metal-organic compounds
trans-Dichloridobis{dicyclohexyl[4-(dimethylamino)phenyl]phosphane-κP}platinum(II) dichloromethane disolvate
aResearch Centre for Synthesis and Catalysis, Department of Chemistry, University of Johannesburg (APK Campus), PO Box 524, Auckland Park, Johannesburg, 2006, South Africa
*Correspondence e-mail: rmeijboom@uj.ac.za
In the title complex, trans-[PtCl2{P(C6H11)2(4-Me2NC6H4)}2]·2CH2Cl2, the PtII atom is located on an inversion centre, resulting in a trans-square-planar geometry. Important geometric parameters are the Pt—P and Pt—Cl bond lengths of 2.3258 (6) and 2.3106 (6) Å, respectively, and the P—Pt—Cl angles of 89.64 (2) and 90.36 (2)°. The effective cone angle for the dicyclohexyl[4-(dimethylamino)phenyl]phosphane unit was calculated to be 164°. The compound crystallizes with two dichloromethane solvent molecules; one of which is severely disordered and was treated using the SQUEEZE routine in PLATON [Spek (2009). Acta Cryst. D65, 148–155].
Related literature
For a review on related compounds, see: Spessard & Miessler (1996). For related compounds, see: Johansson et al. (2002). For similar R-P2PtCl2 compounds, see: Lutz et al. (2005). For the synthesis of starting materials, see: Drew & Doyle (1990). For use of the SQUEEZE routine in PLATON to remove the contribution of disordered solvents, see: Spek (2009). For background to cone angles, see: Tolman (1977); Otto (2001).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2010); cell SAINT (Bruker, 2008); data reduction: SAINT and XPREP (Bruker, 2008); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: publCIF (Westrip, 2010) and WinGX (Farrugia, 2012).
Supporting information
10.1107/S1600536812048465/su2526sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812048465/su2526Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536812048465/su2526Isup3.cdx
Dichloro(1,5-cyclooctadiene)platinum(II), [PtCl2(COD)], was prepared according to the literature procedure (Drew & Doyle, 1990). A solution of dicyclohexyl-[4-(N,N-dimethylamino)phenyl]phosphine (63.5 mg, 0.2 mmol) in dichloromethane (2 cm3) was added to a solution of [PtCl2(COD)] (37.4 mg, 0.1 mmol) in dichloromethane (3 cm3). Slow evaporation of the solvent gave colourless crystals of the title compound.
The aromatic, methine, methyl and methylene H atoms were placed in geometrically idealized positions (C—H = 0.95, 1.00, 0.98 and 0.99 Å, respectively) and constrained to ride on their parent atoms, with Uiso(H) = k × Ueq(C) where k = 1.5 for methyl H atoms, and = 1.2 for other H atoms. Methyl torsion angles were refined from electron density.
Large thermal motion of one of the dichloromethane solvate molecules, held only by weak intermolecular hydrogen bonding, is observed. This was initially treated anisotropically as distorted over two partially occupied sites generated by symmetry, with atom C4 restrained isotropically. Different disordered models resulted in unstable
cycles. Placement of H atoms on C4 also resulted in unstable This procedure resulted in unsatisfactory refinements and the molecule was removed by applying the SQUEEZE routine in PLATON (Spek, 2009).Data collection: APEX2 (Bruker, 2010); cell
SAINT (Bruker, 2008); data reduction: SAINT and XPREP (Bruker, 2008); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: publCIF (Westrip, 2010) and WinGX (Farrugia, 2012).[PtCl2(C20H32NP)2]·2CH2Cl2 | F(000) = 2176 |
Mr = 1070.70 | Dx = 1.445 Mg m−3 |
Monoclinic, C2/c | Cu Kα radiation, λ = 1.54178 Å |
Hall symbol: -C 2yc | Cell parameters from 9651 reflections |
a = 19.4146 (9) Å | θ = 4.1–65.7° |
b = 13.1517 (6) Å | µ = 9.16 mm−1 |
c = 19.3459 (9) Å | T = 100 K |
β = 94.660 (2)° | Cuboid, colourless |
V = 4923.4 (4) Å3 | 0.26 × 0.24 × 0.16 mm |
Z = 4 |
Bruker APEX DUO 4K CCD diffractometer | 4239 independent reflections |
Radiation source: Incoatec IµS microfocus X-ray source | 4069 reflections with I > 2σ(I) |
Incoatec Quazar Multilayer Mirror monochromator | Rint = 0.045 |
Detector resolution: 8.4 pixels mm-1 | θmax = 66.2°, θmin = 4.1° |
ϕ and ω scans | h = −21→22 |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | k = −14→15 |
Tmin = 0.199, Tmax = 0.322 | l = −22→21 |
56178 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.025 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.067 | H-atom parameters constrained |
S = 1.08 | w = 1/[σ2(Fo2) + (0.0406P)2 + 10.7442P] where P = (Fo2 + 2Fc2)/3 |
4239 reflections | (Δ/σ)max = 0.001 |
244 parameters | Δρmax = 1.72 e Å−3 |
0 restraints | Δρmin = −1.15 e Å−3 |
[PtCl2(C20H32NP)2]·2CH2Cl2 | V = 4923.4 (4) Å3 |
Mr = 1070.70 | Z = 4 |
Monoclinic, C2/c | Cu Kα radiation |
a = 19.4146 (9) Å | µ = 9.16 mm−1 |
b = 13.1517 (6) Å | T = 100 K |
c = 19.3459 (9) Å | 0.26 × 0.24 × 0.16 mm |
β = 94.660 (2)° |
Bruker APEX DUO 4K CCD diffractometer | 4239 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | 4069 reflections with I > 2σ(I) |
Tmin = 0.199, Tmax = 0.322 | Rint = 0.045 |
56178 measured reflections |
R[F2 > 2σ(F2)] = 0.025 | 0 restraints |
wR(F2) = 0.067 | H-atom parameters constrained |
S = 1.08 | w = 1/[σ2(Fo2) + (0.0406P)2 + 10.7442P] where P = (Fo2 + 2Fc2)/3 |
4239 reflections | Δρmax = 1.72 e Å−3 |
244 parameters | Δρmin = −1.15 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Highly disordered solvate molecule is observed, resulting in residual electron density around the C4 atom. Different disordered models, however, resulted in unstable refinement cycles. Placement of H atoms on C4 also resulted in unstable refinement. This procedure resulted in unsatisfactory refinements and the molecule was removed by applying the SQUEEZE routine as found in PLATON (Spek, 2003). |
x | y | z | Uiso*/Ueq | ||
Pt1 | 0.75 | 0.25 | 0 | 0.01460 (8) | |
Cl1 | 0.85498 (3) | 0.19559 (5) | 0.05181 (3) | 0.02286 (14) | |
P1 | 0.69307 (3) | 0.17595 (4) | 0.08851 (3) | 0.01619 (13) | |
C31 | 0.74703 (13) | 0.15612 (19) | 0.17086 (12) | 0.0202 (5) | |
H131 | 0.7901 | 0.1206 | 0.1591 | 0.024* | |
C34 | 0.78157 (15) | 0.1765 (2) | 0.32170 (14) | 0.0321 (6) | |
H13A | 0.7403 | 0.2114 | 0.337 | 0.039* | |
H13B | 0.8142 | 0.1651 | 0.363 | 0.039* | |
C36 | 0.76895 (17) | 0.25841 (19) | 0.20359 (17) | 0.0241 (7) | |
H13C | 0.7939 | 0.2985 | 0.1702 | 0.029* | |
H13D | 0.7273 | 0.2972 | 0.214 | 0.029* | |
C11 | 0.61712 (16) | 0.24227 (17) | 0.11403 (15) | 0.0179 (6) | |
C15 | 0.50367 (17) | 0.24432 (17) | 0.15855 (16) | 0.0197 (6) | |
H115 | 0.4654 | 0.2075 | 0.1734 | 0.024* | |
C26 | 0.72650 (14) | −0.0195 (2) | 0.04868 (15) | 0.0269 (6) | |
H12A | 0.7522 | 0.0105 | 0.0115 | 0.032* | |
H12B | 0.758 | −0.0229 | 0.0915 | 0.032* | |
C16 | 0.56012 (13) | 0.19181 (19) | 0.13759 (12) | 0.0193 (5) | |
H116 | 0.5602 | 0.1196 | 0.1393 | 0.023* | |
C13 | 0.55973 (13) | 0.40207 (18) | 0.13530 (12) | 0.0192 (5) | |
H113 | 0.5605 | 0.4743 | 0.1347 | 0.023* | |
C35 | 0.81549 (19) | 0.2434 (2) | 0.27030 (18) | 0.0302 (8) | |
H13E | 0.8595 | 0.2119 | 0.259 | 0.036* | |
H13F | 0.8263 | 0.3104 | 0.2918 | 0.036* | |
C25 | 0.70229 (16) | −0.1267 (2) | 0.02768 (17) | 0.0352 (7) | |
H12C | 0.7427 | −0.168 | 0.017 | 0.042* | |
H12D | 0.6812 | −0.1591 | 0.067 | 0.042* | |
C24 | 0.65002 (17) | −0.1253 (2) | −0.03515 (16) | 0.0365 (7) | |
H12E | 0.6335 | −0.1954 | −0.0453 | 0.044* | |
H12F | 0.6726 | −0.1003 | −0.076 | 0.044* | |
C32 | 0.71270 (14) | 0.0884 (2) | 0.22298 (13) | 0.0246 (5) | |
H13G | 0.6687 | 0.1198 | 0.2345 | 0.029* | |
H13H | 0.702 | 0.0211 | 0.2018 | 0.029* | |
C12 | 0.61541 (13) | 0.34844 (19) | 0.11366 (12) | 0.0188 (5) | |
H112 | 0.6535 | 0.3848 | 0.0981 | 0.023* | |
Cl2 | 0.03909 (4) | 0.22618 (7) | 0.10388 (4) | 0.04094 (18) | |
Cl3 | 0.09563 (4) | 0.09162 (6) | 0.00234 (4) | 0.03576 (17) | |
N1 | 0.44579 (11) | 0.40351 (16) | 0.17961 (11) | 0.0214 (4) | |
C14 | 0.50191 (13) | 0.35131 (19) | 0.15818 (12) | 0.0192 (5) | |
C21 | 0.66396 (13) | 0.04799 (19) | 0.06127 (13) | 0.0204 (5) | |
H121 | 0.6398 | 0.0172 | 0.0999 | 0.025* | |
C2 | 0.38221 (13) | 0.3494 (2) | 0.18892 (14) | 0.0250 (5) | |
H2A | 0.366 | 0.3156 | 0.1455 | 0.038* | |
H2B | 0.347 | 0.3976 | 0.202 | 0.038* | |
H2C | 0.3906 | 0.2985 | 0.2256 | 0.038* | |
C3 | 0.02418 (15) | 0.1670 (2) | 0.02159 (15) | 0.0327 (6) | |
H3A | −0.0176 | 0.1237 | 0.0212 | 0.039* | |
H3B | 0.0157 | 0.2198 | −0.0146 | 0.039* | |
C33 | 0.76035 (15) | 0.0747 (2) | 0.28947 (13) | 0.0305 (6) | |
H13I | 0.7362 | 0.0341 | 0.3232 | 0.037* | |
H13J | 0.8022 | 0.0367 | 0.2786 | 0.037* | |
C1 | 0.44126 (15) | 0.5125 (2) | 0.17206 (16) | 0.0310 (6) | |
H1A | 0.4849 | 0.5435 | 0.1903 | 0.047* | |
H1B | 0.4035 | 0.5382 | 0.1979 | 0.047* | |
H1C | 0.4323 | 0.5298 | 0.1229 | 0.047* | |
C22 | 0.61287 (14) | 0.0505 (2) | −0.00345 (13) | 0.0258 (6) | |
H12G | 0.5725 | 0.093 | 0.0056 | 0.031* | |
H12H | 0.6354 | 0.0812 | −0.0426 | 0.031* | |
C23 | 0.58883 (16) | −0.0575 (2) | −0.02278 (16) | 0.0338 (7) | |
H12I | 0.5635 | −0.0862 | 0.0151 | 0.041* | |
H12J | 0.5568 | −0.0552 | −0.0653 | 0.041* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Pt1 | 0.01470 (11) | 0.01799 (11) | 0.01167 (10) | 0.00316 (4) | 0.00452 (6) | 0.00001 (4) |
Cl1 | 0.0180 (3) | 0.0343 (3) | 0.0169 (3) | 0.0085 (2) | 0.0052 (2) | 0.0057 (2) |
P1 | 0.0175 (3) | 0.0184 (3) | 0.0133 (3) | 0.0028 (2) | 0.0056 (2) | −0.0004 (2) |
C31 | 0.0228 (12) | 0.0243 (12) | 0.0139 (11) | 0.0056 (10) | 0.0048 (9) | 0.0003 (10) |
C34 | 0.0322 (15) | 0.0480 (17) | 0.0161 (13) | 0.0121 (13) | 0.0018 (11) | −0.0015 (12) |
C36 | 0.0247 (16) | 0.0287 (16) | 0.0191 (16) | 0.0048 (10) | 0.0019 (13) | −0.0010 (9) |
C11 | 0.0196 (15) | 0.0213 (14) | 0.0131 (14) | 0.0027 (9) | 0.0040 (11) | −0.0005 (8) |
C15 | 0.0199 (15) | 0.0240 (15) | 0.0159 (15) | 0.0004 (9) | 0.0051 (12) | 0.0021 (8) |
C26 | 0.0276 (14) | 0.0200 (13) | 0.0343 (15) | 0.0039 (11) | 0.0102 (11) | −0.0048 (11) |
C16 | 0.0249 (12) | 0.0176 (11) | 0.0159 (11) | 0.0019 (10) | 0.0043 (10) | 0.0015 (9) |
C13 | 0.0228 (12) | 0.0184 (12) | 0.0170 (11) | 0.0033 (10) | 0.0056 (9) | 0.0003 (9) |
C35 | 0.0291 (18) | 0.0406 (19) | 0.0201 (17) | 0.0048 (11) | −0.0027 (14) | −0.0042 (10) |
C25 | 0.0375 (16) | 0.0223 (14) | 0.0480 (18) | 0.0024 (12) | 0.0176 (14) | −0.0076 (12) |
C24 | 0.0444 (17) | 0.0280 (14) | 0.0400 (17) | −0.0112 (13) | 0.0207 (14) | −0.0143 (13) |
C32 | 0.0291 (14) | 0.0271 (13) | 0.0186 (12) | 0.0059 (11) | 0.0082 (11) | 0.0029 (10) |
C12 | 0.0207 (12) | 0.0213 (12) | 0.0147 (11) | −0.0001 (10) | 0.0045 (9) | 0.0010 (9) |
