organic compounds
Iododurene
aLaboratoire de Cristallographie, Département de Physique, Université Mentouri-Constantine, 25000 Constantine, Algeria, and bUMR 6226 CNRS–Université Rennes 1, Sciences Chimiques de Rennes, Equipe Matière Condensée et Systèmes Electroactifs, 263 Avenue du Général Leclerc, F-35042 Rennes, France
*Correspondence e-mail: n_hamdouni@yahoo.fr
The title compound (systematic name: 1-iodo-2,3,5,6-tetramethylbenzene), C10H13I, crystallizes in the P212121. The I atom is displaced by 0.1003 (5) Å from the mean plane of the ten C atoms [maximum deviation = 0.018 (6) Å]. In the crystal, there are no significant intermolecular interactions present.
Related literature
For the et al. (1964, 1965). For the physical properties of mono-halogenated derivatives of durene, see: Balcou et al. (1965). For standard bond lengths in similar compounds, see: Allen (2002); Hope et al. (1970).
of bromodurene, see: CharbonneauExperimental
Crystal data
|
Data collection: COLLECT (Nonius, 2001); cell DIRAX/LSQ (Duisenberg et al., 2003); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996) and DIAMOND (Brandenburg, 2012); software used to prepare material for publication: CRYSTALS.
Supporting information
10.1107/S1600536812046557/su2521sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812046557/su2521Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536812046557/su2521Isup3.cml
The title compound was synthesized by direct iodination of durene. Equimolecular quantities of iodine and durene were dissolved in pure acetic acid at 343 K. Progressive iodination was obtained by oxidation of durene using drops of pure sulfuric and nitric acids diluted in acetic acid. Total precipitation of iododurene was obtained by dilution with water. Purification was done by
on a silica column and finally precipitation of a solution in chloroform, giving colouress needle-like crystals.All H atoms were localized in a difference Fourier map. The C-bound H atoms were included in calculated positions and treated as riding atoms: C-H = 0.94 Å for CH H atoms, and 0.95 - 0.97 Å for CH3 H atoms, with Uiso(H) = k × Ueq(C) where k = 1.5 for CH3 H atoms and = 1.2 for other H atoms.
Data collection: COLLECT (Nonius, 2001); cell
DIRAX/LSQ (Duisenberg et al., 2003); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996) and DIAMOND (Brandenburg, 2012); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003).C10H13I | Dx = 1.739 Mg m−3 |
Mr = 260.11 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, P212121 | Cell parameters from 8232 reflections |
a = 5.5099 (3) Å | θ = 3.7–27.5° |
b = 11.8839 (5) Å | µ = 3.16 mm−1 |
c = 15.1704 (6) Å | T = 293 K |
V = 993.34 (8) Å3 | Needle, colourless |
Z = 4 | 0.10 × 0.05 × 0.04 mm |
F(000) = 503.986 |
Nonius KappaCCD diffractometer | 2036 reflections with I > 3σ(I) |
Graphite monochromator | Rint = 0.047 |
CCD scans | θmax = 27.5°, θmin = 3.7° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −7→7 |
Tmin = 0.140, Tmax = 0.193 | k = −15→15 |
26027 measured reflections | l = −19→19 |
2271 independent reflections |
Refinement on F | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.035 | H-atom parameters constrained |
wR(F2) = 0.039 | W = [weight]*[1-(deltaF/6*sigmaF)2]2 |
S = 1.04 | (Δ/σ)max < 0.001 |
3272 reflections | Δρmax = 0.84 e Å−3 |
101 parameters | Δρmin = −0.71 e Å−3 |
36 restraints | Absolute structure: Flack (1983), 925 Friedal pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: −0.03 (4) |
C10H13I | V = 993.34 (8) Å3 |
Mr = 260.11 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 5.5099 (3) Å | µ = 3.16 mm−1 |
b = 11.8839 (5) Å | T = 293 K |
c = 15.1704 (6) Å | 0.10 × 0.05 × 0.04 mm |
Nonius KappaCCD diffractometer | 2271 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 2036 reflections with I > 3σ(I) |
Tmin = 0.140, Tmax = 0.193 | Rint = 0.047 |
26027 measured reflections |
R[F2 > 2σ(F2)] = 0.035 | H-atom parameters constrained |
wR(F2) = 0.039 | Δρmax = 0.84 e Å−3 |
S = 1.04 | Δρmin = −0.71 e Å−3 |
3272 reflections | Absolute structure: Flack (1983), 925 Friedal pairs |
101 parameters | Absolute structure parameter: −0.03 (4) |
36 restraints |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
I1 | 0.93848 (10) | 0.80448 (4) | 0.27027 (3) | 0.0686 (2) | |
C1 | 0.9383 (7) | 0.9098 (3) | 0.1559 (2) | 0.0429 (11) | |
C2 | 0.7711 (8) | 0.9981 (4) | 0.1533 (3) | 0.0473 (16) | |
C3 | 0.7637 (8) | 1.0638 (3) | 0.0755 (3) | 0.0483 (16) | |
C4 | 0.9270 (10) | 1.0376 (4) | 0.0091 (3) | 0.0507 (16) | |
C5 | 1.0976 (8) | 0.9513 (4) | 0.0123 (2) | 0.0460 (14) | |
C6 | 1.1033 (7) | 0.8838 (3) | 0.0887 (3) | 0.0423 (14) | |
C7 | 0.5997 (12) | 1.0208 (5) | 0.2295 (4) | 0.071 (2) | |
C8 | 0.5866 (12) | 1.1574 (5) | 0.0651 (4) | 0.067 (2) | |
C9 | 1.2673 (11) | 0.9310 (5) | −0.0622 (4) | 0.064 (2) | |
C10 | 1.2821 (11) | 0.7894 (5) | 0.0980 (3) | 0.0597 (19) | |
H41 | 0.92110 | 1.08070 | −0.04290 | 0.0610* | |
H71 | 0.69240 | 1.03120 | 0.28260 | 0.1071* | |
H72 | 0.50940 | 1.08740 | 0.21780 | 0.1072* | |
H73 | 0.49160 | 0.95840 | 0.23690 | 0.1071* | |
H81 | 0.62710 | 1.21740 | 0.10510 | 0.1008* | |
H82 | 0.59650 | 1.18410 | 0.00600 | 0.1008* | |
H83 | 0.42310 | 1.13100 | 0.07630 | 0.1010* | |
H91 | 1.24630 | 0.98940 | −0.10560 | 0.0971* | |
H92 | 1.43080 | 0.93360 | −0.04010 | 0.0970* | |
H93 | 1.23570 | 0.85840 | −0.08810 | 0.0971* | |
H101 | 1.38670 | 0.80080 | 0.14830 | 0.0892* | |
H102 | 1.38000 | 0.78630 | 0.04650 | 0.0892* | |
H103 | 1.19650 | 0.71900 | 0.10410 | 0.0891* |
U11 | U22 | U33 | U12 | U13 | U23 | |
I1 | 0.0831 (3) | 0.0727 (3) | 0.0500 (2) | −0.0082 (2) | −0.0036 (2) | 0.0120 (2) |
C1 | 0.046 (2) | 0.044 (2) | 0.0387 (19) | −0.006 (2) | −0.004 (2) | 0.0006 (17) |
C2 | 0.047 (3) | 0.044 (2) | 0.051 (3) | −0.005 (2) | 0.000 (2) | −0.009 (2) |
C3 | 0.046 (3) | 0.040 (2) | 0.059 (3) | −0.004 (2) | −0.011 (2) | −0.007 (2) |
C4 | 0.055 (3) | 0.045 (2) | 0.052 (3) | −0.007 (3) | −0.011 (3) | 0.0031 (19) |
C5 | 0.047 (3) | 0.048 (2) | 0.043 (2) | −0.010 (2) | −0.001 (2) | −0.0036 (18) |
C6 | 0.041 (3) | 0.041 (2) | 0.045 (2) | −0.0034 (18) | −0.0062 (18) | −0.0043 (17) |
C7 | 0.070 (4) | 0.071 (3) | 0.072 (4) | 0.000 (3) | 0.013 (4) | −0.021 (3) |
C8 | 0.063 (4) | 0.052 (3) | 0.087 (4) | 0.008 (3) | −0.019 (4) | −0.005 (3) |
C9 | 0.060 (4) | 0.077 (4) | 0.056 (3) | −0.009 (3) | 0.005 (3) | −0.011 (3) |
C10 | 0.056 (3) | 0.053 (3) | 0.070 (4) | 0.011 (3) | −0.006 (3) | −0.008 (3) |
I1—C1 | 2.139 (3) | C7—H71 | 0.9600 |
C1—C2 | 1.397 (6) | C7—H72 | 0.9500 |
C1—C6 | 1.401 (5) | C7—H73 | 0.9600 |
C2—C3 | 1.416 (6) | C8—H81 | 0.9600 |
C2—C7 | 1.517 (8) | C8—H82 | 0.9500 |
C3—C4 | 1.386 (7) | C8—H83 | 0.9700 |
C3—C8 | 1.488 (7) | C9—H91 | 0.9600 |
C4—C5 | 1.392 (7) | C9—H92 | 0.9600 |
C5—C6 | 1.410 (6) | C9—H93 | 0.9600 |
C5—C9 | 1.487 (7) | C10—H101 | 0.9700 |
C6—C10 | 1.500 (7) | C10—H102 | 0.9500 |
C4—H41 | 0.9400 | C10—H103 | 0.9600 |
I1—C1—C2 | 117.6 (3) | H71—C7—H72 | 109.00 |
I1—C1—C6 | 117.5 (3) | H71—C7—H73 | 109.00 |
C2—C1—C6 | 125.0 (3) | H72—C7—H73 | 110.00 |
C1—C2—C3 | 117.2 (4) | C3—C8—H81 | 110.00 |
C1—C2—C7 | 121.5 (4) | C3—C8—H82 | 108.00 |
C3—C2—C7 | 121.3 (4) | C3—C8—H83 | 110.00 |
C2—C3—C4 | 117.6 (4) | H81—C8—H82 | 109.00 |
C2—C3—C8 | 121.3 (4) | H81—C8—H83 | 110.00 |
C4—C3—C8 | 121.1 (4) | H82—C8—H83 | 109.00 |
C3—C4—C5 | 125.4 (4) | C5—C9—H91 | 109.00 |
C4—C5—C6 | 117.6 (4) | C5—C9—H92 | 109.00 |
C4—C5—C9 | 121.2 (4) | C5—C9—H93 | 110.00 |
C6—C5—C9 | 121.2 (4) | H91—C9—H92 | 109.00 |
C1—C6—C5 | 117.3 (3) | H91—C9—H93 | 110.00 |
C1—C6—C10 | 121.5 (4) | H92—C9—H93 | 110.00 |
C5—C6—C10 | 121.2 (4) | C6—C10—H101 | 111.00 |
C3—C4—H41 | 118.00 | C6—C10—H102 | 109.00 |
C5—C4—H41 | 117.00 | C6—C10—H103 | 110.00 |
C2—C7—H71 | 109.00 | H101—C10—H102 | 108.00 |
C2—C7—H72 | 109.00 | H101—C10—H103 | 110.00 |
C2—C7—H73 | 110.00 | H102—C10—H103 | 109.00 |
I1—C1—C2—C3 | −176.8 (3) | C7—C2—C3—C4 | 179.9 (5) |
I1—C1—C2—C7 | 1.5 (6) | C7—C2—C3—C8 | −0.3 (7) |
C6—C1—C2—C3 | 2.1 (6) | C2—C3—C4—C5 | 0.4 (7) |
C6—C1—C2—C7 | −179.6 (4) | C8—C3—C4—C5 | −179.4 (5) |
I1—C1—C6—C5 | 178.1 (3) | C3—C4—C5—C6 | 0.9 (7) |
I1—C1—C6—C10 | −3.0 (5) | C3—C4—C5—C9 | −179.2 (5) |
C2—C1—C6—C5 | −0.8 (6) | C4—C5—C6—C1 | −0.7 (6) |
C2—C1—C6—C10 | 178.1 (4) | C4—C5—C6—C10 | −179.6 (4) |
C1—C2—C3—C4 | −1.8 (6) | C9—C5—C6—C1 | 179.4 (4) |
C1—C2—C3—C8 | 178.0 (4) | C9—C5—C6—C10 | 0.4 (7) |
Experimental details
Crystal data | |
Chemical formula | C10H13I |
Mr | 260.11 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 293 |
a, b, c (Å) | 5.5099 (3), 11.8839 (5), 15.1704 (6) |
V (Å3) | 993.34 (8) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 3.16 |
Crystal size (mm) | 0.10 × 0.05 × 0.04 |
Data collection | |
Diffractometer | Nonius KappaCCD diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.140, 0.193 |
No. of measured, independent and observed [I > 3σ(I)] reflections | 26027, 2271, 2036 |
Rint | 0.047 |
(sin θ/λ)max (Å−1) | 0.650 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.035, 0.039, 1.04 |
No. of reflections | 3272 |
No. of parameters | 101 |
No. of restraints | 36 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.84, −0.71 |
Absolute structure | Flack (1983), 925 Friedal pairs |
Absolute structure parameter | −0.03 (4) |
Computer programs: COLLECT (Nonius, 2001), DIRAX/LSQ (Duisenberg et al., 2003), EVALCCD (Duisenberg et al., 2003), SIR2002 (Burla et al., 2005), CRYSTALS (Betteridge et al., 2003), CAMERON (Watkin et al., 1996) and DIAMOND (Brandenburg, 2012).
Acknowledgements
The authors thank the Centre de Diffractométrie de l'Université de Rennes 1 for the opportunity to collect data on the Nonius Kappa CCD X-ray diffractometer. We would also like to thank Dr Olivier Jeannin for the useful advice he provided.
References
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Balcou, Y., Grégoire, P. & Meinnel, J. (1965). J. Chim. Phys. PCB, 62, 536–538. CAS Google Scholar
Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487. Web of Science CrossRef IUCr Journals Google Scholar
Brandenburg, K. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Charbonneau, G., Baudour, J., Messager, J. C. & Meinnel, J. (1964). Acta Cryst. 17, 780–781. CrossRef CAS IUCr Journals Web of Science Google Scholar
Charbonneau, G., Baudour, J., Messager, J. C. & Meinnel, J. (1965). Bull. Soc. Fr. Minéral. Cristallogr. 88, 147–148. CAS Google Scholar
Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220–229. Web of Science CrossRef CAS IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Hope, H., Knobler, C. & McCullough, J. D. (1970). Acta Cryst. B26, 628–640. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Substituted benzene compounds are generally liquid at room temperature so relatively few crystal structure analyses of such compounds have been reported. We have synthesized three mono-halogenated products of duren; chloro-, bromo- and iododurene. These derivatives are solid at 293 K and their dielectric behavior depends on the nature of the substituent, and in particular of its mass and volume. Contrary to chlorodurene the title iododurene in the solid phase has a quite low permeability equal to only 2.6, which changes abruptly at fusion to a value of ca. 4 (Balcou et al., 1965). We report herein on its crystal structure.
The molecular structure of the title compound is illustrated in Fig. 1. The molecule is almost planar with the I atom displaced from the mean plane of the nine C atoms [maximum deviation 0.018 (6) Å for the methyl C atoms C7 and C9] by 0.1003 (5) Å. The average endocyclic angles facing the I atom and the methyl groups are 124.98 (10)° and 117.41 (10)°, respectively. The structural study did not reveal any disorder and the average intramolecular bond lengths, [Car-I = 2.139 (3) Å, Car-Car = 1.400 (5) Å and Car-CMe = 1.498 (6) Å], as well as the average single Car-H bond length [0.940 Å], agree with the distances reported in the literature [Cambridge Structural Database (Allen, 2002); Hope et al., 1970].
In the crystal, the a axis is very short, so the molecules stack along this direction (Fig. 2). The best mean plane passing through the carbon and iodine atoms, calculated with the program Molax of CRYSTALS (Betteridge et al., 2003), indicated that the angle between the normal to this mean plane is ca. 50.1° relative to the a axis, ca. 44.8° relative to the b axis and ca. 74.5° relative to the c axis (Fig. 3).
The crystals obtained sublimate a little at ambient temperature. Moreover, at room temperature iododurene and the isotypic product bromodurene (Charbonneau et al., 1964, 1965) crystallize in the same orthorhombic space group with fixed orientations of the dipolar grouping not presenting dielectric dispersion. This fact could be interpreted by the importance of the distribution of the masses of the substituents, that inhibit the possibility of molecular reorientation like in chlorodurene (Balcou et al., 1965).