organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Iodo­durene

aLaboratoire de Cristallographie, Département de Physique, Université Mentouri-Constantine, 25000 Constantine, Algeria, and bUMR 6226 CNRS–Université Rennes 1, Sciences Chimiques de Rennes, Equipe Matière Condensée et Systèmes Electroactifs, 263 Avenue du Général Leclerc, F-35042 Rennes, France
*Correspondence e-mail: n_hamdouni@yahoo.fr

(Received 27 October 2012; accepted 11 November 2012; online 24 November 2012)

The title compound (systematic name: 1-iodo-2,3,5,6-tetra­methyl­benzene), C10H13I, crystallizes in the chiral space group P212121. The I atom is displaced by 0.1003 (5) Å from the mean plane of the ten C atoms [maximum deviation = 0.018 (6) Å]. In the crystal, there are no significant inter­molecular inter­actions present.

Related literature

For the crystal structure of bromo­durene, see: Charbonneau et al. (1964[Charbonneau, G., Baudour, J., Messager, J. C. & Meinnel, J. (1964). Acta Cryst. 17, 780-781.], 1965[Charbonneau, G., Baudour, J., Messager, J. C. & Meinnel, J. (1965). Bull. Soc. Fr. Minéral. Cristallogr. 88, 147-148.]). For the physical properties of mono-halogen­ated derivatives of durene, see: Balcou et al. (1965[Balcou, Y., Grégoire, P. & Meinnel, J. (1965). J. Chim. Phys. PCB, 62, 536-538.]). For standard bond lengths in similar compounds, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]); Hope et al. (1970[Hope, H., Knobler, C. & McCullough, J. D. (1970). Acta Cryst. B26, 628-640.]).

[Scheme 1]

Experimental

Crystal data
  • C10H13I

  • Mr = 260.11

  • Orthorhombic, P 21 21 21

  • a = 5.5099 (3) Å

  • b = 11.8839 (5) Å

  • c = 15.1704 (6) Å

  • V = 993.34 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.16 mm−1

  • T = 293 K

  • 0.10 × 0.05 × 0.04 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.140, Tmax = 0.193

  • 26027 measured reflections

  • 2271 independent reflections

  • 2036 reflections with I > 3σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.039

  • S = 1.04

  • 3272 reflections

  • 101 parameters

  • 36 restraints

  • H-atom parameters constrained

  • Δρmax = 0.84 e Å−3

  • Δρmin = −0.71 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 925 Friedal pairs

  • Flack parameter: −0.03 (4)

Data collection: COLLECT (Nonius, 2001[Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DIRAX/LSQ (Duisenberg et al., 2003[Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220-229.]); data reduction: EVALCCD (Duisenberg et al., 2003[Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220-229.]); program(s) used to solve structure: SIR2002 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.]) and DIAMOND (Brandenburg, 2012[Brandenburg, K. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: CRYSTALS.

Supporting information


Comment top

Substituted benzene compounds are generally liquid at room temperature so relatively few crystal structure analyses of such compounds have been reported. We have synthesized three mono-halogenated products of duren; chloro-, bromo- and iododurene. These derivatives are solid at 293 K and their dielectric behavior depends on the nature of the substituent, and in particular of its mass and volume. Contrary to chlorodurene the title iododurene in the solid phase has a quite low permeability equal to only 2.6, which changes abruptly at fusion to a value of ca. 4 (Balcou et al., 1965). We report herein on its crystal structure.

The molecular structure of the title compound is illustrated in Fig. 1. The molecule is almost planar with the I atom displaced from the mean plane of the nine C atoms [maximum deviation 0.018 (6) Å for the methyl C atoms C7 and C9] by 0.1003 (5) Å. The average endocyclic angles facing the I atom and the methyl groups are 124.98 (10)° and 117.41 (10)°, respectively. The structural study did not reveal any disorder and the average intramolecular bond lengths, [Car-I = 2.139 (3) Å, Car-Car = 1.400 (5) Å and Car-CMe = 1.498 (6) Å], as well as the average single Car-H bond length [0.940 Å], agree with the distances reported in the literature [Cambridge Structural Database (Allen, 2002); Hope et al., 1970].

In the crystal, the a axis is very short, so the molecules stack along this direction (Fig. 2). The best mean plane passing through the carbon and iodine atoms, calculated with the program Molax of CRYSTALS (Betteridge et al., 2003), indicated that the angle between the normal to this mean plane is ca. 50.1° relative to the a axis, ca. 44.8° relative to the b axis and ca. 74.5° relative to the c axis (Fig. 3).

The crystals obtained sublimate a little at ambient temperature. Moreover, at room temperature iododurene and the isotypic product bromodurene (Charbonneau et al., 1964, 1965) crystallize in the same orthorhombic space group with fixed orientations of the dipolar grouping not presenting dielectric dispersion. This fact could be interpreted by the importance of the distribution of the masses of the substituents, that inhibit the possibility of molecular reorientation like in chlorodurene (Balcou et al., 1965).

Related literature top

For the crystal structure of bromodurene, see: Charbonneau et al. (1964, 1965). For the physical properties of mono-halogenated derivatives of durene, see: Balcou et al. (1965). For standard bond lengths in similar compounds, see: Allen (2002); Hope et al. (1970).

Experimental top

The title compound was synthesized by direct iodination of durene. Equimolecular quantities of iodine and durene were dissolved in pure acetic acid at 343 K. Progressive iodination was obtained by oxidation of durene using drops of pure sulfuric and nitric acids diluted in acetic acid. Total precipitation of iododurene was obtained by dilution with water. Purification was done by chromatography on a silica column and finally precipitation of a solution in chloroform, giving colouress needle-like crystals.

Refinement top

All H atoms were localized in a difference Fourier map. The C-bound H atoms were included in calculated positions and treated as riding atoms: C-H = 0.94 Å for CH H atoms, and 0.95 - 0.97 Å for CH3 H atoms, with Uiso(H) = k × Ueq(C) where k = 1.5 for CH3 H atoms and = 1.2 for other H atoms.

Computing details top

Data collection: COLLECT (Nonius, 2001); cell refinement: DIRAX/LSQ (Duisenberg et al., 2003); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996) and DIAMOND (Brandenburg, 2012); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with atom numbering. The displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A view along the a axis of the crystal packing of the title compound.
[Figure 3] Fig. 3. A view along the c axis of the crystal packing of the title compound.
1-Iodo-2,3,5,6-tetramethylbenzene top
Crystal data top
C10H13IDx = 1.739 Mg m3
Mr = 260.11Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 8232 reflections
a = 5.5099 (3) Åθ = 3.7–27.5°
b = 11.8839 (5) ŵ = 3.16 mm1
c = 15.1704 (6) ÅT = 293 K
V = 993.34 (8) Å3Needle, colourless
Z = 40.10 × 0.05 × 0.04 mm
F(000) = 503.986
Data collection top
Nonius KappaCCD
diffractometer
2036 reflections with I > 3σ(I)
Graphite monochromatorRint = 0.047
CCD scansθmax = 27.5°, θmin = 3.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 77
Tmin = 0.140, Tmax = 0.193k = 1515
26027 measured reflectionsl = 1919
2271 independent reflections
Refinement top
Refinement on FSecondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.039 W = [weight]*[1-(deltaF/6*sigmaF)2]2
S = 1.04(Δ/σ)max < 0.001
3272 reflectionsΔρmax = 0.84 e Å3
101 parametersΔρmin = 0.71 e Å3
36 restraintsAbsolute structure: Flack (1983), 925 Friedal pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.03 (4)
Crystal data top
C10H13IV = 993.34 (8) Å3
Mr = 260.11Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.5099 (3) ŵ = 3.16 mm1
b = 11.8839 (5) ÅT = 293 K
c = 15.1704 (6) Å0.10 × 0.05 × 0.04 mm
Data collection top
Nonius KappaCCD
diffractometer
2271 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2036 reflections with I > 3σ(I)
Tmin = 0.140, Tmax = 0.193Rint = 0.047
26027 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.039Δρmax = 0.84 e Å3
S = 1.04Δρmin = 0.71 e Å3
3272 reflectionsAbsolute structure: Flack (1983), 925 Friedal pairs
101 parametersAbsolute structure parameter: 0.03 (4)
36 restraints
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.93848 (10)0.80448 (4)0.27027 (3)0.0686 (2)
C10.9383 (7)0.9098 (3)0.1559 (2)0.0429 (11)
C20.7711 (8)0.9981 (4)0.1533 (3)0.0473 (16)
C30.7637 (8)1.0638 (3)0.0755 (3)0.0483 (16)
C40.9270 (10)1.0376 (4)0.0091 (3)0.0507 (16)
C51.0976 (8)0.9513 (4)0.0123 (2)0.0460 (14)
C61.1033 (7)0.8838 (3)0.0887 (3)0.0423 (14)
C70.5997 (12)1.0208 (5)0.2295 (4)0.071 (2)
C80.5866 (12)1.1574 (5)0.0651 (4)0.067 (2)
C91.2673 (11)0.9310 (5)0.0622 (4)0.064 (2)
C101.2821 (11)0.7894 (5)0.0980 (3)0.0597 (19)
H410.921101.080700.042900.0610*
H710.692401.031200.282600.1071*
H720.509401.087400.217800.1072*
H730.491600.958400.236900.1071*
H810.627101.217400.105100.1008*
H820.596501.184100.006000.1008*
H830.423101.131000.076300.1010*
H911.246300.989400.105600.0971*
H921.430800.933600.040100.0970*
H931.235700.858400.088100.0971*
H1011.386700.800800.148300.0892*
H1021.380000.786300.046500.0892*
H1031.196500.719000.104100.0891*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0831 (3)0.0727 (3)0.0500 (2)0.0082 (2)0.0036 (2)0.0120 (2)
C10.046 (2)0.044 (2)0.0387 (19)0.006 (2)0.004 (2)0.0006 (17)
C20.047 (3)0.044 (2)0.051 (3)0.005 (2)0.000 (2)0.009 (2)
C30.046 (3)0.040 (2)0.059 (3)0.004 (2)0.011 (2)0.007 (2)
C40.055 (3)0.045 (2)0.052 (3)0.007 (3)0.011 (3)0.0031 (19)
C50.047 (3)0.048 (2)0.043 (2)0.010 (2)0.001 (2)0.0036 (18)
C60.041 (3)0.041 (2)0.045 (2)0.0034 (18)0.0062 (18)0.0043 (17)
C70.070 (4)0.071 (3)0.072 (4)0.000 (3)0.013 (4)0.021 (3)
C80.063 (4)0.052 (3)0.087 (4)0.008 (3)0.019 (4)0.005 (3)
C90.060 (4)0.077 (4)0.056 (3)0.009 (3)0.005 (3)0.011 (3)
C100.056 (3)0.053 (3)0.070 (4)0.011 (3)0.006 (3)0.008 (3)
Geometric parameters (Å, º) top
I1—C12.139 (3)C7—H710.9600
C1—C21.397 (6)C7—H720.9500
C1—C61.401 (5)C7—H730.9600
C2—C31.416 (6)C8—H810.9600
C2—C71.517 (8)C8—H820.9500
C3—C41.386 (7)C8—H830.9700
C3—C81.488 (7)C9—H910.9600
C4—C51.392 (7)C9—H920.9600
C5—C61.410 (6)C9—H930.9600
C5—C91.487 (7)C10—H1010.9700
C6—C101.500 (7)C10—H1020.9500
C4—H410.9400C10—H1030.9600
I1—C1—C2117.6 (3)H71—C7—H72109.00
I1—C1—C6117.5 (3)H71—C7—H73109.00
C2—C1—C6125.0 (3)H72—C7—H73110.00
C1—C2—C3117.2 (4)C3—C8—H81110.00
C1—C2—C7121.5 (4)C3—C8—H82108.00
C3—C2—C7121.3 (4)C3—C8—H83110.00
C2—C3—C4117.6 (4)H81—C8—H82109.00
C2—C3—C8121.3 (4)H81—C8—H83110.00
C4—C3—C8121.1 (4)H82—C8—H83109.00
C3—C4—C5125.4 (4)C5—C9—H91109.00
C4—C5—C6117.6 (4)C5—C9—H92109.00
C4—C5—C9121.2 (4)C5—C9—H93110.00
C6—C5—C9121.2 (4)H91—C9—H92109.00
C1—C6—C5117.3 (3)H91—C9—H93110.00
C1—C6—C10121.5 (4)H92—C9—H93110.00
C5—C6—C10121.2 (4)C6—C10—H101111.00
C3—C4—H41118.00C6—C10—H102109.00
C5—C4—H41117.00C6—C10—H103110.00
C2—C7—H71109.00H101—C10—H102108.00
C2—C7—H72109.00H101—C10—H103110.00
C2—C7—H73110.00H102—C10—H103109.00
I1—C1—C2—C3176.8 (3)C7—C2—C3—C4179.9 (5)
I1—C1—C2—C71.5 (6)C7—C2—C3—C80.3 (7)
C6—C1—C2—C32.1 (6)C2—C3—C4—C50.4 (7)
C6—C1—C2—C7179.6 (4)C8—C3—C4—C5179.4 (5)
I1—C1—C6—C5178.1 (3)C3—C4—C5—C60.9 (7)
I1—C1—C6—C103.0 (5)C3—C4—C5—C9179.2 (5)
C2—C1—C6—C50.8 (6)C4—C5—C6—C10.7 (6)
C2—C1—C6—C10178.1 (4)C4—C5—C6—C10179.6 (4)
C1—C2—C3—C41.8 (6)C9—C5—C6—C1179.4 (4)
C1—C2—C3—C8178.0 (4)C9—C5—C6—C100.4 (7)

Experimental details

Crystal data
Chemical formulaC10H13I
Mr260.11
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)5.5099 (3), 11.8839 (5), 15.1704 (6)
V3)993.34 (8)
Z4
Radiation typeMo Kα
µ (mm1)3.16
Crystal size (mm)0.10 × 0.05 × 0.04
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.140, 0.193
No. of measured, independent and
observed [I > 3σ(I)] reflections
26027, 2271, 2036
Rint0.047
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.039, 1.04
No. of reflections3272
No. of parameters101
No. of restraints36
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.84, 0.71
Absolute structureFlack (1983), 925 Friedal pairs
Absolute structure parameter0.03 (4)

Computer programs: COLLECT (Nonius, 2001), DIRAX/LSQ (Duisenberg et al., 2003), EVALCCD (Duisenberg et al., 2003), SIR2002 (Burla et al., 2005), CRYSTALS (Betteridge et al., 2003), CAMERON (Watkin et al., 1996) and DIAMOND (Brandenburg, 2012).

 

Acknowledgements

The authors thank the Centre de Diffractométrie de l'Université de Rennes 1 for the opportunity to collect data on the Nonius Kappa CCD X-ray diffractometer. We would also like to thank Dr Olivier Jeannin for the useful advice he provided.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBalcou, Y., Grégoire, P. & Meinnel, J. (1965). J. Chim. Phys. PCB, 62, 536–538.  CAS Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCharbonneau, G., Baudour, J., Messager, J. C. & Meinnel, J. (1964). Acta Cryst. 17, 780–781.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationCharbonneau, G., Baudour, J., Messager, J. C. & Meinnel, J. (1965). Bull. Soc. Fr. Minéral. Cristallogr. 88, 147–148.  CAS Google Scholar
First citationDuisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220–229.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHope, H., Knobler, C. & McCullough, J. D. (1970). Acta Cryst. B26, 628–640.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationNonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds