16)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C12–C17 and C5–C10 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C27—H27B···Cg10.992.793.7754 (19)175
C26—H26A···Cg2i0.992.543.4239 (16)145
C3—H3···F2ii0.952.503.4408 (17)169
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC32H30F2O4
Mr516.56
Crystal system, space groupMonoclinic, P21/c
Temperature (K)193
a, b, c (Å)8.26012 (15), 20.2309 (4), 16.5268 (3)
β (°) 99.918 (1)
V3)2720.51 (9)
Z4
Radiation typeCu Kα
µ (mm1)0.75
Crystal size (mm)0.60 × 0.50 × 0.50
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionNumerical
(NUMABS; Higashi, 1999)
Tmin, Tmax0.661, 0.705
No. of measured, independent and
observed [I > 2σ(I)] reflections
50395, 4971, 4715
Rint0.047
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.116, 1.03
No. of reflections4971
No. of parameters346
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.41

Computer programs: PROCESS-AUTO (Rigaku, 1998), Il Milione (Burla et al., 2007), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C12–C17 and C5–C10 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C27—H27B···Cg10.992.793.7754 (19)175
C26—H26A···Cg2i0.992.543.4239 (16)145
C3—H3···F2ii0.952.503.4408 (17)169
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y+1/2, z+3/2.
 

Acknowledgements

The authors express their gratitude to Professor Keiichi Noguchi, Instrumentation Analysis Center, Tokyo University of Agriculture and Technology, for his technical advice. This work was partially supported by the Ogasawara Foundation for the Promotion of Science & Engineering, Tokyo, Japan.

References

First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609–613.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationHigashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationOkamoto, A., Hijikata, D., Sakai, N. & Yonezawa, N. (2012). Polym. J. doi: 10.1038/pj.2012.135.  Google Scholar
First citationOkamoto, A., Mitsui, R., Oike, H. & Yonezawa, N. (2011). Chem. Lett. 40, 1283–1284.  Web of Science CrossRef CAS Google Scholar
First citationOkamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914–915.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSasagawa, K., Muto, T., Okamoto, A., Oike, H. & Yonezawa, N. (2011). Acta Cryst. E67, o3354.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWatanabe, S., Nagasawa, A., Okamoto, A., Noguchi, K. & Yonezawa, N. (2010). Acta Cryst. E66, o329.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds