organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 12| December 2012| Pages o3475-o3476

4-(5-Chloro­penta­namido)­benzene­sulfonamide

aDepartment of Chemistry, Faculty of Arts and Sciences, Harran University, 63300 Şanlıurfa, Turkey, bDepartment of Physics, Faculty of Arts and Sciences, Harran University, 63300 Şanlıurfa, Turkey, cCentral Research Lab, Harran University, Osmanbey Campus, 63300 Şanlıurfa, Turkey, and dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 20 November 2012; accepted 22 November 2012; online 28 November 2012)

The mol­ecular conformation of the title compound, C11H15ClN2O3S, is stabilized by a C—H⋯O hydrogen bond, forming an S(6) ring motif. In the crystal, mol­ecules are linked by two pairs of inversion-related N—H⋯O hydrogen bonds, generating R22(8) and R22(20) ring motifs, resulting in chains running along [0-11]. These chains are connected by N—H⋯O hydrogen bonds along [100], forming layers parallel to (011). There are also C—H⋯π inter­actions between the layers, which consolidate the three-dimensional structure.

Related literature

Sulfonamides represent an important class of biologically active compounds. For their action as inhibitors of carbonic anhydrase enzyme, their anti­bacterial properties in chemotherapy, as anti­thyroid drugs, and for their anti­microbial properties, see: Maren (1987[Maren, T. H. (1987). Drug Dev. Res. 10, 255-276.]); Supuran (2008[Supuran, C. T. (2008). Nat. Rev. Drug Discov. 7, 168-181.]); Turkmen et al. (2005[Turkmen, H., Durgun, M., Yılmaztekin, S., Emul, M., Innocenti, A., Vullo, D., Scozzafava, A. & Supuran, C. T. (2005). Bioorg. Med. Chem. Lett. 15, 367-372.], 2011[Turkmen, H., Zengin, G. & Buyukkircali, B. (2011). Bioorg. Chem. 39, 114-119.]); Rami et al. (2011[Rami, M., Innocenti, A., Montero, J. L., Scozzafava, A., Winum, J. Y. & Supuran, C. T. (2011). Bioorg. Med. Chem. Lett. 21, 5210-5213.]). For their anti­viral properties, such as HIV protease inhibitors, see: De Clercq (2001[De Clercq, E. (2001). Curr. Med. Chem. 8, 1543-1572.]) and as inhibitors of cysteine protease enzyme, see: Danial & Korsmeyer (2004[Danial, N. N. & Korsmeyer, S. J. (2004). Cell, 116, 205-219.]). For related structures, see: Yalçın et al. (2012[Yalçın, Ş. P., Akkurt, M., Durgun, M., Türkkan, B. & Türkmen, H. (2012). Acta Cryst. E68, o3430.]); Akkurt et al. (2010a[Akkurt, M., Yalçın, Ş. P., Türkmen, H. & Büyükgüngör, O. (2010a). Acta Cryst. E66, o1559-o1560.],b[Akkurt, M., Yalçın, Ş. P., Türkmen, H. & Büyükgüngör, O. (2010b). Acta Cryst. E66, o1596.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C11H15ClN2O3S

  • Mr = 290.77

  • Triclinic, [P \overline 1]

  • a = 8.4872 (1) Å

  • b = 8.7730 (2) Å

  • c = 10.4572 (3) Å

  • α = 73.711 (4)°

  • β = 85.281 (4)°

  • γ = 63.393 (3)°

  • V = 667.37 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.44 mm−1

  • T = 294 K

  • 0.24 × 0.15 × 0.12 mm

Data collection
  • Rigaku R-AXIS RAPID-S diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.901, Tmax = 0.949

  • 20164 measured reflections

  • 4036 independent reflections

  • 2815 reflections with I > 2σ(I)

  • Rint = 0.068

Refinement
  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.169

  • S = 1.05

  • 4036 reflections

  • 172 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O3 0.93 2.25 2.809 (4) 118
N1—H1NA⋯O3i 0.87 (2) 1.99 (3) 2.865 (3) 176 (3)
N1—H1NB⋯O1ii 0.87 (3) 2.11 (2) 2.963 (3) 166 (4)
N2—H2N⋯O2iii 0.88 (3) 2.17 (3) 3.021 (4) 166 (3)
C10—H10ACg1iv 0.97 2.96 3.771 (3) 142
Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x, -y, -z+2; (iii) x+1, y, z; (iv) -x+1, -y+1, -z+1.

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Sulfonamides represent an important class of biologically active compounds, with inhibitors of carbonic anhydrase enzyme, antibacterial properties in chemotherapy, antithyroid drugs, antimicrobial properties, (Maren, 1987; Rami et al., 2011; Supuran, 2008; Turkmen et al., 2005, 2011). Sulfonamides are also antiviral agents, such as as HIV protease inhibitors (De Clercq, 2001), and inhibitors of cysteine protease enzyme (Danial & Korsmeyer, 2004). The design and development of new sulfanilamide derivatives can help determine any structural requirements for improved biological activity. In this study, we have prepared and determined the crystal structure of the title compound.

In the 5-chloropentanamide moiety of the title compound, Fig. 1, the N2—C7—C8—C9, Cl1—C11—C10—C9 and O3—C7—C8—C9 torsion angles are 165.7 (2), 63.2 (3) and -16.5 (3) °, respectively. The bond lengths and bond angles are within the normal range and are comparable to those reported previously for the isomer 4-(3-chloro-2,2-dimethylpropanoylamino)-benzenesulfonamide (Yalçın et al., 2012) and other related compounds (Akkurt et al., 2010a,b).

A C—H···O hydrogen bond stabilizes the molecular conformation of the title molecule, forming a S(6) ring motif (Bernstein et al., 1995; Table 1). In the crystal, neighbouring molecules are linked by two pairs of intermolecular N—H···O hydrogen bonds (Table 1 & Fig. 2), forming inversion dimers with R22(8) and R22(20) ring motifs, into chains running along [0 -1 1]. These chains are connected by N—H···O hydrogen bonds along the [100] direction, forming layers parallel to the (011) plane. C—H···π interactions between these layers further help in stabilizing the supramolecular structure (Table 1).

Related literature top

Sulfonamides represent an important class of biologically active compounds. For their action as inhibitors of carbonic anhydrase enzyme, their antibacterial properties in chemotherapy, as antithyroid drugs, and for their antimicrobial properties, see: Maren (1987); Supuran (2008); Turkmen et al. (2005, 2011); Rami et al. (2011). For their antiviral properties, such as HIV protease inhibitors, see: De Clercq (2001) and as inhibitors of cysteine protease enzyme, see: Danial & Korsmeyer (2004). For related structures, see: Yalçın et al. (2012); Akkurt et al. (2010a,b). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

The title compound was prepared by a nucleophilic acyl substitution reaction of sulfanilamide with 5-chloropentanoylchloride. To a solution of 3.00 g (17.42 mmol) of sulfanilamide in 50.0 ml of THF, 4.41 ml (34.84 mmol) of NEM [N-ethylmaleimide] was added. A solution of 4.47 ml (34.84 mmol) of 5-chloropentanoylchloride in 20 ml of THF was added with stirring. A white precipitate of NEM.HCl salt was immediately observed. The reaction mixture was stirred at room temperature for 24 h, the progress of which was monitored by TLC (dichloromethane/methanol 6/1 v/v). The precipitate was filtered out and the filtrate collected was evaporated in vacuo to leave a residue. The residue was dissolved in ethyl acetate. The organic extract was washed with 3 M hydrochloric acid, then with saturated sodium bicarbonate solution and finally with brine. The extract was dried (MgSO4) and concentrated by evaporation in vacuo to give a residue. Recrystallization (ethanol) afforded 3.80 g (75%) the title compound as a white solid [M.p. 458–461 K]. Crystals suitable for X-ray diffraction were grown by slow evaporation of a solution in ethanol/chloroform/dichloromethane (4/3/3 v/v).

