metal-organic compounds
Bis{2-[(phenylimino)methyl]-1H-pyrrol-1-ido}palladium(II)
aUniversity Koblenz-Landau, Institute for Integrated Natural Sciences, Universitätsstrasse 1, 56070 Koblenz, Germany
*Correspondence e-mail: Imhof@uni-koblenz.de
In the title complex, [Pd(C11H9N2)2], the PdII atom is located on an inversion centre and has a square-planar coordination geometry. The phenyl substituents at the imine N atoms make a dihedral angle of 75.0 (6)° with respect to the PdN4 plane.
Related literature
For structure analyses of the free ligand N-[(1H-pyrrol-2-yl)methylene]aniline, see: Gomes et al. (2010); Crestani et al. (2011). For the structure of a related nickel complex of the same imine ligand and an additional bipyridine ligand, see: Castro et al. (1992). For the structure of a related palladium complex with a different aromatic substituent, see: Liang et al. (2004).
Experimental
Crystal data
|
Data collection: COLLECT (Nonius, 1998); cell DENZO (Otwinowski & Minor, 1997); data reduction: DENZO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
10.1107/S1600536812048143/su2533sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812048143/su2533Isup2.hkl
N-((1H-Pyrrol-2-yl)methylene)aniline (170 mg, 1 mmol) and [Pd(PPh3)4] (580 mg, 0.5 mmol) were dissolved in 20 ml anhydrous toluene under an argon atmosphere. After the solution is stirred at room temperature for 2 h it was filtered through a short bed of celite. Afterwards the solution was concentrated to ca. 10 ml in vacuo. Yellow plate-like crystals of the title compound were obtained from this solution after 1 week at 253 K (Yield: 169 mg, 76%).
Hydrogen atoms were included into calculated positions and treated as riding: C-H = 0.95 Å with Uiso(H) = 1.2Ueq(C).
Data collection: COLLECT (Nonius, 1998); cell
DENZO (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).Fig. 1. Molecular structure of the title compound with the atom numbering. The displacement ellipsoids are drawn at the 50% probability level (symmetry code: (i) = -x+1, -y+1, -z). |
[Pd(C11H9N2)2] | F(000) = 448 |
Mr = 444.80 | Dx = 1.633 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 3903 reflections |
a = 10.5634 (4) Å | θ = 2.7–27.5° |
b = 10.6480 (6) Å | µ = 1.04 mm−1 |
c = 8.0560 (7) Å | T = 183 K |
β = 93.044 (2)° | Plate, yellow |
V = 904.85 (10) Å3 | 0.6 × 0.1 × 0.02 mm |
Z = 2 |
Nonius KappaCCD diffractometer | 1464 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.035 |
Graphite monochromator | θmax = 27.5°, θmin = 2.7° |
phi–scan, ω–scan | h = −13→13 |
3903 measured reflections | k = −13→13 |
2018 independent reflections | l = 0→10 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.032 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.078 | H-atom parameters constrained |
S = 1.00 | w = 1/[σ2(Fo2) + (0.0376P)2 + ] where P = (Fo2 + 2Fc2)/3 |
2018 reflections | (Δ/σ)max < 0.001 |
124 parameters | Δρmax = 0.31 e Å−3 |
0 restraints | Δρmin = −0.75 e Å−3 |
[Pd(C11H9N2)2] | V = 904.85 (10) Å3 |
Mr = 444.80 | Z = 2 |
Monoclinic, P21/c | Mo Kα radiation |
a = 10.5634 (4) Å | µ = 1.04 mm−1 |
b = 10.6480 (6) Å | T = 183 K |
c = 8.0560 (7) Å | 0.6 × 0.1 × 0.02 mm |
β = 93.044 (2)° |
Nonius KappaCCD diffractometer | 1464 reflections with I > 2σ(I) |
3903 measured reflections | Rint = 0.035 |
2018 independent reflections |
R[F2 > 2σ(F2)] = 0.032 | 0 restraints |
wR(F2) = 0.078 | H-atom parameters constrained |
S = 1.00 | Δρmax = 0.31 e Å−3 |
2018 reflections | Δρmin = −0.75 e Å−3 |
124 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Pd1 | 0.5000 | 0.5000 | 0.0000 | 0.02321 (12) | |
N1 | 0.6789 (2) | 0.5646 (2) | 0.0414 (3) | 0.0262 (6) | |
C1 | 0.7967 (3) | 0.5447 (3) | −0.0074 (4) | 0.0312 (7) | |
H1 | 0.8188 | 0.4863 | −0.0902 | 0.037* | |
C2 | 0.8824 (3) | 0.6229 (3) | 0.0821 (4) | 0.0315 (7) | |
H2 | 0.9714 | 0.6268 | 0.0707 | 0.038* | |
C3 | 0.8136 (3) | 0.6933 (3) | 0.1901 (4) | 0.0321 (7) | |
H3 | 0.8457 | 0.7552 | 0.2662 | 0.038* | |
C4 | 0.6880 (3) | 0.6555 (3) | 0.1652 (3) | 0.0285 (7) | |
C5 | 0.5768 (3) | 0.6762 (3) | 0.2483 (3) | 0.0299 (7) | |
H5 | 0.5744 | 0.7365 | 0.3349 | 0.036* | |
N2 | 0.4762 (2) | 0.6101 (2) | 0.2034 (3) | 0.0270 (6) | |
C6 | 0.3624 (3) | 0.6222 (3) | 0.2888 (3) | 0.0280 (7) | |
C7 | 0.3223 (3) | 0.5215 (3) | 0.3841 (4) | 0.0339 (8) | |
H7 | 0.3735 | 0.4486 | 0.3975 | 0.041* | |
C8 | 0.2079 (4) | 0.5286 (3) | 0.4586 (4) | 0.0385 (8) | |
H8 | 0.1811 | 0.4606 | 0.5245 | 0.046* | |
C9 | 0.1314 (3) | 0.6348 (3) | 0.4379 (4) | 0.0395 (8) | |
H9 | 0.0511 | 0.6382 | 0.4858 | 0.047* | |
C10 | 0.1739 (3) | 0.7353 (3) | 0.3466 (4) | 0.0363 (8) | |
H10 | 0.1232 | 0.8088 | 0.3350 | 0.044* | |
C11 | 0.2885 (3) | 0.7303 (3) | 0.2724 (3) | 0.0300 (7) | |
H11 | 0.3168 | 0.8000 | 0.2107 | 0.036* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Pd1 | 0.02423 (19) | 0.02118 (18) | 0.02387 (18) | −0.00028 (14) | −0.00192 (12) | −0.00276 (13) |
N1 | 0.0275 (14) | 0.0234 (14) | 0.0274 (12) | −0.0012 (11) | −0.0018 (11) | 0.0008 (10) |
C1 | 0.0302 (18) | 0.0304 (15) | 0.0328 (16) | 0.0010 (14) | −0.0002 (14) | 0.0008 (13) |
C2 | 0.0240 (16) | 0.0340 (17) | 0.0361 (16) | −0.0078 (14) | −0.0021 (14) | 0.0057 (13) |
C3 | 0.0318 (18) | 0.0316 (18) | 0.0319 (16) | −0.0076 (14) | −0.0064 (14) | −0.0004 (13) |
C4 | 0.0356 (18) | 0.0226 (15) | 0.0268 (14) | −0.0029 (13) | −0.0027 (14) | −0.0022 (12) |
C5 | 0.0338 (18) | 0.0272 (16) | 0.0283 (15) | −0.0008 (13) | −0.0029 (14) | −0.0042 (12) |
N2 | 0.0290 (14) | 0.0246 (13) | 0.0271 (13) | 0.0011 (11) | −0.0009 (11) | −0.0037 (10) |
C6 | 0.0286 (16) | 0.0311 (17) | 0.0238 (14) | −0.0030 (13) | −0.0024 (13) | −0.0076 (12) |
C7 | 0.0372 (19) | 0.035 (2) | 0.0297 (16) | 0.0033 (14) | 0.0008 (14) | 0.0003 (12) |
C8 | 0.045 (2) | 0.039 (2) | 0.0308 (17) | −0.0062 (15) | 0.0028 (16) | 0.0030 (13) |
C9 | 0.0298 (18) | 0.055 (2) | 0.0340 (16) | −0.0047 (16) | 0.0056 (14) | −0.0123 (15) |
C10 | 0.0348 (19) | 0.039 (2) | 0.0351 (17) | 0.0095 (15) | −0.0014 (15) | −0.0080 (14) |
C11 | 0.0339 (18) | 0.0276 (17) | 0.0281 (15) | 0.0026 (14) | −0.0020 (14) | −0.0035 (12) |
Pd1—N1 | 2.022 (2) | C5—H5 | 0.9500 |
Pd1—N1i | 2.022 (2) | N2—C6 | 1.422 (4) |
Pd1—N2 | 2.041 (2) | C6—C11 | 1.393 (4) |
Pd1—N2i | 2.041 (2) | C6—C7 | 1.398 (4) |
N1—C1 | 1.342 (4) | C7—C8 | 1.379 (5) |
N1—C4 | 1.389 (3) | C7—H7 | 0.9500 |
C1—C2 | 1.401 (4) | C8—C9 | 1.395 (5) |
C1—H1 | 0.9500 | C8—H8 | 0.9500 |
C2—C3 | 1.384 (4) | C9—C10 | 1.387 (5) |
C2—H2 | 0.9500 | C9—H9 | 0.9500 |
C3—C4 | 1.391 (4) | C10—C11 | 1.379 (4) |
C3—H3 | 0.9500 | C10—H10 | 0.9500 |
C4—C5 | 1.400 (4) | C11—H11 | 0.9500 |
C5—N2 | 1.310 (4) | ||
N1—Pd1—N1i | 180.0 | C4—C5—H5 | 120.9 |
N1—Pd1—N2 | 80.00 (9) | C5—N2—C6 | 120.8 (2) |
N1i—Pd1—N2 | 100.00 (9) | C5—N2—Pd1 | 113.4 (2) |
N1—Pd1—N2i | 100.00 (9) | C6—N2—Pd1 | 125.75 (18) |
N1i—Pd1—N2i | 80.00 (9) | C11—C6—C7 | 120.1 (3) |
N2—Pd1—N2i | 180.0 | C11—C6—N2 | 120.9 (3) |
C1—N1—C4 | 106.9 (3) | C7—C6—N2 | 119.0 (3) |
C1—N1—Pd1 | 140.5 (2) | C8—C7—C6 | 119.7 (3) |
C4—N1—Pd1 | 112.6 (2) | C8—C7—H7 | 120.1 |
N1—C1—C2 | 109.8 (3) | C6—C7—H7 | 120.1 |
N1—C1—H1 | 125.1 | C9—C8—C7 | 120.5 (3) |
C2—C1—H1 | 125.1 | C9—C8—H8 | 119.7 |
C3—C2—C1 | 107.4 (3) | C7—C8—H8 | 119.7 |
C3—C2—H2 | 126.3 | C10—C9—C8 | 119.1 (3) |
C1—C2—H2 | 126.3 | C10—C9—H9 | 120.4 |
C2—C3—C4 | 106.3 (3) | C8—C9—H9 | 120.4 |
C2—C3—H3 | 126.8 | C9—C10—C11 | 121.1 (3) |
C4—C3—H3 | 126.8 | C9—C10—H10 | 119.4 |
N1—C4—C3 | 109.5 (3) | C11—C10—H10 | 119.4 |
N1—C4—C5 | 115.2 (3) | C6—C11—C10 | 119.4 (3) |
C3—C4—C5 | 134.7 (3) | C6—C11—H11 | 120.3 |
N2—C5—C4 | 118.2 (3) | C10—C11—H11 | 120.3 |
N2—C5—H5 | 120.9 |
Symmetry code: (i) −x+1, −y+1, −z. |
Experimental details
Crystal data | |
Chemical formula | [Pd(C11H9N2)2] |
Mr | 444.80 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 183 |
a, b, c (Å) | 10.5634 (4), 10.6480 (6), 8.0560 (7) |
β (°) | 93.044 (2) |
V (Å3) | 904.85 (10) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.04 |
Crystal size (mm) | 0.6 × 0.1 × 0.02 |
Data collection | |
Diffractometer | Nonius KappaCCD diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3903, 2018, 1464 |
Rint | 0.035 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.032, 0.078, 1.00 |
No. of reflections | 2018 |
No. of parameters | 124 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.31, −0.75 |
Computer programs: COLLECT (Nonius, 1998), DENZO (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 2012), publCIF (Westrip, 2010).
References
Castro, J. A., Vilasanchez, J. E., Romero, J., Garcia-Vazquez, J. A., Duran, M. L., Sousa, A., Castellano, E. E. & Zukermann-Schpector, J. (1992). Z. Anorg. Allg. Chem. 612, 83–88. CSD CrossRef CAS Web of Science Google Scholar
Crestani, M. G., Manbeck, G. F., Brennessel, W. W., McCormick, T. M. & Eisenberg, R. (2011). Inorg. Chem. 50, 7172–7188. Web of Science CSD CrossRef CAS PubMed Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gomes, C. S. B., Suresh, D., Gomes, P. T., Veiros, L. F., Duarte, M. T., Nunes, T. G. & Oliveira, M. C. (2010). Dalton Trans. 39, 736–748. Web of Science CSD CrossRef CAS PubMed Google Scholar
Liang, H., Liu, J., Li, X. & Li, Y. (2004). Polyhedron, 23, 1619–1627. CSD CrossRef CAS Google Scholar
Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter & R. M. Sweet, pp. 307–326, New York, Academic Press. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In the course of a project related to the supramolecular structures of square planar nickel and palladium complexes of pyrrole-2-carbaldehyde based Schiff base ligands in comparison with the structures of the free ligands the molecular structure of the title compound was determined. The free ligands form inversion dimers via N—H···N hydrogen bonds between the pyrrole NH function and the imine nitrogen atom of a neighbouring molecule (Crestani et al., 2011; Gomes et al. 2010).
The molecular structure of the title compound is presented in Fig. 1. The central palladium atom is located on a crystallographic inversion center. The phenyl substituents at the imine nitrogen atoms show a dihedral angle of 75.0 (6)° with respect to the PdN4 plane. As is expected the bond lengths in the NCCN backbone of the ligand change upon coordination to palladium. The C4–N1 bond in the pyrrole subunit is slightly elongated to 1.389 (3) Å. In addition, C4–C5 bond is shortened to 1.400 (4) Å whereas the imine double bond C5–N2 is elongated to 1.310 (4) Å.