Cl2 | 0.0401 (4) | 0.0589 (4) | 0.0238 (4) | −0.0154 (4) | 0.0020 (3) | −0.0031 (3) |
Cl3 | 0.0300 (3) | 0.0473 (4) | 0.0306 (4) | 0.0040 (3) | 0.0059 (3) | 0.0100 (3) |
N1 | 0.0204 (10) | 0.0240 (11) | 0.0212 (11) | 0.0055 (8) | 0.0099 (8) | 0.0015 (8) |
C14 | 0.0210 (12) | 0.0250 (12) | 0.0122 (11) | 0.0037 (10) | 0.0047 (9) | 0.0009 (9) |
C21 | 0.0220 (12) | 0.0203 (12) | 0.0202 (12) | 0.0021 (10) | 0.0091 (10) | −0.0022 (9) |
C2 | 0.0189 (12) | 0.0327 (14) | 0.0247 (13) | 0.0036 (10) | 0.0085 (10) | −0.0007 (11) |
C3 | 0.0257 (14) | 0.0487 (18) | 0.0236 (14) | −0.0020 (12) | 0.0019 (11) | 0.0012 (12) |
C33 | 0.0356 (15) | 0.0386 (16) | 0.0180 (13) | 0.0130 (12) | 0.0078 (11) | 0.0055 (11) |
C1 | 0.0297 (14) | 0.0275 (14) | 0.0374 (16) | 0.0076 (11) | 0.0120 (12) | −0.0035 (12) |
C22 | 0.0276 (13) | 0.0290 (14) | 0.0214 (13) | −0.0013 (11) | 0.0057 (11) | −0.0043 (11) |
C23 | 0.0337 (16) | 0.0343 (16) | 0.0342 (16) | −0.0086 (13) | 0.0082 (13) | −0.0110 (13) |
Pt1—Cl1i | 2.3106 (5) | C25—C24 | 1.519 (5) |
Pt1—Cl1 | 2.3106 (6) | C25—H12C | 0.99 |
Pt1—P1 | 2.3258 (6) | C25—H12D | 0.99 |
Pt1—P1i | 2.3258 (6) | C24—C23 | 1.520 (4) |
P1—C11 | 1.816 (3) | C24—H12E | 0.99 |
P1—C21 | 1.839 (2) | C24—H12F | 0.99 |
P1—C31 | 1.853 (2) | C32—C33 | 1.533 (4) |
C31—C36 | 1.532 (4) | C32—H13G | 0.99 |
C31—C32 | 1.537 (4) | C32—H13H | 0.99 |
C31—H131 | 1 | C12—H112 | 0.95 |
C34—C35 | 1.517 (5) | Cl2—C3 | 1.775 (3) |
C34—C33 | 1.520 (4) | Cl3—C3 | 1.769 (3) |
C34—H13A | 0.99 | N1—C14 | 1.380 (3) |
C34—H13B | 0.99 | N1—C1 | 1.443 (4) |
C36—C35 | 1.527 (4) | N1—C2 | 1.448 (3) |
C36—H13C | 0.99 | C21—C22 | 1.533 (4) |
C36—H13D | 0.99 | C21—H121 | 1 |
C11—C12 | 1.397 (3) | C2—H2A | 0.98 |
C11—C16 | 1.398 (4) | C2—H2B | 0.98 |
C15—C16 | 1.384 (4) | C2—H2C | 0.98 |
C15—C14 | 1.407 (3) | C3—H3A | 0.99 |
C15—H115 | 0.95 | C3—H3B | 0.99 |
C26—C25 | 1.530 (4) | C33—H13I | 0.99 |
C26—C21 | 1.539 (3) | C33—H13J | 0.99 |
C26—H12A | 0.99 | C1—H1A | 0.98 |
C26—H12B | 0.99 | C1—H1B | 0.98 |
C16—H116 | 0.95 | C1—H1C | 0.98 |
C13—C12 | 1.384 (4) | C22—C23 | 1.532 (4) |
C13—C14 | 1.408 (4) | C22—H12G | 0.99 |
C13—H113 | 0.95 | C22—H12H | 0.99 |
C35—H13E | 0.99 | C23—H12I | 0.99 |
C35—H13F | 0.99 | C23—H12J | 0.99 |
Cl1i—Pt1—Cl1 | 180.00 (4) | C23—C24—H12E | 109.4 |
Cl1i—Pt1—P1 | 89.64 (2) | C25—C24—H12F | 109.4 |
Cl1—Pt1—P1 | 90.36 (2) | C23—C24—H12F | 109.4 |
Cl1i—Pt1—P1i | 90.36 (2) | H12E—C24—H12F | 108 |
Cl1—Pt1—P1i | 89.64 (2) | C33—C32—C31 | 110.8 (2) |
P1—Pt1—P1i | 180.00 (4) | C33—C32—H13G | 109.5 |
C11—P1—C21 | 106.27 (11) | C31—C32—H13G | 109.5 |
C11—P1—C31 | 104.40 (12) | C33—C32—H13H | 109.5 |
C21—P1—C31 | 104.88 (11) | C31—C32—H13H | 109.5 |
C11—P1—Pt1 | 116.36 (9) | H13G—C32—H13H | 108.1 |
C21—P1—Pt1 | 109.01 (8) | C13—C12—C11 | 121.8 (2) |
C31—P1—Pt1 | 115.00 (8) | C13—C12—H112 | 119.1 |
C36—C31—C32 | 111.0 (2) | C11—C12—H112 | 119.1 |
C36—C31—P1 | 110.51 (18) | C14—N1—C1 | 120.5 (2) |
C32—C31—P1 | 113.61 (18) | C14—N1—C2 | 119.7 (2) |
C36—C31—H131 | 107.1 | C1—N1—C2 | 117.1 (2) |
C32—C31—H131 | 107.1 | N1—C14—C15 | 121.0 (2) |
P1—C31—H131 | 107.1 | N1—C14—C13 | 121.9 (2) |
C35—C34—C33 | 111.1 (2) | C15—C14—C13 | 117.1 (2) |
C35—C34—H13A | 109.4 | C22—C21—C26 | 110.4 (2) |
C33—C34—H13A | 109.4 | C22—C21—P1 | 112.19 (18) |
C35—C34—H13B | 109.4 | C26—C21—P1 | 110.20 (17) |
C33—C34—H13B | 109.4 | C22—C21—H121 | 108 |
H13A—C34—H13B | 108 | C26—C21—H121 | 108 |
C35—C36—C31 | 111.2 (2) | P1—C21—H121 | 108 |
C35—C36—H13C | 109.4 | N1—C2—H2A | 109.5 |
C31—C36—H13C | 109.4 | N1—C2—H2B | 109.5 |
C35—C36—H13D | 109.4 | H2A—C2—H2B | 109.5 |
C31—C36—H13D | 109.4 | N1—C2—H2C | 109.5 |
H13C—C36—H13D | 108 | H2A—C2—H2C | 109.5 |
C12—C11—C16 | 117.2 (2) | H2B—C2—H2C | 109.5 |
C12—C11—P1 | 119.9 (2) | Cl3—C3—Cl2 | 111.17 (15) |
C16—C11—P1 | 122.85 (17) | Cl3—C3—H3A | 109.4 |
C16—C15—C14 | 121.1 (3) | Cl2—C3—H3A | 109.4 |
C16—C15—H115 | 119.4 | Cl3—C3—H3B | 109.4 |
C14—C15—H115 | 119.4 | Cl2—C3—H3B | 109.4 |
C25—C26—C21 | 110.1 (2) | H3A—C3—H3B | 108 |
C25—C26—H12A | 109.6 | C34—C33—C32 | 111.4 (2) |
C21—C26—H12A | 109.6 | C34—C33—H13I | 109.3 |
C25—C26—H12B | 109.6 | C32—C33—H13I | 109.3 |
C21—C26—H12B | 109.6 | C34—C33—H13J | 109.3 |
H12A—C26—H12B | 108.1 | C32—C33—H13J | 109.3 |
C15—C16—C11 | 121.7 (2) | H13I—C33—H13J | 108 |
C15—C16—H116 | 119.2 | N1—C1—H1A | 109.5 |
C11—C16—H116 | 119.2 | N1—C1—H1B | 109.5 |
C12—C13—C14 | 121.0 (2) | H1A—C1—H1B | 109.5 |
C12—C13—H113 | 119.5 | N1—C1—H1C | 109.5 |
C14—C13—H113 | 119.5 | H1A—C1—H1C | 109.5 |
C34—C35—C36 | 111.7 (3) | H1B—C1—H1C | 109.5 |
C34—C35—H13E | 109.3 | C23—C22—C21 | 110.1 (2) |
C36—C35—H13E | 109.3 | C23—C22—H12G | 109.6 |
C34—C35—H13F | 109.3 | C21—C22—H12G | 109.6 |
C36—C35—H13F | 109.3 | C23—C22—H12H | 109.6 |
H13E—C35—H13F | 107.9 | C21—C22—H12H | 109.6 |
C24—C25—C26 | 111.9 (2) | H12G—C22—H12H | 108.2 |
C24—C25—H12C | 109.2 | C24—C23—C22 | 110.9 (2) |
C26—C25—H12C | 109.2 | C24—C23—H12I | 109.5 |
C24—C25—H12D | 109.2 | C22—C23—H12I | 109.5 |
C26—C25—H12D | 109.2 | C24—C23—H12J | 109.5 |
H12C—C25—H12D | 107.9 | C22—C23—H12J | 109.5 |
C25—C24—C23 | 111.2 (2) | H12I—C23—H12J | 108.1 |
C25—C24—H12E | 109.4 | ||
Cl1i—Pt1—P1—C11 | −34.86 (10) | C36—C31—C32—C33 | −55.2 (3) |
Cl1—Pt1—P1—C11 | 145.14 (10) | P1—C31—C32—C33 | 179.56 (17) |
Cl1i—Pt1—P1—C21 | 85.23 (9) | C14—C13—C12—C11 | −0.5 (4) |
Cl1—Pt1—P1—C21 | −94.77 (9) | C16—C11—C12—C13 | −0.3 (4) |
Cl1i—Pt1—P1—C31 | −157.36 (9) | P1—C11—C12—C13 | −177.42 (19) |
Cl1—Pt1—P1—C31 | 22.64 (9) | C1—N1—C14—C15 | −173.3 (3) |
C11—P1—C31—C36 | −62.6 (2) | C2—N1—C14—C15 | −12.9 (4) |
C21—P1—C31—C36 | −174.20 (19) | C1—N1—C14—C13 | 6.9 (4) |
Pt1—P1—C31—C36 | 66.1 (2) | C2—N1—C14—C13 | 167.3 (2) |
C11—P1—C31—C32 | 62.9 (2) | C16—C15—C14—N1 | −179.5 (2) |
C21—P1—C31—C32 | −48.7 (2) | C16—C15—C14—C13 | 0.3 (4) |
Pt1—P1—C31—C32 | −168.41 (15) | C12—C13—C14—N1 | −179.7 (2) |
C32—C31—C36—C35 | 54.9 (3) | C12—C13—C14—C15 | 0.5 (4) |
P1—C31—C36—C35 | −178.1 (2) | C25—C26—C21—C22 | −56.8 (3) |
C21—P1—C11—C12 | −157.2 (2) | C25—C26—C21—P1 | 178.7 (2) |
C31—P1—C11—C12 | 92.2 (2) | C11—P1—C21—C22 | 64.7 (2) |
Pt1—P1—C11—C12 | −35.7 (3) | C31—P1—C21—C22 | 174.93 (17) |
C21—P1—C11—C16 | 25.8 (3) | Pt1—P1—C21—C22 | −61.43 (18) |
C31—P1—C11—C16 | −84.7 (3) | C11—P1—C21—C26 | −171.79 (18) |
Pt1—P1—C11—C16 | 147.4 (2) | C31—P1—C21—C26 | −61.6 (2) |
C14—C15—C16—C11 | −1.2 (4) | Pt1—P1—C21—C26 | 62.07 (18) |
C12—C11—C16—C15 | 1.2 (4) | C35—C34—C33—C32 | −56.0 (3) |
P1—C11—C16—C15 | 178.2 (2) | C31—C32—C33—C34 | 55.9 (3) |
C33—C34—C35—C36 | 55.7 (3) | C26—C21—C22—C23 | 58.1 (3) |
C31—C36—C35—C34 | −55.3 (3) | P1—C21—C22—C23 | −178.51 (18) |
C21—C26—C25—C24 | 55.6 (3) | C25—C24—C23—C22 | 56.3 (3) |
C26—C25—C24—C23 | −55.5 (3) | C21—C22—C23—C24 | −57.8 (3) |
Symmetry code: (i) −x+3/2, −y+1/2, −z. |
Experimental details
Crystal data | |
Chemical formula | [PtCl2(C20H32NP)2]·2CH2Cl2 |
Mr | 1070.70 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 100 |
a, b, c (Å) | 19.4146 (9), 13.1517 (6), 19.3459 (9) |
β (°) | 94.660 (2) |
V (Å3) | 4923.4 (4) |
Z | 4 |
Radiation type | Cu Kα |
µ (mm−1) | 9.16 |
Crystal size (mm) | 0.26 × 0.24 × 0.16 |
Data collection | |
Diffractometer | Bruker APEX DUO 4K CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2008) |
Tmin, Tmax | 0.199, 0.322 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 56178, 4239, 4069 |
Rint | 0.045 |
(sin θ/λ)max (Å−1) | 0.593 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.025, 0.067, 1.08 |
No. of reflections | 4239 |
No. of parameters | 244 |
H-atom treatment | H-atom parameters constrained |
w = 1/[σ2(Fo2) + (0.0406P)2 + 10.7442P] where P = (Fo2 + 2Fc2)/3 | |
Δρmax, Δρmin (e Å−3) | 1.72, −1.15 |
Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2008), SAINT and XPREP (Bruker, 2008), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005), publCIF (Westrip, 2010) and WinGX (Farrugia, 2012).
Acknowledgements
Financial assistance from the Research Fund of the University of Johannesburg and SASOL is gratefully acknowledged. A. Muller is acknowledged for the data collection.
References
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2008). SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2010). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Drew, D. & Doyle, J. R. (1990). Inorg. Synth. 28, 346–349. CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Johansson, M. H., Otto, S. & Oskarsson, Å. (2002). Acta Cryst. B58, 244–250. CSD CrossRef CAS IUCr Journals Google Scholar
Lutz, M., Spek, A. L., Kreiter, R., Klein Gebbink, R. J. M. & Koten, G. (2005). Acta Cryst. E61, m2728–m2729. Web of Science CSD CrossRef IUCr Journals Google Scholar
Otto, S. (2001). Acta Cryst. C57, 793–795. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spessard, G. O. & Miessler, G. L. (1996). Organometallic Chemistry, pp. 131–135. Upper Saddle River, New Jersey, USA: Prentice Hall. Google Scholar
Tolman, C. A. (1977). Chem. Rev. 77, 313–348. CrossRef CAS Web of Science Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Transition metal complexes containing phosphine, arsine and stibine ligands are widely being investigated in various fields of organometallic chemistry (Spessard & Miessler, 1996). [PtCl2(L)2] (L = tertiary phosphine, arsine or stibine) complexes can conveniently be prepared by the substitution of 1,5-cyclooctadiene (COD) from [PtCl2(COD)]. As part of a systematic investigation involving complexes with the general formula cis/trans-[MX2(L)2] (M = Pt or Pd; X = halogen, Me, Ph; L = Group 15 donor ligand), we have synthesized the title compound and report herein on its crystal structure.
In the title compound, Fig. 1, the Pt atom is located on an inversion center with each pair of equivalent ligands in a mutually trans orientation. The geometry is, therefore, square planar and the Pt atom is not elevated out of the coordinating atom plane. All the bond angles in the coordination polyhedron are close to their ideal value of 90°, with P1—Pt1—Cl1 = 90.4 (2)° and P1—Pt1—Cli = 89.6 (2)°. As required by the crystallographic symmetry, the P1—Pt1—Pi and Cl1—Pt1—Cli angles are both 180° [symmetry code: (i) -x+3/2, -y+1/2, -z.].
To describe the steric demand of the phosphane ligands the Tolman cone angle (Tolman, 1977) is still the most commonly used model. Applying this model to the geometry obtained from the title compound (and adjusting the Pt—P bond distance to 2.28 Å) we calculated an effective cone angle (Otto, 2001) of 164°.
The title compound compares well with other closely related PtII complexes reported in the literature containing two chloride and two tertiary phosphine ligands in a trans geometry (Lutz et al., 2005). The Pt—P and Pt—Cl bond distances of 2.326 (6) and 2.311 (6) Å, respectively for the title compound, fit well into the typical range for complexes of this kind. The title compound crystallizes as a solvated complex which is common for these type of PtII complexes (Johansson et al., 2002).
The title compound crystallizes with two molecules of dichloromethane. One of these molecules was initially modelled as a severely disordered molecule. We subsequently removed the disordered dichloromethane molecule by applying the SQUEEZE routine as found in PLATON (Spek, 2009).