Refinement top

The H atoms on the NH and NH2 groups were located from a difference Fourier map and refined with distance restraints of N—H = 0.88 (1) Å, with Uiso(H) = 1.2Ueq(N). The C-bound H atoms were positioned geometrically, with C—H = 0.93 and 0.97 Å for CH and CH2 H atoms, respectively, and refined as riding with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The view of the molecular structure of the title molecule, with the atom numbering. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A partial view along the a axis of the crystal packing of the title compound, showing the inversion dimers formed by N—H···O hydrogen bonds. H atoms not involved in hydrogen bonding have been omitted for clarity.
4-(5-Chloropentanamido)benzenesulfonamide top
Crystal data top
C11H15ClN2O3SZ = 2
Mr = 290.77F(000) = 304
Triclinic, P1Dx = 1.447 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.4872 (1) ÅCell parameters from 3036 reflections
b = 8.7730 (2) Åθ = 2.7–30.5°
c = 10.4572 (3) ŵ = 0.44 mm1
α = 73.711 (4)°T = 294 K
β = 85.281 (4)°Needle, pale yellow
γ = 63.393 (3)°0.24 × 0.15 × 0.12 mm
V = 667.37 (3) Å3
Data collection top
Rigaku R-AXIS RAPID-S
diffractometer
4036 independent reflections
Radiation source: Sealed Tube2815 reflections with I > 2σ(I)
Graphite Monochromator monochromatorRint = 0.068
Detector resolution: 10.0000 pixels mm-1θmax = 30.5°, θmin = 2.7°
dtprofit.ref scansh = 1210
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
k = 1212
Tmin = 0.901, Tmax = 0.949l = 1414
20164 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.169H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0677P)2 + 0.2759P]
where P = (Fo2 + 2Fc2)/3
4036 reflections(Δ/σ)max < 0.001
172 parametersΔρmax = 0.42 e Å3
3 restraintsΔρmin = 0.35 e Å3
Crystal data top
C11H15ClN2O3Sγ = 63.393 (3)°
Mr = 290.77V = 667.37 (3) Å3
Triclinic, P1Z = 2
a = 8.4872 (1) ÅMo Kα radiation
b = 8.7730 (2) ŵ = 0.44 mm1
c = 10.4572 (3) ÅT = 294 K
α = 73.711 (4)°0.24 × 0.15 × 0.12 mm
β = 85.281 (4)°
Data collection top
Rigaku R-AXIS RAPID-S
diffractometer
4036 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
2815 reflections with I > 2σ(I)
Tmin = 0.901, Tmax = 0.949Rint = 0.068
20164 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0653 restraints
wR(F2) = 0.169H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.42 e Å3
4036 reflectionsΔρmin = 0.35 e Å3
172 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.72069 (11)0.61911 (12)0.09175 (8)0.0692 (3)
S10.03920 (8)0.03480 (8)0.77585 (6)0.0419 (2)
O10.0449 (2)0.1257 (2)0.88113 (18)0.0500 (6)
O20.1417 (3)0.0370 (3)0.6723 (2)0.0572 (7)
O30.3519 (2)0.4839 (2)0.35111 (19)0.0552 (6)
N10.1676 (3)0.1842 (3)0.8443 (2)0.0535 (8)
N20.5163 (3)0.2301 (3)0.5050 (2)0.0416 (6)
C10.1271 (3)0.0902 (3)0.6970 (2)0.0398 (7)
C20.2959 (3)0.0145 (3)0.7555 (2)0.0426 (7)
C30.4213 (3)0.0629 (3)0.6908 (2)0.0434 (7)
C40.3823 (3)0.1871 (3)0.5670 (2)0.0385 (7)
C50.2142 (4)0.2581 (4)0.5068 (3)0.0586 (9)
C60.0901 (4)0.2088 (4)0.5723 (3)0.0611 (10)
C70.4969 (3)0.3716 (3)0.4010 (2)0.0389 (7)
C80.6648 (3)0.3843 (3)0.3549 (3)0.0424 (7)
C90.6398 (3)0.5164 (4)0.2196 (3)0.0479 (8)
C100.8041 (4)0.5387 (4)0.1751 (3)0.0481 (8)
C110.7774 (5)0.6762 (4)0.0441 (3)0.0614 (11)
H1NA0.226 (4)0.288 (2)0.788 (3)0.0830*
H20.324100.068800.838400.0510*
H1NB0.123 (4)0.179 (5)0.918 (2)0.0830*
H2N0.623 (2)0.165 (4)0.542 (3)0.0830*
H30.534000.011600.730600.0520*
H50.186400.338600.422600.0700*
H60.021500.256700.531500.0730*
H8A0.754000.268400.350400.0510*
H8B0.707200.419200.419900.0510*
H9A0.603600.477600.153900.0570*
H9B0.545500.630500.222900.0570*
H10A0.843700.571300.243000.0580*
H10B0.896500.425800.167300.0580*
H11A0.884800.690000.025300.0740*
H11B0.684200.789000.051100.0740*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0689 (5)0.0792 (6)0.0525 (4)0.0331 (4)0.0030 (4)0.0072 (4)
S10.0379 (3)0.0438 (3)0.0432 (3)0.0228 (3)0.0011 (2)0.0018 (2)
O10.0490 (10)0.0413 (9)0.0534 (10)0.0225 (8)0.0011 (8)0.0015 (8)
O20.0533 (11)0.0741 (13)0.0549 (11)0.0404 (10)0.0057 (9)0.0101 (10)
O30.0387 (10)0.0531 (11)0.0557 (11)0.0175 (9)0.0005 (8)0.0077 (9)
N10.0487 (14)0.0476 (13)0.0476 (13)0.0144 (11)0.0006 (11)0.0003 (10)
N20.0343 (10)0.0437 (11)0.0411 (11)0.0180 (9)0.0022 (8)0.0009 (9)
C10.0373 (12)0.0411 (12)0.0416 (12)0.0213 (10)0.0008 (10)0.0047 (10)
C20.0409 (13)0.0424 (12)0.0399 (12)0.0211 (11)0.0056 (10)0.0023 (10)
C30.0342 (12)0.0422 (12)0.0455 (13)0.0153 (10)0.0078 (10)0.0000 (10)
C40.0357 (12)0.0432 (12)0.0378 (11)0.0203 (10)0.0003 (9)0.0076 (10)
C50.0488 (15)0.0720 (18)0.0456 (14)0.0362 (14)0.0149 (12)0.0185 (13)
C60.0435 (15)0.077 (2)0.0528 (15)0.0348 (15)0.0160 (12)0.0159 (14)
C70.0376 (12)0.0420 (12)0.0365 (11)0.0177 (10)0.0035 (10)0.0101 (10)
C80.0365 (12)0.0432 (12)0.0464 (13)0.0186 (10)0.0051 (10)0.0100 (10)
C90.0426 (14)0.0565 (15)0.0474 (14)0.0287 (12)0.0048 (11)0.0076 (12)
C100.0458 (14)0.0527 (15)0.0517 (14)0.0292 (12)0.0095 (12)0.0126 (12)
C110.0676 (19)0.0628 (18)0.0634 (18)0.0410 (16)0.0158 (15)0.0143 (15)
Geometric parameters (Å, º) top
Cl1—C111.797 (4)C7—C81.508 (4)
S1—O11.4365 (18)C8—C91.516 (4)
S1—O21.435 (2)C9—C101.512 (5)
S1—N11.593 (2)C10—C111.504 (4)
S1—C11.763 (3)C2—H20.9300
O3—C71.220 (3)C3—H30.9300
N2—C41.408 (4)C5—H50.9300
N2—C71.356 (3)C6—H60.9300
N1—H1NA0.87 (2)C8—H8A0.9700
N1—H1NB0.87 (3)C8—H8B0.9700
N2—H2N0.88 (3)C9—H9A0.9700
C1—C21.390 (4)C9—H9B0.9700
C1—C61.377 (4)C10—H10A0.9700
C2—C31.377 (4)C10—H10B0.9700
C3—C41.389 (3)C11—H11A0.9700
C4—C51.397 (4)C11—H11B0.9700
C5—C61.374 (5)
O1—S1—O2118.85 (13)C1—C2—H2120.00
O1—S1—N1106.87 (11)C3—C2—H2120.00
O1—S1—C1107.57 (11)C2—C3—H3120.00
O2—S1—N1107.06 (14)C4—C3—H3119.00
O2—S1—C1106.58 (13)C4—C5—H5120.00
N1—S1—C1109.75 (13)C6—C5—H5120.00
C4—N2—C7127.3 (2)C1—C6—H6119.00
S1—N1—H1NB114 (3)C5—C6—H6119.00
H1NA—N1—H1NB119 (3)C7—C8—H8A109.00
S1—N1—H1NA114.0 (18)C7—C8—H8B109.00
C7—N2—H2N115.5 (19)C9—C8—H8A109.00
C4—N2—H2N116.9 (18)C9—C8—H8B109.00
S1—C1—C6119.1 (2)H8A—C8—H8B108.00
S1—C1—C2121.99 (17)C8—C9—H9A109.00
C2—C1—C6118.9 (3)C8—C9—H9B109.00
C1—C2—C3120.0 (2)C10—C9—H9A109.00
C2—C3—C4121.1 (2)C10—C9—H9B109.00
C3—C4—C5118.6 (3)H9A—C9—H9B108.00
N2—C4—C5122.8 (2)C9—C10—H10A109.00
N2—C4—C3118.6 (2)C9—C10—H10B109.00
C4—C5—C6119.8 (3)C11—C10—H10A109.00
C1—C6—C5121.5 (3)C11—C10—H10B109.00
O3—C7—C8122.4 (2)H10A—C10—H10B108.00
N2—C7—C8115.8 (2)Cl1—C11—H11A109.00
O3—C7—N2121.8 (3)Cl1—C11—H11B109.00
C7—C8—C9112.6 (2)C10—C11—H11A109.00
C8—C9—C10113.4 (2)C10—C11—H11B109.00
C9—C10—C11113.6 (3)H11A—C11—H11B108.00
Cl1—C11—C10112.5 (3)
O1—S1—C1—C215.8 (2)C6—C1—C2—C32.2 (4)
O2—S1—C1—C2144.3 (2)C1—C2—C3—C40.0 (4)
N1—S1—C1—C2100.2 (2)C2—C3—C4—N2179.4 (2)
O1—S1—C1—C6162.6 (2)C2—C3—C4—C52.2 (4)
O2—S1—C1—C634.2 (3)N2—C4—C5—C6179.2 (3)
N1—S1—C1—C681.5 (2)C3—C4—C5—C62.1 (4)
C7—N2—C4—C3164.6 (2)C4—C5—C6—C10.1 (5)
C7—N2—C4—C518.3 (4)O3—C7—C8—C916.5 (3)
C4—N2—C7—O32.2 (4)N2—C7—C8—C9165.7 (2)
C4—N2—C7—C8180.0 (2)C7—C8—C9—C10176.7 (2)
S1—C1—C2—C3179.42 (18)C8—C9—C10—C11177.1 (3)
S1—C1—C6—C5179.3 (2)C9—C10—C11—Cl163.2 (3)
C2—C1—C6—C52.2 (4)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C5—H5···O30.932.252.809 (4)118
N1—H1NA···O3i0.87 (2)1.99 (3)2.865 (3)176 (3)
N1—H1NB···O1ii0.87 (3)2.11 (2)2.963 (3)166 (4)
N2—H2N···O2iii0.88 (3)2.17 (3)3.021 (4)166 (3)
C10—H10A···Cg1iv0.972.963.771 (3)142
Symmetry codes: (i) x, y+1, z+1; (ii) x, y, z+2; (iii) x+1, y, z; (iv) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC11H15ClN2O3S
Mr290.77
Crystal system, space groupTriclinic, P1
Temperature (K)294
a, b, c (Å)8.4872 (1), 8.7730 (2), 10.4572 (3)
α, β, γ (°)73.711 (4), 85.281 (4), 63.393 (3)
V3)667.37 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.44
Crystal size (mm)0.24 × 0.15 × 0.12
Data collection
DiffractometerRigaku R-AXIS RAPID-S
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1995)
Tmin, Tmax0.901, 0.949
No. of measured, independent and
observed [I > 2σ(I)] reflections
20164, 4036, 2815
Rint0.068
(sin θ/λ)max1)0.715
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.169, 1.05
No. of reflections4036
No. of parameters172
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.42, 0.35

