organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 12| December 2012| Pages o3427-o3428

1,3-Di­benzyl-2-(2-chloro­phen­yl)-4-methyl­imidazolidine

aUniversidad Nacional de Colombia, Sede Bogotá, Facultad de Ciencias, Departamento de Química, Cra 30 No. 45-03, Bogotá, Código Postal 111321, Colombia, bDepartment of Solid State Chemistry, Institute of Chemical Technology, Technická 5, 166 28 Prague, Czech Republic, and cInstitute of Physics AS CR, v.v.i., Na Slovance 2, 182 21 Prague 8, Czech Republic
*Correspondence e-mail: ariverau@unal.edu.co

(Received 8 November 2012; accepted 19 November 2012; online 24 November 2012)

In the title compound, C24H25ClN2, the methine, methyl­ene and methyl C atoms of the methyl-substituted imidazolidine ring are disordered over two sets of sites with a refined occupancy ratio of 0.834 (4):0.166 (4). Each disordered ring assumes an envelope conformation with an N atom as the flap. The pendant benzyl rings are oriented equatorially with respect to the imidazolidine ring. The chloro­phenyl ring is inclined to the mean plane of the four planar atoms of the major component of the imidazolidine ring by 76.27 (12)°. The dihedral angles between the chloro­phenyl ring and the two benzyl rings are 55.31 (9) and 57.50 (8)°; the dihedral angle between these latter rings is 71.59 (9)°. In the crystal, mol­ecules are linked by C—H⋯Cl inter­actions and a number of weak C—H⋯π inter­actions, involving all three aromatic rings, forming a three-dimensional structure.

Related literature

For uses of imidazolidine-bridged bis­(phenol) derivatives in coordination chemistry, see: Xu et al. (2007[Xu, X., Yao, Y., Zhang, Y. & Shen, Q. (2007). Inorg. Chem. 46, 3743-3751.]). For related structures, see: Yang et al. (2009[Yang, S.-P., Han, L.-J., Wen, A.-P. & Wang, D.-Q. (2009). Acta Cryst. E65, o3049.]); Xia et al. (2007[Xia, H.-T., Liu, Y.-F., Wang, D.-Q. & Li, B. (2007). Acta Cryst. E63, o3666.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C24H25ClN2

  • Mr = 376.9

  • Monoclinic, P 21 /c

  • a = 7.1858 (1) Å

  • b = 9.8577 (2) Å

  • c = 29.3310 (5) Å

  • β = 96.8591 (15)°

  • V = 2062.80 (6) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.70 mm−1

  • T = 120 K

  • 0.44 × 0.32 × 0.21 mm

Data collection
  • Agilent Xcalibur (Atlas, Gemini ultra) diffractometer

  • Absorption correction: analytical (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.62, Tmax = 0.751

  • 39415 measured reflections

  • 3665 independent reflections

  • 3464 reflections with I > 3σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.144

  • S = 2.91

  • 3665 reflections

  • 260 parameters

  • 4 restraints

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2 and Cg3 are the centroids of the C1–C6, C12–C17 and C18–C23 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H1C9⋯Cl24 0.96 2.58 3.1596 (16) 119
C21—H1c21⋯Cg2i 0.96 2.87 3.6324 (19) 137
C11—H2c11⋯Cg2ii 0.96 2.82 3.6192 (19) 142
C4—H1c4⋯Cg3iii 0.96 2.79 3.695 (2) 157
C26—H1c26⋯Cg1iii 0.96 2.91 3.688 (2) 139
Symmetry codes: (i) x, y-1, z; (ii) -x+1, -y, -z; (iii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]); program(s) used to refine structure: JANA2006 (Petříček et al., 2006[Petříček, V., Dusěk, M. & Palatinus, L. (2006). JANA2006. Institute of Physics, Praha, Czech Republic.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact, Bonn, Germany.]); software used to prepare material for publication: JANA2006.

Supporting information


Comment top

As part of our studies on the synthesis of new imidazolidine derivatives we have prepared the title compound. It is an imidazolidine-bridged bis(phenol) which can serve as a useful precursor for the synthesis of lanthanide complexes of great potential application in homogeneous catalysis (Xu et al., 2007), and herein we report on its crystal structure.

In the title compound, Fig. 1, the methyl substituted imidazolidine ring exhibits molecular disorder over two orientations, with a refined occupancy ratio of 0.834 (4):0.166 (4) for atoms (C25,C26,C27):(C25',C26',C27'). The bond lengths (Allen et al., 1987) and angles are close to normal. In the imidazolidine ring, the bond lengths and angles are similar to those reported for closely related structures (Yang et al., 2009; Xia et al., 2007).

Each disordered component of the imidazolidine ring [N8/C9/N10/C25(25')/C26(26')] adopts an envelope conformation on N10 (major component) and N8 (minor component), respectively, with puckering parameters of Q2 = 0.427 (2) Å and ϕ2 = 252.5 (3)° for the major component, and Q2 = 0.555 (6) Å and ϕ2 = 178.7 (8)° for the minor component [Cremer & Pople, 1975].

The chlorophenyl ring attached to C9 (C18—C23) is inclined to the mean plane of the four planar atoms of the major component of the imidazolidine ring by 76.27 (12) °. The dihedral angles between the chlorophenyl ring (C18–C23) and the two benzyl rings (C1-C6) and (C12-C17) are 55.31 (9) and 57.50 (8)°, respectively. The pendant phenyl rings of the benzyl groups are oriented equatorially to the imidazolidine ring. The dihedral angle between these rings is 71.59 (9)°.

In the crystal, molecules are linked by C-H···Cl interactions and a number of weak C—H···π interactions, involving all three aromatic rings (Table 1), forming a three-dimensional structure.

Related literature top

For uses of imidazolidine-bridged bis(phenol) derivatives in coordination chemistry, see: Xu et al. (2007). For related structures, see: Yang et al. (2009); Xia et al. (2007). For standard bond lengths, see: Allen et al. (1987). For ring conformations, see: Cremer & Pople (1975).

Experimental top

A toluene solution of N1,N2-dibenzylpropane-1,2-diamine was refluxed for 8 h with 4-chlorobenzaldehyde in a molar ratio of 1.1:1.0. The mixture was evaporated on a rotary evaporator. The residue was cooled, and the precipitate was filtered off. It was then washed with cold ethanol, dried in air, and recrystallized from ethanol [Yield 81%; M.p. 352-353 K].

Refinement top

H atoms present in the structural model were discernible in difference Fourier maps and could be refined to reasonable geometry. According to common practice H atoms bonded to C were kept in ideal positions with C–H = 0.96 Å and Uiso(H) = 1.2Ueq(C,N). The methine, methylene and methyl groups of the methyl substituted imidazolidine ring were found to be disordered with a refined occupancy ratio of 0.834 (4):0.166 (4). The disordered part of the molecule was refined with bond distances of both fractions kept at the same values. The H atoms of the minor fraction could also be found in difference Fourier maps as faint maxima, however, their addition had negligible impact on R values and GOF. Moreover, it was found that the refined geometry of the minor fraction C atoms is not sufficiently correct for derivation of proper H atom positions, as indicated by too close positions between H2C25' and H2C7 (1.81Å). However, these H atoms were retained in the final refined structural model.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: JANA2006 (Petříček et al., 2006); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: JANA2006 (Petříček et al., 2006).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title compound, showing the atom numbering. Displacement ellipsoids are drawn at the 50% probability level. Only the major component of the disordered methyl substitued imidazolidine ring is shown.
1,3-Dibenzyl-2-(2-chlorophenyl)-4-methylimidazolidine top
Crystal data top
C24H25ClN2Z = 4
Mr = 376.9F(000) = 800
Monoclinic, P21/cDx = 1.213 Mg m3
Hall symbol: -P 2ycbCu Kα radiation, λ = 1.5418 Å
a = 7.1858 (1) ÅCell parameters from 20478 reflections
b = 9.8577 (2) Åθ = 3.0–67.0°
c = 29.3310 (5) ŵ = 1.70 mm1
β = 96.8591 (15)°T = 120 K
V = 2062.80 (6) Å30.44 × 0.32 × 0.21 mm
Data collection top
Agilent Xcalibur (Atlas, Gemini ultra)
diffractometer
3665 independent reflections
Radiation source: Enhance Ultra (Cu) X-ray Source3464 reflections with I > 3σ(I)
Mirror monochromatorRint = 0.029
Detector resolution: 10.3784 pixels mm-1θmax = 67.1°, θmin = 3.0°
ω scansh = 88
Absorption correction: analytical
(CrysAlis PRO; Agilent, 2010)
k = 1111
Tmin = 0.62, Tmax = 0.751l = 3434
39415 measured reflections
Refinement top
Refinement on F2153 constraints
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.144Weighting scheme based on measured s.u.'s w = 1/(σ2(I) + 0.0016I2)
S = 2.91(Δ/σ)max = 0.047
3665 reflectionsΔρmax = 0.24 e Å3
260 parametersΔρmin = 0.35 e Å3
4 restraints
Crystal data top
C24H25ClN2V = 2062.80 (6) Å3
Mr = 376.9Z = 4
Monoclinic, P21/cCu Kα radiation
a = 7.1858 (1) ŵ = 1.70 mm1
b = 9.8577 (2) ÅT = 120 K
c = 29.3310 (5) Å0.44 × 0.32 × 0.21 mm
β = 96.8591 (15)°
Data collection top
Agilent Xcalibur (Atlas, Gemini ultra)
diffractometer
3665 independent reflections
Absorption correction: analytical
(CrysAlis PRO; Agilent, 2010)
3464 reflections with I > 3σ(I)
Tmin = 0.62, Tmax = 0.751Rint = 0.029
39415 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0434 restraints
wR(F2) = 0.144H-atom parameters constrained
S = 2.91Δρmax = 0.24 e Å3
3665 reflectionsΔρmin = 0.35 e Å3
260 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl240.02857 (6)0.36115 (5)0.065592 (15)0.04745 (17)
N80.1847 (2)0.10600 (13)0.17251 (5)0.0361 (4)
N100.3151 (2)0.02081 (12)0.11112 (5)0.0344 (4)
C160.7452 (3)0.2032 (2)0.05130 (6)0.0477 (6)
C200.5614 (3)0.41315 (17)0.13435 (6)0.0424 (6)
C20.1697 (3)0.20165 (19)0.31553 (7)0.0497 (6)
C190.4692 (2)0.29057 (17)0.13876 (6)0.0391 (5)
C150.6776 (3)0.30121 (19)0.01963 (6)0.0452 (6)
C170.6261 (3)0.10445 (18)0.06521 (6)0.0448 (6)
C210.4719 (3)0.51645 (17)0.10812 (6)0.0427 (6)
C10.1636 (3)0.21435 (18)0.26802 (6)0.0432 (6)
C30.0314 (3)0.13050 (19)0.33373 (7)0.0553 (7)
C230.2014 (2)0.37547 (16)0.09207 (6)0.0349 (5)
C220.2929 (3)0.49840 (16)0.08697 (6)0.0399 (5)
C180.2879 (2)0.26912 (15)0.11737 (5)0.0324 (5)
C110.3064 (3)0.00554 (16)0.06139 (6)0.0390 (5)
C60.0205 (3)0.15668 (17)0.23914 (6)0.0406 (6)
C120.4379 (3)0.10288 (16)0.04778 (5)0.0362 (5)
C90.1973 (2)0.13226 (15)0.12385 (6)0.0340 (5)
C140.4925 (3)0.29944 (18)0.00181 (6)0.0446 (6)
C130.3724 (3)0.20095 (16)0.01582 (6)0.0398 (5)
C70.0183 (2)0.1681 (2)0.18783 (6)0.0434 (6)
C250.2377 (4)0.0968 (2)0.13284 (8)0.0382 (6)0.834 (4)
C26'0.2578 (14)0.0937 (8)0.1408 (4)0.0382 (6)0.166 (4)
C40.1125 (3)0.0734 (2)0.30561 (8)0.0593 (8)
C50.1196 (3)0.0859 (2)0.25804 (7)0.0510 (7)
C270.3731 (3)0.0772 (2)0.21620 (8)0.0475 (7)0.834 (4)
C260.2097 (3)0.04486 (18)0.18044 (7)0.0349 (7)0.834 (4)
C27'0.4362 (15)0.1242 (11)0.1719 (4)0.047 (4)0.166 (4)
C25'0.1081 (17)0.0315 (6)0.1670 (4)0.0349 (7)0.166 (4)
H1c160.8750120.2036310.0636790.0573*
H1c200.6862830.4261640.1493810.0509*
H1c20.2699440.2424180.3354490.0596*
H1c190.5318720.219340.1568980.047*
H1c150.7600260.3697760.010260.0543*
H1c170.6743920.0368170.0870350.0538*
H1c210.5355250.6008570.1047710.0513*
H1c10.2604060.2638720.2553520.0518*
H1c30.0361170.1209360.3664240.0664*
H1c220.2310510.5698290.0687750.0479*
H1c110.1804160.0158810.0487770.0468*
H2c110.3360420.0905510.048010.0468*
H1c90.0776140.1359760.1054260.0408*
H1c140.4453210.3663120.0204170.0535*
H1c130.2428010.2008520.0032380.0478*
H1c70.012360.261980.1790910.0521*
H2c70.0920090.1245550.1728590.0521*
H1c40.2090510.0244740.3185740.0711*
H1c50.2210360.0458070.2383360.0612*
H1c250.3283990.1687880.1356270.0458*0.834 (4)
H2c250.1184730.1201370.1163850.0458*0.834 (4)
H1c270.4873310.0462590.2057030.057*0.834 (4)
H2c270.3797890.1734620.2211240.057*0.834 (4)
H3c270.3560640.0324740.2444740.057*0.834 (4)
H1c260.1055130.0867230.1926080.0419*0.834 (4)
H1c26'0.2094530.1747430.1255840.0458*0.166 (4)
H1c25'0.1118950.0739240.1965120.0419*0.166 (4)
H2c25'0.0091380.0288820.1474830.0419*0.166 (4)
H1c27'0.4976360.0406720.1815140.0568*0.166 (4)
H2c27'0.5178240.1780230.1556160.0568*0.166 (4)
H3c27'0.4064520.1731480.1984020.0568*0.166 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl240.0489 (3)0.0456 (3)0.0467 (3)0.00039 (17)0.0010 (2)0.00135 (17)
N80.0483 (8)0.0258 (7)0.0366 (7)0.0073 (5)0.0153 (6)0.0017 (5)
N100.0490 (8)0.0239 (6)0.0314 (7)0.0070 (5)0.0101 (6)0.0025 (5)
C160.0496 (10)0.0535 (11)0.0411 (10)0.0026 (8)0.0098 (8)0.0068 (8)
C200.0465 (10)0.0350 (9)0.0471 (10)0.0140 (7)0.0113 (8)0.0070 (7)
C20.0659 (12)0.0420 (10)0.0414 (10)0.0193 (9)0.0072 (9)0.0011 (8)
C190.0453 (9)0.0294 (8)0.0434 (9)0.0075 (7)0.0082 (8)0.0015 (7)
C150.0613 (11)0.0405 (9)0.0372 (9)0.0035 (8)0.0201 (8)0.0063 (7)
C170.0572 (11)0.0400 (9)0.0379 (9)0.0119 (8)0.0081 (8)0.0038 (7)
C210.0600 (11)0.0303 (8)0.0416 (9)0.0145 (7)0.0213 (9)0.0054 (7)
C10.0512 (10)0.0357 (9)0.0437 (10)0.0076 (7)0.0101 (8)0.0007 (7)
C30.0879 (16)0.0390 (10)0.0423 (11)0.0265 (10)0.0210 (11)0.0051 (8)
C230.0434 (9)0.0314 (8)0.0315 (8)0.0037 (6)0.0114 (7)0.0047 (6)
C220.0612 (11)0.0268 (8)0.0346 (9)0.0023 (7)0.0178 (8)0.0006 (6)
C180.0436 (9)0.0244 (7)0.0310 (7)0.0061 (6)0.0119 (7)0.0032 (6)
C110.0563 (10)0.0289 (8)0.0328 (8)0.0049 (7)0.0090 (8)0.0008 (6)
C60.0492 (10)0.0338 (9)0.0416 (10)0.0023 (7)0.0175 (8)0.0007 (7)
C120.0541 (10)0.0270 (8)0.0290 (8)0.0070 (7)0.0111 (7)0.0011 (6)
C90.0408 (9)0.0265 (8)0.0351 (9)0.0083 (6)0.0069 (7)0.0022 (6)
C140.0663 (12)0.0326 (9)0.0368 (9)0.0053 (8)0.0142 (8)0.0040 (7)
C130.0532 (10)0.0331 (8)0.0342 (8)0.0067 (7)0.0093 (8)0.0025 (7)
C70.0403 (9)0.0503 (10)0.0409 (10)0.0051 (7)0.0099 (8)0.0029 (8)
C250.0524 (11)0.0271 (8)0.0357 (11)0.0063 (7)0.0082 (9)0.0031 (8)
C26'0.0524 (11)0.0271 (8)0.0357 (11)0.0063 (7)0.0082 (9)0.0031 (8)
C40.0835 (15)0.0404 (10)0.0624 (13)0.0097 (10)0.0439 (12)0.0095 (9)
C50.0574 (12)0.0454 (10)0.0544 (11)0.0045 (8)0.0241 (10)0.0034 (9)
C270.0632 (14)0.0351 (11)0.0427 (12)0.0055 (10)0.0004 (10)0.0021 (9)
C260.0446 (14)0.0231 (8)0.0384 (11)0.0061 (8)0.0109 (10)0.0018 (7)
C27'0.044 (6)0.042 (6)0.056 (7)0.006 (4)0.007 (5)0.018 (5)
C25'0.0446 (14)0.0231 (8)0.0384 (11)0.0061 (8)0.0109 (10)0.0018 (7)
Geometric parameters (Å, º) top
N8—C91.464 (2)C18—C91.520 (2)
N8—C71.461 (2)C11—C121.511 (2)
N8—C261.513 (2)C11—H1c110.96
N8—C25'1.464 (7)C11—H2c110.96
N10—C111.460 (2)C6—C71.507 (3)
N10—C91.462 (2)C6—C51.393 (3)
N10—C251.464 (3)C12—C131.389 (2)
N10—C26'1.512 (10)C9—H1c90.96
C16—C151.387 (3)C14—C131.393 (3)
C16—C171.389 (3)C14—H1c140.96
C16—H1c160.96C13—H1c130.96
C20—C191.391 (2)C7—H1c70.96
C20—C211.387 (2)C7—H2c70.96
C20—H1c200.96C25—C261.523 (3)
C2—C11.395 (3)C25—H1c250.96
C2—C31.375 (3)C25—H2c250.96
C2—H1c20.96C26'—C27'1.512 (14)
C19—C181.393 (2)C26'—C25'1.523 (16)
C19—H1c190.96C26'—H1c26'0.96
C15—C141.370 (3)C4—C51.395 (3)
C15—H1c150.96C4—H1c40.96
C17—C121.388 (3)C5—H1c50.96
C17—H1c170.96C27—C261.512 (3)
C21—C221.371 (3)C27—H1c270.96
C21—H1c210.96C27—H2c270.96
C1—C61.375 (2)C27—H3c270.96
C1—H1c10.96C26—H1c260.96
C3—C41.365 (3)C27'—H1c27'0.96
C3—H1c30.96C27'—H2c27'0.96
C23—C221.395 (2)C27'—H3c27'0.96
C23—C181.388 (2)C25'—H1c25'0.96
C22—H1c220.96C25'—H2c25'0.96
C9—N8—C7111.94 (13)N8—C9—H1c9113.6
C9—N8—C26107.69 (13)N10—C9—C18111.41 (14)
C9—N8—C25'97.0 (5)N10—C9—H1c9113.07
C7—N8—C26116.80 (15)C18—C9—H1c9105.31
C7—N8—C25'96.4 (5)C15—C14—C13120.25 (16)
C11—N10—C9112.07 (12)C15—C14—H1c14119.88
C11—N10—C25112.33 (14)C13—C14—H1c14119.88
C11—N10—C26'121.1 (4)C12—C13—C14120.82 (17)
C9—N10—C25102.85 (15)C12—C13—H1c13119.59
C9—N10—C26'102.0 (4)C14—C13—H1c13119.59
C15—C16—C17120.43 (18)N8—C7—C6111.35 (14)
C15—C16—H1c16119.79N8—C7—H1c7109.47
C17—C16—H1c16119.78N8—C7—H2c7109.47
C19—C20—C21119.66 (16)C6—C7—H1c7109.47
C19—C20—H1c20120.17C6—C7—H2c7109.47
C21—C20—H1c20120.17H1c7—C7—H2c7107.53
C1—C2—C3119.75 (18)N10—C25—C26103.37 (16)
C1—C2—H1c2120.13N10—C25—H1c25109.47
C3—C2—H1c2120.13N10—C25—H2c25109.47
C20—C19—C18121.33 (15)C26—C25—H1c25109.47
C20—C19—H1c19119.33C26—C25—H2c25109.47
C18—C19—H1c19119.33H1c25—C25—H2c25114.95
C16—C15—C14119.51 (18)N10—C26'—C27'103.1 (7)
C16—C15—H1c15120.24N10—C26'—C25'104.3 (6)
C14—C15—H1c15120.25N10—C26'—H1c26'117.48
C16—C17—C12120.46 (16)C27'—C26'—C25'112.0 (9)
C16—C17—H1c17119.77C27'—C26'—H1c26'110.43
C12—C17—H1c17119.77C25'—C26'—H1c26'109.35
C20—C21—C22120.22 (16)C3—C4—C5120.1 (2)
C20—C21—H1c21119.89C3—C4—H1c4119.92
C22—C21—H1c21119.89C5—C4—H1c4119.93
C2—C1—C6120.67 (18)C6—C5—C4120.03 (19)
C2—C1—H1c1119.66C6—C5—H1c5119.98
C6—C1—H1c1119.66C4—C5—H1c5119.98
C2—C3—C4120.4 (2)C26—C27—H1c27109.47
C2—C3—H1c3119.8C26—C27—H2c27109.47
C4—C3—H1c3119.8C26—C27—H3c27109.47
C22—C23—C18121.77 (15)H1c27—C27—H2c27109.47
C21—C22—C23119.53 (15)H1c27—C27—H3c27109.47
C21—C22—H1c22120.23H2c27—C27—H3c27109.47
C23—C22—H1c22120.24N8—C26—C25102.47 (15)
C19—C18—C23117.47 (14)N8—C26—C27112.46 (16)
C19—C18—C9118.05 (13)N8—C26—H1c26113.36
C23—C18—C9124.48 (14)C25—C26—C27112.82 (19)
N10—C11—C12112.54 (13)C25—C26—H1c26113
N10—C11—H1c11109.47C27—C26—H1c26103.12
N10—C11—H2c11109.47C26'—C27'—H1c27'109.47
C12—C11—H1c11109.47C26'—C27'—H2c27'109.47
C12—C11—H2c11109.47C26'—C27'—H3c27'109.47
H1c11—C11—H2c11106.21H1c27'—C27'—H2c27'109.47
C1—C6—C7120.16 (17)H1c27'—C27'—H3c27'109.47
C1—C6—C5119.00 (18)H2c27'—C27'—H3c27'109.47
C7—C6—C5120.83 (16)N8—C25'—C26'98.6 (8)
C17—C12—C11121.54 (15)N8—C25'—H1c25'109.47
C17—C12—C13118.53 (16)N8—C25'—H2c25'109.47
C11—C12—C13119.89 (15)C26'—C25'—H1c25'109.47
N8—C9—N10102.77 (12)C26'—C25'—H2c25'109.47
N8—C9—C18110.86 (12)H1c25'—C25'—H2c25'118.51
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 are the centroids of the C1–C6, C12–C17 and C18–C23 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C9—H1C9···Cl240.962.583.1596 (16)119
C21—H1c21···Cg2i0.962.873.6324 (19)137
C11—H2c11···Cg2ii0.962.823.6192 (19)142
C4—H1c4···Cg3iii0.962.793.695 (2)157
C26—H1c26···Cg1iii0.962.913.688 (2)139
Symmetry codes: (i) x, y1, z; (ii) x+1, y, z; (iii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC24H25ClN2
Mr376.9
Crystal system, space groupMonoclinic, P21/c
Temperature (K)120
a, b, c (Å)7.1858 (1), 9.8577 (2), 29.3310 (5)
β (°) 96.8591 (15)
V3)2062.80 (6)
Z4
Radiation typeCu Kα
µ (mm1)1.70
Crystal size (mm)0.44 × 0.32 × 0.21
Data collection
DiffractometerAgilent Xcalibur (Atlas, Gemini ultra)
diffractometer
Absorption correctionAnalytical
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.62, 0.751
No. of measured, independent and
observed [I > 3σ(I)] reflections
39415, 3665, 3464
Rint0.029
(sin θ/λ)max1)0.598
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.144, 2.91
No. of reflections3665
No. of parameters260
No. of restraints4
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.35

Computer programs: CrysAlis PRO (Agilent, 2010), SUPERFLIP (Palatinus & Chapuis, 2007), JANA2006 (Petříček et al., 2006), DIAMOND (Brandenburg & Putz, 2005).

Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 are the centroids of the C1–C6, C12–C17 and C18–C23 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C9—H1C9···Cl240.962.583.1596 (16)119
C21—H1c21···Cg2i0.962.873.6324 (19)137
C11—H2c11···Cg2ii0.962.823.6192 (19)142
C4—H1c4···Cg3iii0.962.793.695 (2)157
C26—H1c26···Cg1iii0.962.913.688 (2)139
Symmetry codes: (i) x, y1, z; (ii) x+1, y, z; (iii) x, y+1/2, z+1/2.
 

Acknowledgements

We acknowledge the Dirección de Investigaciones, Sede Bogotá (DIB) de la Universidad Nacional de Colombia, for financial support of this work, as well as the Institutional research plan (No. AVOZ10100521) of the Institute of Physics. VE and MD acknowledge the suport provided by the project Praemium Academiae of the Academy of Sciences (ASCR), Czech Republic.

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact, Bonn, Germany.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPetříček, V., Dusěk, M. & Palatinus, L. (2006). JANA2006. Institute of Physics, Praha, Czech Republic.  Google Scholar
First citationXia, H.-T., Liu, Y.-F., Wang, D.-Q. & Li, B. (2007). Acta Cryst. E63, o3666.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXu, X., Yao, Y., Zhang, Y. & Shen, Q. (2007). Inorg. Chem. 46, 3743–3751.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationYang, S.-P., Han, L.-J., Wen, A.-P. & Wang, D.-Q. (2009). Acta Cryst. E65, o3049.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 12| December 2012| Pages o3427-o3428
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds