organic compounds
4-[(E)-2-(Pyridin-2-yl)ethenyl]pyridine–terephthalic acid (2/1)
aFacultad de Ingenieria Mochis, Universidad Autonoma de Sinaloa, Fuente Poseidon y Prol. A. Flores S/N, CP 81223, C.U. Los Mochis, Sinaloa, Mexico, and bCentro de Investigaciones Quimicas, Universidad Autonoma del Estado de Morelos, Av. Universidad 1001, CP 62210, Cuernavaca, Morelos, Mexico
*Correspondence e-mail: cenriqueza@yahoo.com.mx
The title 2:1 12H10N2·C8H6O4, crystallizes with one molecule of 4-[(E)-2-(pyridin-2-yl)ethenyl]pyridine (A) and one half-molecule of terephthalic acid (B) in the In the crystal, the components are linked through heterodimeric COOH⋯Npyridine synthons, forming linear aggregates of composition –A–B–A–B–. Further linkage through weak C—H⋯O and C—H⋯π interactions gives two-dimensional hydrogen-bonded undulating sheets propagating in the [100] and [010] directions. These layers are connected through additional weak C—H⋯O contacts, forming a three-dimensional structure.
2CRelated literature
For reports on supramolecular crystal engineering and potential applications of co-crystals, see: Desiraju (1995); Simon & Bassoul (2000); Bhogala & Nangia (2003); Weyna et al. (2009); Yan et al. (2012). For background to related co-crystals, see: Santra et al. (2008); Moon & Park (2012); Ebenezer & Muthiah (2012).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 2000); cell SAINT-Plus (Bruker 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012) and Mercury (Macrae et al. 2008); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
10.1107/S1600536812046284/su2525sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812046284/su2525Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536812046284/su2525Isup3.cml
0.200 g (1.10 mmol) of 4-((E)-2-(pyridin-2-yl)ethenyl)pyridine and 0.180 g (1.10 mmol) of terephthalic acid were ground in a mortar for 20 min after adding 3 drops of CH3OH. The resulting powder was then dissolved in 10 ml of CH3OH and kept for crystallization by slow evaporation of the solvent at ambient conditions to give colourless block-like crystals, suitable for single-crystal X-ray
after one week. Spectroscopic and TGA data for the title compound are available in the archived CIF.H atoms bonded to C atoms were positioned geometrically and constrained using the riding-model approximation [aryl C—H = 0.93 A and Uiso(H) = 1.2Ueq(C)]. The H atom bonded to O was initially located in a difference Fourier map, then the position was refined with the O—H distance restraint of 0.84 (1) Å with Uiso(H) = 1.5Ueq(O). One reflection that was located behind the beam stop has been omitted during the
(020).Data collection: SMART (Bruker, 2000); cell
SAINT-Plus (Bruker 2001); data reduction: SAINT-Plus (Bruker 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012) and Mercury (Macrae et al. 2008); software used to prepare material for publication: publCIF (Westrip, 2010).Fig. 1. The molecular structures of the components in the title compound, showing the atom numbering. Displacement ellipsoids are drawn at the 50% probability level. [symmetry code: (i) -x + 2, -y, -z + 1]. | |
Fig. 2. View of the two-dimensional supramolecular layer formed through O—H···N, C—H···O and C—H···π interactions (dashed lines; see Table 1 for details), in the crystal structure of the title compound. |
C12H10N2·0.5C8H6O4 | F(000) = 556 |
Mr = 265.28 | Dx = 1.336 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 4971 reflections |
a = 6.3821 (8) Å | θ = 2.5–27.1° |
b = 32.301 (4) Å | µ = 0.09 mm−1 |
c = 6.8721 (8) Å | T = 293 K |
β = 111.440 (2)° | Block, colourless |
V = 1318.6 (3) Å3 | 0.48 × 0.41 × 0.34 mm |
Z = 4 |
Bruker SMART CCD area-detector diffractometer | 2328 independent reflections |
Radiation source: fine-focus sealed tube | 2119 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.033 |
phi and ω scans | θmax = 25.0°, θmin = 2.5° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −7→7 |
Tmin = 0.96, Tmax = 0.97 | k = −38→38 |
12715 measured reflections | l = −8→8 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.055 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.149 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.17 | w = 1/[σ2(Fo2) + (0.0769P)2 + 0.2452P] where P = (Fo2 + 2Fc2)/3 |
2328 reflections | (Δ/σ)max < 0.001 |
184 parameters | Δρmax = 0.14 e Å−3 |
1 restraint | Δρmin = −0.20 e Å−3 |
C12H10N2·0.5C8H6O4 | V = 1318.6 (3) Å3 |
Mr = 265.28 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 6.3821 (8) Å | µ = 0.09 mm−1 |
b = 32.301 (4) Å | T = 293 K |
c = 6.8721 (8) Å | 0.48 × 0.41 × 0.34 mm |
β = 111.440 (2)° |
Bruker SMART CCD area-detector diffractometer | 2328 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 2119 reflections with I > 2σ(I) |
Tmin = 0.96, Tmax = 0.97 | Rint = 0.033 |
12715 measured reflections |
R[F2 > 2σ(F2)] = 0.055 | 1 restraint |
wR(F2) = 0.149 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.17 | Δρmax = 0.14 e Å−3 |
2328 reflections | Δρmin = −0.20 e Å−3 |
184 parameters |
Experimental. Spectroscopic and TGA data for the title compound: IR (KBr): 3056, 2944, 1706, 1683, 1606, 1581, 1504, 1425, 1290 y 731 cm-1. 1H-RMN (200 MHz, DMSO-d6, TMS): δ 8.59 (m, 3H), 8.04 (s, 4H), 7.83 (td, J = 0.8, 4 Hz, 1H), 7.61 (m, 5H), 7.32 (m, 1H). TGA Calcd. for 2 C12H10N2: 68.69. Found: 69.27% (303 - 533 K). |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.7604 (3) | 0.03567 (5) | 0.8732 (2) | 0.0626 (4) | |
H1' | 0.752 (4) | 0.0508 (7) | 0.969 (3) | 0.094* | |
O2 | 1.0571 (2) | 0.07552 (4) | 0.9137 (2) | 0.0646 (4) | |
C1 | 0.9678 (3) | 0.02216 (5) | 0.6602 (3) | 0.0419 (4) | |
C2 | 0.8138 (3) | −0.00755 (6) | 0.5490 (3) | 0.0497 (5) | |
H2 | 0.6876 | −0.0128 | 0.5824 | 0.060* | |
C3 | 1.1549 (3) | 0.02934 (6) | 0.6094 (3) | 0.0502 (5) | |
H3 | 1.2603 | 0.0491 | 0.6830 | 0.060* | |
C4 | 0.9339 (3) | 0.04711 (6) | 0.8289 (3) | 0.0478 (5) | |
N1 | 0.7178 (3) | 0.08162 (5) | 0.1678 (2) | 0.0525 (4) | |
N2 | 0.6102 (3) | 0.20912 (5) | 0.9682 (3) | 0.0577 (5) | |
C5 | 0.5534 (3) | 0.07399 (6) | 0.2373 (3) | 0.0525 (5) | |
H5 | 0.4559 | 0.0521 | 0.1784 | 0.063* | |
C6 | 0.5203 (3) | 0.09677 (6) | 0.3915 (3) | 0.0515 (5) | |
H6 | 0.4020 | 0.0903 | 0.4346 | 0.062* | |
C7 | 0.6625 (3) | 0.12946 (6) | 0.4837 (3) | 0.0471 (5) | |
C8 | 0.8332 (3) | 0.13732 (7) | 0.4096 (3) | 0.0567 (5) | |
H8 | 0.9330 | 0.1590 | 0.4651 | 0.068* | |
C9 | 0.8553 (4) | 0.11300 (7) | 0.2539 (3) | 0.0580 (5) | |
H9 | 0.9714 | 0.1188 | 0.2067 | 0.070* | |
C10 | 0.6360 (3) | 0.15554 (6) | 0.6476 (3) | 0.0519 (5) | |
H10 | 0.7328 | 0.1781 | 0.6911 | 0.062* | |
C11 | 0.4900 (3) | 0.15052 (6) | 0.7397 (3) | 0.0509 (5) | |
H11 | 0.3948 | 0.1277 | 0.6996 | 0.061* | |
C12 | 0.4641 (3) | 0.17767 (5) | 0.8998 (3) | 0.0472 (5) | |
C13 | 0.2917 (3) | 0.17128 (6) | 0.9726 (3) | 0.0545 (5) | |
H13 | 0.1941 | 0.1490 | 0.9238 | 0.065* | |
C14 | 0.2652 (4) | 0.19789 (7) | 1.1171 (3) | 0.0628 (6) | |
H14 | 0.1481 | 0.1942 | 1.1654 | 0.075* | |
C15 | 0.4136 (4) | 0.22994 (7) | 1.1891 (3) | 0.0656 (6) | |
H15 | 0.4008 | 0.2484 | 1.2880 | 0.079* | |
C16 | 0.5813 (4) | 0.23397 (7) | 1.1110 (4) | 0.0682 (6) | |
H16 | 0.6827 | 0.2557 | 1.1613 | 0.082* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0692 (9) | 0.0688 (10) | 0.0642 (9) | −0.0138 (7) | 0.0414 (8) | −0.0204 (7) |
O2 | 0.0679 (9) | 0.0625 (9) | 0.0677 (9) | −0.0156 (7) | 0.0300 (8) | −0.0246 (7) |
C1 | 0.0449 (10) | 0.0379 (9) | 0.0434 (10) | 0.0019 (7) | 0.0166 (8) | 0.0039 (7) |
C2 | 0.0455 (10) | 0.0521 (11) | 0.0588 (11) | −0.0072 (8) | 0.0276 (9) | −0.0060 (9) |
C3 | 0.0508 (11) | 0.0474 (10) | 0.0553 (11) | −0.0111 (8) | 0.0228 (9) | −0.0094 (8) |
C4 | 0.0498 (10) | 0.0485 (11) | 0.0452 (10) | 0.0027 (8) | 0.0174 (8) | 0.0011 (8) |
N1 | 0.0618 (10) | 0.0534 (9) | 0.0457 (9) | 0.0075 (8) | 0.0237 (8) | 0.0007 (7) |
N2 | 0.0646 (11) | 0.0492 (9) | 0.0602 (10) | −0.0050 (8) | 0.0238 (8) | −0.0120 (8) |
C5 | 0.0594 (12) | 0.0499 (11) | 0.0494 (11) | −0.0002 (9) | 0.0215 (9) | −0.0047 (8) |
C6 | 0.0560 (11) | 0.0508 (11) | 0.0521 (11) | −0.0006 (9) | 0.0250 (9) | −0.0039 (8) |
C7 | 0.0525 (11) | 0.0440 (10) | 0.0443 (10) | 0.0072 (8) | 0.0170 (8) | 0.0036 (8) |
C8 | 0.0592 (12) | 0.0568 (12) | 0.0559 (11) | −0.0050 (9) | 0.0232 (10) | −0.0035 (9) |
C9 | 0.0620 (12) | 0.0632 (13) | 0.0576 (12) | 0.0011 (10) | 0.0323 (10) | 0.0025 (10) |
C10 | 0.0596 (11) | 0.0439 (10) | 0.0522 (11) | −0.0025 (8) | 0.0205 (9) | −0.0047 (8) |
C11 | 0.0594 (11) | 0.0433 (10) | 0.0499 (11) | −0.0015 (9) | 0.0199 (9) | −0.0059 (8) |
C12 | 0.0555 (11) | 0.0399 (10) | 0.0439 (10) | 0.0051 (8) | 0.0154 (8) | 0.0020 (7) |
C13 | 0.0643 (12) | 0.0461 (11) | 0.0548 (11) | 0.0005 (9) | 0.0239 (10) | 0.0014 (8) |
C14 | 0.0770 (14) | 0.0600 (13) | 0.0610 (12) | 0.0113 (11) | 0.0367 (11) | 0.0038 (10) |
C15 | 0.0885 (16) | 0.0541 (12) | 0.0562 (12) | 0.0142 (11) | 0.0288 (11) | −0.0072 (10) |
C16 | 0.0810 (15) | 0.0527 (12) | 0.0669 (13) | −0.0062 (11) | 0.0224 (12) | −0.0188 (10) |
O1—C4 | 1.305 (2) | C7—C8 | 1.384 (3) |
O1—H1' | 0.8401 (10) | C7—C10 | 1.465 (3) |
O2—C4 | 1.210 (2) | C8—C9 | 1.376 (3) |
C1—C3 | 1.381 (2) | C8—H8 | 0.9300 |
C1—C2 | 1.386 (3) | C9—H9 | 0.9300 |
C1—C4 | 1.491 (3) | C10—C11 | 1.314 (3) |
C2—C3i | 1.371 (3) | C10—H10 | 0.9300 |
C2—H2 | 0.9300 | C11—C12 | 1.463 (3) |
C3—C2i | 1.371 (3) | C11—H11 | 0.9300 |
C3—H3 | 0.9300 | C12—C13 | 1.380 (3) |
N1—C5 | 1.325 (2) | C13—C14 | 1.369 (3) |
N1—C9 | 1.330 (3) | C13—H13 | 0.9300 |
N2—C16 | 1.332 (3) | C14—C15 | 1.368 (3) |
N2—C12 | 1.342 (2) | C14—H14 | 0.9300 |
C5—C6 | 1.369 (3) | C15—C16 | 1.368 (3) |
C5—H5 | 0.9300 | C15—H15 | 0.9300 |
C6—C7 | 1.386 (3) | C16—H16 | 0.9300 |
C6—H6 | 0.9300 | ||
C4—O1—H1' | 108.9 (19) | C7—C8—H8 | 120.0 |
C3—C1—C2 | 118.76 (17) | N1—C9—C8 | 122.86 (19) |
C3—C1—C4 | 119.37 (16) | N1—C9—H9 | 118.6 |
C2—C1—C4 | 121.86 (16) | C8—C9—H9 | 118.6 |
C3i—C2—C1 | 120.91 (17) | C11—C10—C7 | 126.94 (18) |
C3i—C2—H2 | 119.5 | C11—C10—H10 | 116.5 |
C1—C2—H2 | 119.5 | C7—C10—H10 | 116.5 |
C2i—C3—C1 | 120.33 (17) | C10—C11—C12 | 125.68 (18) |
C2i—C3—H3 | 119.8 | C10—C11—H11 | 117.2 |
C1—C3—H3 | 119.8 | C12—C11—H11 | 117.2 |
O2—C4—O1 | 124.02 (17) | N2—C12—C13 | 122.00 (17) |
O2—C4—C1 | 122.08 (17) | N2—C12—C11 | 117.51 (17) |
O1—C4—C1 | 113.89 (16) | C13—C12—C11 | 120.47 (17) |
C5—N1—C9 | 117.55 (16) | C14—C13—C12 | 119.7 (2) |
C16—N2—C12 | 116.65 (18) | C14—C13—H13 | 120.2 |
N1—C5—C6 | 123.07 (18) | C12—C13—H13 | 120.2 |
N1—C5—H5 | 118.5 | C15—C14—C13 | 119.0 (2) |
C6—C5—H5 | 118.5 | C15—C14—H14 | 120.5 |
C5—C6—C7 | 120.20 (18) | C13—C14—H14 | 120.5 |
C5—C6—H6 | 119.9 | C14—C15—C16 | 117.86 (19) |
C7—C6—H6 | 119.9 | C14—C15—H15 | 121.1 |
C8—C7—C6 | 116.35 (17) | C16—C15—H15 | 121.1 |
C8—C7—C10 | 120.33 (18) | N2—C16—C15 | 124.8 (2) |
C6—C7—C10 | 123.31 (17) | N2—C16—H16 | 117.6 |
C9—C8—C7 | 119.96 (19) | C15—C16—H16 | 117.6 |
C9—C8—H8 | 120.0 | ||
C3—C1—C2—C3i | −0.4 (3) | C7—C8—C9—N1 | 0.2 (3) |
C4—C1—C2—C3i | 178.17 (17) | C8—C7—C10—C11 | −176.30 (19) |
C2—C1—C3—C2i | 0.4 (3) | C6—C7—C10—C11 | 5.1 (3) |
C4—C1—C3—C2i | −178.21 (17) | C7—C10—C11—C12 | −178.50 (17) |
C3—C1—C4—O2 | 5.2 (3) | C16—N2—C12—C13 | 0.2 (3) |
C2—C1—C4—O2 | −173.37 (18) | C16—N2—C12—C11 | 178.75 (18) |
C3—C1—C4—O1 | −175.43 (17) | C10—C11—C12—N2 | −4.2 (3) |
C2—C1—C4—O1 | 6.0 (3) | C10—C11—C12—C13 | 174.40 (19) |
C9—N1—C5—C6 | 0.0 (3) | N2—C12—C13—C14 | 0.8 (3) |
N1—C5—C6—C7 | −0.3 (3) | C11—C12—C13—C14 | −177.69 (18) |
C5—C6—C7—C8 | 0.5 (3) | C12—C13—C14—C15 | −1.2 (3) |
C5—C6—C7—C10 | 179.21 (18) | C13—C14—C15—C16 | 0.5 (3) |
C6—C7—C8—C9 | −0.5 (3) | C12—N2—C16—C15 | −0.9 (3) |
C10—C7—C8—C9 | −179.21 (18) | C14—C15—C16—N2 | 0.6 (4) |
C5—N1—C9—C8 | 0.1 (3) |
Symmetry code: (i) −x+2, −y, −z+1. |
Cg is the centroid of the N2/C12–C16 pyridine ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1′···N1ii | 0.84 | 1.77 | 2.604 (2) | 177 |
C9—H9···O2iii | 0.93 | 2.67 | 3.285 (3) | 125 |
C13—H13···O2iv | 0.93 | 2.52 | 3.396 (2) | 157 |
C5—H5···O2v | 0.93 | 2.64 | 3.135 (2) | 114 |
C16—H16···Cgvi | 0.93 | 2.86 | 3.627 (3) | 141 |
Symmetry codes: (ii) x, y, z+1; (iii) x, y, z−1; (iv) x−1, y, z; (v) x−1, y, z−1; (vi) x+1/2, −y+1/2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C12H10N2·0.5C8H6O4 |
Mr | 265.28 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 293 |
a, b, c (Å) | 6.3821 (8), 32.301 (4), 6.8721 (8) |
β (°) | 111.440 (2) |
V (Å3) | 1318.6 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.09 |
Crystal size (mm) | 0.48 × 0.41 × 0.34 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.96, 0.97 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 12715, 2328, 2119 |
Rint | 0.033 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.055, 0.149, 1.17 |
No. of reflections | 2328 |
No. of parameters | 184 |
No. of restraints | 1 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.14, −0.20 |
Computer programs: SMART (Bruker, 2000), SAINT-Plus (Bruker 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 2012) and Mercury (Macrae et al. 2008), publCIF (Westrip, 2010).
Cg is the centroid of the N2/C12–C16 pyridine ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1'···N1i | 0.84 | 1.77 | 2.604 (2) | 177 |
C9—H9···O2ii | 0.93 | 2.67 | 3.285 (3) | 125 |
C13—H13···O2iii | 0.93 | 2.52 | 3.396 (2) | 157 |
C5—H5···O2iv | 0.93 | 2.64 | 3.135 (2) | 114 |
C16—H16···Cgv | 0.93 | 2.86 | 3.627 (3) | 141 |
Symmetry codes: (i) x, y, z+1; (ii) x, y, z−1; (iii) x−1, y, z; (iv) x−1, y, z−1; (v) x+1/2, −y+1/2, z+1/2. |
Acknowledgements
This work was supported financially by the Universidad Autónoma de Sinaloa (PROFAPI 2011/048). PCM thanks the Consejo Nacional de Ciencia y Tecnologia (CONACYT) for support in the form of a scholarship.
References
Bhogala, B. R. & Nangia, A. (2003). Cryst. Growth Des. 3, 547–554. Web of Science CSD CrossRef CAS Google Scholar
Bruker (2000). SMART. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Desiraju, G. R. (1995). Angew. Chem. Int. Ed. 34, 2311–2327. CrossRef CAS Web of Science Google Scholar
Ebenezer, S. & Muthiah, P. T. (2012). Cryst. Growth Des. 12, 3766–3785. Web of Science CSD CrossRef CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
Moon, S.-H. & Park, K.-M. (2012). Acta Cryst. E68, o1201. CSD CrossRef IUCr Journals Google Scholar
Santra, R., Ghosh, N. & Biradha, K. (2008). New J. Chem. 32, 1673–1676. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Simon, J. & Bassoul, P. (2000). In Design of Molecular Materials: Supramolecular Engineering. Berlin: Wiley-VCH. Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Weyna, D. R., Shattock, T., Vishweshwar, P. & Zaworotko, M. J. (2009). Cryst. Growth Des. 9, 1106–1123. Web of Science CSD CrossRef CAS Google Scholar
Yan, D., Delori, A., Lloyd, G. O., Patel, B., Friscic, T., Day, G. M., Bucar, D. J., Jones, W., Min Wei, J. L., Evans, D. G. & Duan, X. (2012). CrystEngComm, 14, 5121–5123. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Supramolecular crystal engineering has attracted growing interest over the past few decades because of its importance in biological systems, molecular recognition (Simon et al., 2000), pharmaceutical chemistry (Weyna et al., 2009) and materials chemistry (Yan et al., 2012). Aromatic carboxylic acids form reliable supramolecular synthons for the construction of novel organic networks by hydrogen bonding and π–π interactions (Desiraju, 1995), and numerous studies have focused on hydrogen bonding between carboxylic acids and pyridine molecules (Bhogala & Nangia, 2003; Santra et al., 2008; Moon & Park, 2012; Ebenezer & Muthiah, 2012). Herein, we report on the solid-state structure of a 2:1 co-crystal formed between an asymmetric bipyridine [4-((E)-2-(pyridin-2-yl)ethenyl)pyridine] and a symmetric dicarboxylic acid [terephthalic acid].
The molecular structure of the title compound is shown in Fig. 1. The asymmetric unit contains one molecule of 4-((E)-2-(pyridin-2-yl)ethenyl)pyridine and half a molecule of terephthalic acid located on a crystallographic inversion center. Both components have almost planar molecular structures as seen from the C10—C11—C12—N2 torsion angle of -4.2 (3)° for the bipyridine molecule and the O1—C4—C1—C2 torsion angle of -6.0 (3)° for the terephthalic acid.
In the crystal lattice, each terephthalic acid is linked to two bipyridine molecules through intermolecular O—H···N and C—H···O interactions giving the well known heterodimeric COOH···Npyridine synthon. The so formed linear aggregates are connected through additional weak C—H···O contacts to generate tapes parallel to the (1–41) series of planes, which through C—H···π contacts generate undulating two-dimensional supramolecular layers (Fig. 2 and Table 1). In the third dimension, these layers are interconnected through additional weak C—H···O contacts. Interestingly, the 2-pyridine nitrogen atom is not involved in short intermolecular hydrogen bonding interactions.