Computer programs: CrystalClear (Rigaku/MSC, 2005), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C5—H5···O30.932.252.809 (4)118
N1—H1NA···O3i0.87 (2)1.99 (3)2.865 (3)176 (3)
N1—H1NB···O1ii0.87 (3)2.11 (2)2.963 (3)166 (4)
N2—H2N···O2iii0.88 (3)2.17 (3)3.021 (4)166 (3)
C10—H10A···Cg1iv0.972.963.771 (3)142
Symmetry codes: (i) x, y+1, z+1; (ii) x, y, z+2; (iii) x+1, y, z; (iv) x+1, y+1, z+1.
 

Acknowledgements

The authors thank the Unit of Scientific Research Projects of Harran University, Turkey for a research grant (HUBAK Project Nos. 295 and 1136).

References

First citationAkkurt, M., Yalçın, Ş. P., Türkmen, H. & Büyükgüngör, O. (2010a). Acta Cryst. E66, o1559–o1560.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAkkurt, M., Yalçın, Ş. P., Türkmen, H. & Büyükgüngör, O. (2010b). Acta Cryst. E66, o1596.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDanial, N. N. & Korsmeyer, S. J. (2004). Cell, 116, 205–219.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDe Clercq, E. (2001). Curr. Med. Chem. 8, 1543–1572.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMaren, T. H. (1987). Drug Dev. Res. 10, 255–276.  CrossRef CAS Web of Science Google Scholar
First citationRami, M., Innocenti, A., Montero, J. L., Scozzafava, A., Winum, J. Y. & Supuran, C. T. (2011). Bioorg. Med. Chem. Lett. 21, 5210–5213.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSupuran, C. T. (2008). Nat. Rev. Drug Discov. 7, 168–181.  Web of Science CrossRef PubMed CAS Google Scholar
First citationTurkmen, H., Durgun, M., Yılmaztekin, S., Emul, M., Innocenti, A., Vullo, D., Scozzafava, A. & Supuran, C. T. (2005). Bioorg. Med. Chem. Lett. 15, 367–372.  Web of Science CrossRef PubMed CAS Google Scholar
First citationTurkmen, H., Zengin, G. & Buyukkircali, B. (2011). Bioorg. Chem. 39, 114–119.  Web of Science CrossRef CAS PubMed Google Scholar
First citationYalçın, Ş. P., Akkurt, M., Durgun, M., Türkkan, B. & Türkmen, H. (2012). Acta Cryst. E68, o3430.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 12| December 2012| Pages o3475-o3476
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds