organic compounds
4-(5-Chloropentanamido)benzenesulfonamide
aDepartment of Chemistry, Faculty of Arts and Sciences, Harran University, 63300 Şanlıurfa, Turkey, bDepartment of Physics, Faculty of Arts and Sciences, Harran University, 63300 Şanlıurfa, Turkey, cCentral Research Lab, Harran University, Osmanbey Campus, 63300 Şanlıurfa, Turkey, and dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey
*Correspondence e-mail: akkurt@erciyes.edu.tr
The molecular conformation of the title compound, C11H15ClN2O3S, is stabilized by a C—H⋯O hydrogen bond, forming an S(6) ring motif. In the crystal, molecules are linked by two pairs of inversion-related N—H⋯O hydrogen bonds, generating R22(8) and R22(20) ring motifs, resulting in chains running along [0-11]. These chains are connected by N—H⋯O hydrogen bonds along [100], forming layers parallel to (011). There are also C—H⋯π interactions between the layers, which consolidate the three-dimensional structure.
Related literature
); Supuran (2008); Turkmen et al. (2005, 2011); Rami et al. (2011). For their antiviral properties, such as HIV protease inhibitors, see: De Clercq (2001) and as inhibitors of cysteine protease enzyme, see: Danial & Korsmeyer (2004). For related structures, see: Yalçın et al. (2012); Akkurt et al. (2010a,b). For hydrogen-bond motifs, see: Bernstein et al. (1995).
represent an important class of biologically active compounds. For their action as inhibitors of carbonic anhydrase enzyme, their antibacterial properties in chemotherapy, as antithyroid drugs, and for their antimicrobial properties, see: Maren (1987Experimental
Crystal data
|
Refinement
|
Data collection: CrystalClear (Rigaku/MSC, 2005); cell CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536812048118/su2531sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812048118/su2531Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536812048118/su2531Isup3.cml
The title compound was prepared by a nucleophilic acyl
of sulfanilamide with 5-chloropentanoylchloride. To a solution of 3.00 g (17.42 mmol) of sulfanilamide in 50.0 ml of THF, 4.41 ml (34.84 mmol) of NEM [N-ethylmaleimide] was added. A solution of 4.47 ml (34.84 mmol) of 5-chloropentanoylchloride in 20 ml of THF was added with stirring. A white precipitate of NEM.HCl salt was immediately observed. The reaction mixture was stirred at room temperature for 24 h, the progress of which was monitored by TLC (dichloromethane/methanol 6/1 v/v). The precipitate was filtered out and the filtrate collected was evaporated in vacuo to leave a residue. The residue was dissolved in ethyl acetate. The organic extract was washed with 3 M hydrochloric acid, then with saturated sodium bicarbonate solution and finally with brine. The extract was dried (MgSO4) and concentrated by evaporation in vacuo to give a residue. Recrystallization (ethanol) afforded 3.80 g (75%) the title compound as a white solid [M.p. 458–461 K]. Crystals suitable for X-ray diffraction were grown by slow evaporation of a solution in ethanol/chloroform/dichloromethane (4/3/3 v/v).The H atoms on the NH and NH2 groups were located from a difference Fourier map and refined with distance restraints of N—H = 0.88 (1) Å, with Uiso(H) = 1.2Ueq(N). The C-bound H atoms were positioned geometrically, with C—H = 0.93 and 0.97 Å for CH and CH2 H atoms, respectively, and refined as riding with Uiso(H) = 1.2Ueq(C).
Data collection: CrystalClear (Rigaku/MSC, 2005); cell
CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).Fig. 1. The view of the molecular structure of the title molecule, with the atom numbering. Displacement ellipsoids are drawn at the 50% probability level. | |
Fig. 2. A partial view along the a axis of the crystal packing of the title compound, showing the inversion dimers formed by N—H···O hydrogen bonds. H atoms not involved in hydrogen bonding have been omitted for clarity. |
C11H15ClN2O3S | Z = 2 |
Mr = 290.77 | F(000) = 304 |
Triclinic, P1 | Dx = 1.447 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 8.4872 (1) Å | Cell parameters from 3036 reflections |
b = 8.7730 (2) Å | θ = 2.7–30.5° |
c = 10.4572 (3) Å | µ = 0.44 mm−1 |
α = 73.711 (4)° | T = 294 K |
β = 85.281 (4)° | Needle, pale yellow |
γ = 63.393 (3)° | 0.24 × 0.15 × 0.12 mm |
V = 667.37 (3) Å3 |
Rigaku R-AXIS RAPID-S diffractometer | 4036 independent reflections |
Radiation source: Sealed Tube | 2815 reflections with I > 2σ(I) |
Graphite Monochromator monochromator | Rint = 0.068 |
Detector resolution: 10.0000 pixels mm-1 | θmax = 30.5°, θmin = 2.7° |
dtprofit.ref scans | h = −12→10 |
Absorption correction: multi-scan (SORTAV; Blessing, 1995) | k = −12→12 |
Tmin = 0.901, Tmax = 0.949 | l = −14→14 |
20164 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.065 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.169 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0677P)2 + 0.2759P] where P = (Fo2 + 2Fc2)/3 |
4036 reflections | (Δ/σ)max < 0.001 |
172 parameters | Δρmax = 0.42 e Å−3 |
3 restraints | Δρmin = −0.35 e Å−3 |
C11H15ClN2O3S | γ = 63.393 (3)° |
Mr = 290.77 | V = 667.37 (3) Å3 |
Triclinic, P1 | Z = 2 |
a = 8.4872 (1) Å | Mo Kα radiation |
b = 8.7730 (2) Å | µ = 0.44 mm−1 |
c = 10.4572 (3) Å | T = 294 K |
α = 73.711 (4)° | 0.24 × 0.15 × 0.12 mm |
β = 85.281 (4)° |
Rigaku R-AXIS RAPID-S diffractometer | 4036 independent reflections |
Absorption correction: multi-scan (SORTAV; Blessing, 1995) | 2815 reflections with I > 2σ(I) |
Tmin = 0.901, Tmax = 0.949 | Rint = 0.068 |
20164 measured reflections |
R[F2 > 2σ(F2)] = 0.065 | 3 restraints |
wR(F2) = 0.169 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | Δρmax = 0.42 e Å−3 |
4036 reflections | Δρmin = −0.35 e Å−3 |
172 parameters |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.72069 (11) | 0.61911 (12) | −0.09175 (8) | 0.0692 (3) | |
S1 | −0.03920 (8) | 0.03480 (8) | 0.77585 (6) | 0.0419 (2) | |
O1 | 0.0449 (2) | −0.1257 (2) | 0.88113 (18) | 0.0500 (6) | |
O2 | −0.1417 (3) | 0.0370 (3) | 0.6723 (2) | 0.0572 (7) | |
O3 | 0.3519 (2) | 0.4839 (2) | 0.35111 (19) | 0.0552 (6) | |
N1 | −0.1676 (3) | 0.1842 (3) | 0.8443 (2) | 0.0535 (8) | |
N2 | 0.5163 (3) | 0.2301 (3) | 0.5050 (2) | 0.0416 (6) | |
C1 | 0.1271 (3) | 0.0902 (3) | 0.6970 (2) | 0.0398 (7) | |
C2 | 0.2959 (3) | 0.0145 (3) | 0.7555 (2) | 0.0426 (7) | |
C3 | 0.4213 (3) | 0.0629 (3) | 0.6908 (2) | 0.0434 (7) | |
C4 | 0.3823 (3) | 0.1871 (3) | 0.5670 (2) | 0.0385 (7) | |
C5 | 0.2142 (4) | 0.2581 (4) | 0.5068 (3) | 0.0586 (9) | |
C6 | 0.0901 (4) | 0.2088 (4) | 0.5723 (3) | 0.0611 (10) | |
C7 | 0.4969 (3) | 0.3716 (3) | 0.4010 (2) | 0.0389 (7) | |
C8 | 0.6648 (3) | 0.3843 (3) | 0.3549 (3) | 0.0424 (7) | |
C9 | 0.6398 (3) | 0.5164 (4) | 0.2196 (3) | 0.0479 (8) | |
C10 | 0.8041 (4) | 0.5387 (4) | 0.1751 (3) | 0.0481 (8) | |
C11 | 0.7774 (5) | 0.6762 (4) | 0.0441 (3) | 0.0614 (11) | |
H1NA | −0.226 (4) | 0.288 (2) | 0.788 (3) | 0.0830* | |
H2 | 0.32410 | −0.06880 | 0.83840 | 0.0510* | |
H1NB | −0.123 (4) | 0.179 (5) | 0.918 (2) | 0.0830* | |
H2N | 0.623 (2) | 0.165 (4) | 0.542 (3) | 0.0830* | |
H3 | 0.53400 | 0.01160 | 0.73060 | 0.0520* | |
H5 | 0.18640 | 0.33860 | 0.42260 | 0.0700* | |
H6 | −0.02150 | 0.25670 | 0.53150 | 0.0730* | |
H8A | 0.75400 | 0.26840 | 0.35040 | 0.0510* | |
H8B | 0.70720 | 0.41920 | 0.41990 | 0.0510* | |
H9A | 0.60360 | 0.47760 | 0.15390 | 0.0570* | |
H9B | 0.54550 | 0.63050 | 0.22290 | 0.0570* | |
H10A | 0.84370 | 0.57130 | 0.24300 | 0.0580* | |
H10B | 0.89650 | 0.42580 | 0.16730 | 0.0580* | |
H11A | 0.88480 | 0.69000 | 0.02530 | 0.0740* | |
H11B | 0.68420 | 0.78900 | 0.05110 | 0.0740* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0689 (5) | 0.0792 (6) | 0.0525 (4) | −0.0331 (4) | 0.0030 (4) | −0.0072 (4) |
S1 | 0.0379 (3) | 0.0438 (3) | 0.0432 (3) | −0.0228 (3) | −0.0011 (2) | −0.0018 (2) |
O1 | 0.0490 (10) | 0.0413 (9) | 0.0534 (10) | −0.0225 (8) | −0.0011 (8) | 0.0015 (8) |
O2 | 0.0533 (11) | 0.0741 (13) | 0.0549 (11) | −0.0404 (10) | −0.0057 (9) | −0.0101 (10) |
O3 | 0.0387 (10) | 0.0531 (11) | 0.0557 (11) | −0.0175 (9) | −0.0005 (8) | 0.0077 (9) |
N1 | 0.0487 (14) | 0.0476 (13) | 0.0476 (13) | −0.0144 (11) | 0.0006 (11) | −0.0003 (10) |
N2 | 0.0343 (10) | 0.0437 (11) | 0.0411 (11) | −0.0180 (9) | −0.0022 (8) | −0.0009 (9) |
C1 | 0.0373 (12) | 0.0411 (12) | 0.0416 (12) | −0.0213 (10) | −0.0008 (10) | −0.0047 (10) |
C2 | 0.0409 (13) | 0.0424 (12) | 0.0399 (12) | −0.0211 (11) | −0.0056 (10) | 0.0023 (10) |
C3 | 0.0342 (12) | 0.0422 (12) | 0.0455 (13) | −0.0153 (10) | −0.0078 (10) | 0.0000 (10) |
C4 | 0.0357 (12) | 0.0432 (12) | 0.0378 (11) | −0.0203 (10) | 0.0003 (9) | −0.0076 (10) |
C5 | 0.0488 (15) | 0.0720 (18) | 0.0456 (14) | −0.0362 (14) | −0.0149 (12) | 0.0185 (13) |
C6 | 0.0435 (15) | 0.077 (2) | 0.0528 (15) | −0.0348 (15) | −0.0160 (12) | 0.0159 (14) |
C7 | 0.0376 (12) | 0.0420 (12) | 0.0365 (11) | −0.0177 (10) | 0.0035 (10) | −0.0101 (10) |
C8 | 0.0365 (12) | 0.0432 (12) | 0.0464 (13) | −0.0186 (10) | 0.0051 (10) | −0.0100 (10) |
C9 | 0.0426 (14) | 0.0565 (15) | 0.0474 (14) | −0.0287 (12) | 0.0048 (11) | −0.0076 (12) |
C10 | 0.0458 (14) | 0.0527 (15) | 0.0517 (14) | −0.0292 (12) | 0.0095 (12) | −0.0126 (12) |
C11 | 0.0676 (19) | 0.0628 (18) | 0.0634 (18) | −0.0410 (16) | 0.0158 (15) | −0.0143 (15) |
Cl1—C11 | 1.797 (4) | C7—C8 | 1.508 (4) |
S1—O1 | 1.4365 (18) | C8—C9 | 1.516 (4) |
S1—O2 | 1.435 (2) | C9—C10 | 1.512 (5) |
S1—N1 | 1.593 (2) | C10—C11 | 1.504 (4) |
S1—C1 | 1.763 (3) | C2—H2 | 0.9300 |
O3—C7 | 1.220 (3) | C3—H3 | 0.9300 |
N2—C4 | 1.408 (4) | C5—H5 | 0.9300 |
N2—C7 | 1.356 (3) | C6—H6 | 0.9300 |
N1—H1NA | 0.87 (2) | C8—H8A | 0.9700 |
N1—H1NB | 0.87 (3) | C8—H8B | 0.9700 |
N2—H2N | 0.88 (3) | C9—H9A | 0.9700 |
C1—C2 | 1.390 (4) | C9—H9B | 0.9700 |
C1—C6 | 1.377 (4) | C10—H10A | 0.9700 |
C2—C3 | 1.377 (4) | C10—H10B | 0.9700 |
C3—C4 | 1.389 (3) | C11—H11A | 0.9700 |
C4—C5 | 1.397 (4) | C11—H11B | 0.9700 |
C5—C6 | 1.374 (5) | ||
O1—S1—O2 | 118.85 (13) | C1—C2—H2 | 120.00 |
O1—S1—N1 | 106.87 (11) | C3—C2—H2 | 120.00 |
O1—S1—C1 | 107.57 (11) | C2—C3—H3 | 120.00 |
O2—S1—N1 | 107.06 (14) | C4—C3—H3 | 119.00 |
O2—S1—C1 | 106.58 (13) | C4—C5—H5 | 120.00 |
N1—S1—C1 | 109.75 (13) | C6—C5—H5 | 120.00 |
C4—N2—C7 | 127.3 (2) | C1—C6—H6 | 119.00 |
S1—N1—H1NB | 114 (3) | C5—C6—H6 | 119.00 |
H1NA—N1—H1NB | 119 (3) | C7—C8—H8A | 109.00 |
S1—N1—H1NA | 114.0 (18) | C7—C8—H8B | 109.00 |
C7—N2—H2N | 115.5 (19) | C9—C8—H8A | 109.00 |
C4—N2—H2N | 116.9 (18) | C9—C8—H8B | 109.00 |
S1—C1—C6 | 119.1 (2) | H8A—C8—H8B | 108.00 |
S1—C1—C2 | 121.99 (17) | C8—C9—H9A | 109.00 |
C2—C1—C6 | 118.9 (3) | C8—C9—H9B | 109.00 |
C1—C2—C3 | 120.0 (2) | C10—C9—H9A | 109.00 |
C2—C3—C4 | 121.1 (2) | C10—C9—H9B | 109.00 |
C3—C4—C5 | 118.6 (3) | H9A—C9—H9B | 108.00 |
N2—C4—C5 | 122.8 (2) | C9—C10—H10A | 109.00 |
N2—C4—C3 | 118.6 (2) | C9—C10—H10B | 109.00 |
C4—C5—C6 | 119.8 (3) | C11—C10—H10A | 109.00 |
C1—C6—C5 | 121.5 (3) | C11—C10—H10B | 109.00 |
O3—C7—C8 | 122.4 (2) | H10A—C10—H10B | 108.00 |
N2—C7—C8 | 115.8 (2) | Cl1—C11—H11A | 109.00 |
O3—C7—N2 | 121.8 (3) | Cl1—C11—H11B | 109.00 |
C7—C8—C9 | 112.6 (2) | C10—C11—H11A | 109.00 |
C8—C9—C10 | 113.4 (2) | C10—C11—H11B | 109.00 |
C9—C10—C11 | 113.6 (3) | H11A—C11—H11B | 108.00 |
Cl1—C11—C10 | 112.5 (3) | ||
O1—S1—C1—C2 | −15.8 (2) | C6—C1—C2—C3 | 2.2 (4) |
O2—S1—C1—C2 | −144.3 (2) | C1—C2—C3—C4 | 0.0 (4) |
N1—S1—C1—C2 | 100.2 (2) | C2—C3—C4—N2 | −179.4 (2) |
O1—S1—C1—C6 | 162.6 (2) | C2—C3—C4—C5 | −2.2 (4) |
O2—S1—C1—C6 | 34.2 (3) | N2—C4—C5—C6 | 179.2 (3) |
N1—S1—C1—C6 | −81.5 (2) | C3—C4—C5—C6 | 2.1 (4) |
C7—N2—C4—C3 | −164.6 (2) | C4—C5—C6—C1 | 0.1 (5) |
C7—N2—C4—C5 | 18.3 (4) | O3—C7—C8—C9 | −16.5 (3) |
C4—N2—C7—O3 | 2.2 (4) | N2—C7—C8—C9 | 165.7 (2) |
C4—N2—C7—C8 | 180.0 (2) | C7—C8—C9—C10 | 176.7 (2) |
S1—C1—C2—C3 | −179.42 (18) | C8—C9—C10—C11 | −177.1 (3) |
S1—C1—C6—C5 | 179.3 (2) | C9—C10—C11—Cl1 | −63.2 (3) |
C2—C1—C6—C5 | −2.2 (4) |
Cg1 is the centroid of the C1–C6 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C5—H5···O3 | 0.93 | 2.25 | 2.809 (4) | 118 |
N1—H1NA···O3i | 0.87 (2) | 1.99 (3) | 2.865 (3) | 176 (3) |
N1—H1NB···O1ii | 0.87 (3) | 2.11 (2) | 2.963 (3) | 166 (4) |
N2—H2N···O2iii | 0.88 (3) | 2.17 (3) | 3.021 (4) | 166 (3) |
C10—H10A···Cg1iv | 0.97 | 2.96 | 3.771 (3) | 142 |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x, −y, −z+2; (iii) x+1, y, z; (iv) −x+1, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C11H15ClN2O3S |
Mr | 290.77 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 294 |
a, b, c (Å) | 8.4872 (1), 8.7730 (2), 10.4572 (3) |
α, β, γ (°) | 73.711 (4), 85.281 (4), 63.393 (3) |
V (Å3) | 667.37 (3) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.44 |
Crystal size (mm) | 0.24 × 0.15 × 0.12 |
Data collection | |
Diffractometer | Rigaku R-AXIS RAPID-S diffractometer |
Absorption correction | Multi-scan (SORTAV; Blessing, 1995) |
Tmin, Tmax | 0.901, 0.949 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 20164, 4036, 2815 |
Rint | 0.068 |
(sin θ/λ)max (Å−1) | 0.715 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.065, 0.169, 1.05 |
No. of reflections | 4036 |
No. of parameters | 172 |
No. of restraints | 3 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.42, −0.35 |
Computer programs: CrystalClear (Rigaku/MSC, 2005), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), WinGX (Farrugia, 2012) and PLATON (Spek, 2009).
Cg1 is the centroid of the C1–C6 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C5—H5···O3 | 0.93 | 2.25 | 2.809 (4) | 118 |
N1—H1NA···O3i | 0.87 (2) | 1.99 (3) | 2.865 (3) | 176 (3) |
N1—H1NB···O1ii | 0.87 (3) | 2.11 (2) | 2.963 (3) | 166 (4) |
N2—H2N···O2iii | 0.88 (3) | 2.17 (3) | 3.021 (4) | 166 (3) |
C10—H10A···Cg1iv | 0.97 | 2.96 | 3.771 (3) | 142 |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x, −y, −z+2; (iii) x+1, y, z; (iv) −x+1, −y+1, −z+1. |
Acknowledgements
The authors thank the Unit of Scientific Research Projects of Harran University, Turkey for a research grant (HUBAK Project Nos. 295 and 1136).
References
Akkurt, M., Yalçın, Ş. P., Türkmen, H. & Büyükgüngör, O. (2010a). Acta Cryst. E66, o1559–o1560. Web of Science CSD CrossRef IUCr Journals Google Scholar
Akkurt, M., Yalçın, Ş. P., Türkmen, H. & Büyükgüngör, O. (2010b). Acta Cryst. E66, o1596. Web of Science CSD CrossRef IUCr Journals Google Scholar
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Blessing, R. H. (1995). Acta Cryst. A51, 33–38. CrossRef CAS Web of Science IUCr Journals Google Scholar
Danial, N. N. & Korsmeyer, S. J. (2004). Cell, 116, 205–219. Web of Science CrossRef PubMed CAS Google Scholar
De Clercq, E. (2001). Curr. Med. Chem. 8, 1543–1572. Web of Science CrossRef PubMed CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Maren, T. H. (1987). Drug Dev. Res. 10, 255–276. CrossRef CAS Web of Science Google Scholar
Rami, M., Innocenti, A., Montero, J. L., Scozzafava, A., Winum, J. Y. & Supuran, C. T. (2011). Bioorg. Med. Chem. Lett. 21, 5210–5213. Web of Science CrossRef CAS PubMed Google Scholar
Rigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Supuran, C. T. (2008). Nat. Rev. Drug Discov. 7, 168–181. Web of Science CrossRef PubMed CAS Google Scholar
Turkmen, H., Durgun, M., Yılmaztekin, S., Emul, M., Innocenti, A., Vullo, D., Scozzafava, A. & Supuran, C. T. (2005). Bioorg. Med. Chem. Lett. 15, 367–372. Web of Science CrossRef PubMed CAS Google Scholar
Turkmen, H., Zengin, G. & Buyukkircali, B. (2011). Bioorg. Chem. 39, 114–119. Web of Science CrossRef CAS PubMed Google Scholar
Yalçın, Ş. P., Akkurt, M., Durgun, M., Türkkan, B. & Türkmen, H. (2012). Acta Cryst. E68, o3430. CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Sulfonamides represent an important class of biologically active compounds, with inhibitors of carbonic anhydrase enzyme, antibacterial properties in chemotherapy, antithyroid drugs, antimicrobial properties, (Maren, 1987; Rami et al., 2011; Supuran, 2008; Turkmen et al., 2005, 2011). Sulfonamides are also antiviral agents, such as as HIV protease inhibitors (De Clercq, 2001), and inhibitors of cysteine protease enzyme (Danial & Korsmeyer, 2004). The design and development of new sulfanilamide derivatives can help determine any structural requirements for improved biological activity. In this study, we have prepared and determined the crystal structure of the title compound.
In the 5-chloropentanamide moiety of the title compound, Fig. 1, the N2—C7—C8—C9, Cl1—C11—C10—C9 and O3—C7—C8—C9 torsion angles are 165.7 (2), 63.2 (3) and -16.5 (3) °, respectively. The bond lengths and bond angles are within the normal range and are comparable to those reported previously for the isomer 4-(3-chloro-2,2-dimethylpropanoylamino)-benzenesulfonamide (Yalçın et al., 2012) and other related compounds (Akkurt et al., 2010a,b).
A C—H···O hydrogen bond stabilizes the molecular conformation of the title molecule, forming a S(6) ring motif (Bernstein et al., 1995; Table 1). In the crystal, neighbouring molecules are linked by two pairs of intermolecular N—H···O hydrogen bonds (Table 1 & Fig. 2), forming inversion dimers with R22(8) and R22(20) ring motifs, into chains running along [0 -1 1]. These chains are connected by N—H···O hydrogen bonds along the [100] direction, forming layers parallel to the (011) plane. C—H···π interactions between these layers further help in stabilizing the supramolecular structure (Table 1).